
Dependable IoT
Communications
(Part III)

July 07, 2016

1

u E-mail: cboano@tugraz.at

u Website: http://www.iti.tugraz.at

Kazan, Russia

Carlo Alberto Boano
Graz University of Technology – Institute for Technical Informatics

TI SensorTags

CC2650

mailto:cboano@tugraz.at
http://www.iti.tugraz.at/

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

What did we learn so far?2

 Contiki OS & CC2650 SensorTags programming

• Reading sensors

• Wireless communication

(unicast & broadcast)

• MAC layer (selected aspects):

Energy-efficiency & Reliability

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

What did we learn so far?3

 Connecting your network

to the outside World

SLIP Radio

6LBR

Internet

Border Router (6LoWPANIPv6)

+

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Agenda4

 Hands-on Contiki OS
• Contiki programming

• Sensing

• Wireless communication (IEEE 802.15.4)

 MAC layer
• Energy-efficiency

• Reliability

• Bluetooth low-energy

 Routing & Application layer

• RPL & Border router

• CoAP & MQTT

• Node-Red

&

Dependable IoT Communications

Starting back from the MQTT Example...5

Each group

on different

channel

There are 16

channels in the

2.4 GHz band

(11 26) 11 12

13

1415

16 17
18

1920

21 22
23

2425

26

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Starting back from the MQTT Example...6

 Border router PC: run 6LBR from provided portable Firefox

• http://[bbbb::100]

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Starting back from the MQTT Example...7

 Border router PC: find out your current Wi-Fi address

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

MQTT: Message Queuing Telemetry Transport8

 Publish/Subscribe messaging protocol

• Example: broker forwards messages to all subscribed clients

• The publisher/subscriber model allows MQTT clients to

communicate one-to-one, one-to-many, and many-to-one

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Hands-on: BR on CC2650 SensorTags9

 MQTT example: run the Mosquitto broker

• Extract Mosquitto zip file and run mosquitto.exe

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Hands-on: BR on CC2650 SensorTags10

 MQTT example: subscribing to any topic (#)

• Opening Eclipse’s Paho MQTT Exerciser

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Hands-on: BR on CC2650 SensorTags11

 MQTT example: subscribing to any topic (#)

• Opening Eclipse’s Paho MQTT Exerciser

• 6LBR PC: localhost

• Sensors: Wi-Fi

address of 6LBR PC

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Hands-on: BR on CC2650 SensorTags12

 MQTT example: subscribing to any topic (#)

• Opening Eclipse’s Paho MQTT Exerciser

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Hands-on: BR on CC2650 SensorTags13

 MQTT example: publishing data

• Toggling red LED of neighboring SensorTags

• Topic: iot-2/cmd/leds/fmt/json

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Hands-on: BR on CC2650 SensorTags14

 MQTT example: publishing data

• Activating buzzer of neighboring SensorTags

• Topic: iot-2/cmd/buzz/fmt/json

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Agenda15

 Hands-on Contiki OS
• Contiki programming

• Sensing

• Wireless communication (IEEE 802.15.4)

 MAC layer
• Energy-efficiency

• Reliability

• Bluetooth low-energy

 Routing & Application layer

• RPL & Border router

• CoAP & MQTT

• Node-Red

&

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

16

 Visual editor that allows “wiring” of

IoT devices and services

 Runs on cloud or on border router

(in our case on your notebook)

 Builds on NodeJS (JavaScript engine)

 Programs created using Drag & Drop

 Getting a flavour:

• Run nodered.bat

• Open a browser to
http://127.0.0.1:1880

Node-Red

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

17

 Example: smart thermostat

Node-Red

Temperature sensors

post temperatures to

the server
Building

automation

server

Server

configures

radiator

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

18

 Example: smart thermostat

Node-Red

Dependable IoT Communications

Kazan, Russia - 7/7/2016Microsoft Summer School on the Internet of Things (SSIoT)

Questions?19

NODE-RED
GETTING STARTED
A VISUAL TOOL FOR WIRING THE INTERNET OF THINGS

2

 Hands-on Contiki OS

• Contiki programming

• Sensing

• Wireless communication (IEEE 802.15.4)

 MAC layer

• Energy-efficiency

• Reliability

• Bluetooth low-energy

 Routing & Application layer

• RPL & Border router

• CoAP & MQTT

• Node-Red

&

AGENDA

ABOUT NODE-RED

• Node-RED is a visual editor that allows “wiring” of IoT devices and services

• It runs in the cloud, on your router or as in our case on your notebook

• It builds on NodeJS (JavaScript engine)

• Programs (called flows) are created using Drag & Drop

• You can use your JavaScript, HTML, CSS etc. skills to improve functionality

NODE-RED – BUILDING BLOCKS

INPUT FUNCTION OUTPUT

SMART THERMOSTAT

Control Server

Router/Gateway

Sensors

Actuators

SMART THERMOSTAT

SLIP Radio 6LBR

Border Router (6LoWPANIPv6)

Node-RED

TI SensorTag as “actuator”

TI SensorTags as

Temperature Sensors

SMART THERMOSTAT

• Web Interface for configuration

• SensorTag senses room temperature

• If the target is higher, turn on the

red LED (sadly we have no means of

heating in this demo)

SMART THERMOSTAT

SMART THERMOSTAT

HTTP GET

Webinterface

with input form

SMART THERMOSTAT

HTTP POST for

changing the target

temperature

SMART THERMOSTAT

CoAP GET “thread”

which reads from the

SensorTag

SMART THERMOSTAT

CoAP POST “thread”

which controls the

“heater” SensorTag

INSTALLATION

• Extract nodered.7z

• Open folder and run

nodered.bat

• Open a browser to

http://127.0.0.1:1880

• DONE!

http://127.0.0.1:1880/

HELLO WORLD

• As with any proper language introduction we will do a simple hello world

• There will be no Smart Object involved in this, it is just to teach some basics

• We will be using two nodes

• One input which generates a hello world message

• One output which receives and prints the hello world message

“Hello World”

HELLO SMART OBJECT

• Perquisites:

• You should have a working border router every two desks

• Ask your neighbor who runs the border router for his channel if you don’t remember

• We will communicate with your SensorTags from Node-RED

• For this we will use the cc26xx-web-demo (please change the channel and

DEVICE_NAME) and send data using MQTT (use the IP64 address of the

gateway)

BLINK

• The hello world of embedded systems (thanks Arduino)

• This time we use the cloud to periodically blink the red LED of all SensorTags

• All the logic resides in the “cloud” (due to WiFi this means your notebook)

• A periodic “task” will create a new message and send it as a CMD to the Tag

• We need some persistence to remember what was the last state (on or off)

WEB INTERFACE AND API

• HTTP is widely used for APIs of services in the cloud

• Presentation of information can easily be done via HTML

• Node-RED comes bundled with a HTTP node

• URLs can be used as input nodes

• HTML messages can be used as response

• Node-RED uses {{ mustache }} as a template engine

• We will now slowly create a simple Web Interface

WEB INTERFACE AND API: MUSTACHE

<div class="row">

<div class="col-sm-12">

<h3> Current Target Temperature</h3>

<h1>{{target_temp}}°C</h1>

</div>

</div>

ACCERL-O-LERT

• Simple cloud driven safety application

• After an initial “safe” position an alert goes off if the accelerometer is 5% off

EXAMPLE 0 – GETTING STARTED

• In “Example 0” you will learn the basics of inputs and outputs and how to

connect nodes in Node-RED

• We will learn about the most important imput and output nodes

• Notice: advanced input and output nodes such as databases will be covered

later

EXAMPLE 0 – USER INTERFACE

Nodes Workspace

Nodes can be placed and connected

Select a node on

the right to show

help in this pane

EXAMPLE 0

Select the inject node and drag it into the

workspace.

Notice on the right info pane you can now see

some information about this node.

Once placed the text will change to timestamp

which is the default mode for this node. It is

called timestamp as it produces a UNIX

timestamp when clicked (as message payload)

EXAMPLE 0

• Input nodes:

• Create a message object (msg) which is processed along the path

• Can be interactive (inject), receive data from your flow or external data (HTTP, UDP,…)

• When you click the inject nodes button it will create a new message to its

output port

• This message is passed as an object (typically JSON) along the path to a

output node or the end of the path

EXAMPLE 0 – INPUT NODES

• Inject: Create a new message with static data (string, number…) or the current

timestamp as payload

• Catch: Catches errors thrown by other nodes and creates a msg with it

• Status: Similar to catch but with status type messages

• Link: Receives messages from any other number of link (output) nodes

• MQTT: Subsribes to topics on a MQTT broker

• HTTP: Accepts HTTP requests (GET,POST,PUT) on a specified URL

EXAMPLE 0 – INPUT NODES

• WEBSOCKET: Receives data using a websocket (URL can be configured)

• TCP/UDP: Accepts RAW data using a TCP or UDP port

• CoAP: Provides a resource sing a build in server (URL, METHOD can be

configured)

• IBMIoT: Subscribes to IBM’s IoT Message broker for a specified Device

ID

• Serial: Read raw data from a serial port

EXAMPLE 0

1. Add a second node called debug from the

output nodes (notice the info on the right

side changes again)

2. Use the cursor to connect the little “port” on

the timestamp with the corresponding

“port” on the debug node (do this by

clicking and dragging)

“ports”

EXAMPLE 0 2.

1. Select debug

1. Switch to the debug side panel (from

info)

2. Click the red deploy button in the top

right corner

EXAMPLE 0

Your application is now running.

Notice that the button is now active

indicated by the blue square next to the

timestamp. The output of the debug node

can be toggled on and off by pressing the

button next to it.

EXAMPLE 0

What day was it?

Click me

Homework: what happens if you press the

button on the debug and then click on the

inject node?

This button is used to

clear all previous

debug output

EXAMPLE 0 - TWITTER

• Notice: you need to have a twitter account for this to work

• Try to delete the input node and replace it by a twitter input node from the

social category (double click to configure)

• Log in with your account and select any hashtag (use something trending or

somewhat popular such as #Microsoft)

• Connect it back to the debug node and deploy

• You can also change the debug to display the entire msg object

EXAMPLE 0 – OUTPUT NODES

• Output Nodes:

• Receive messages from an input port and terminate the dataflow

• The message is not just dropped but typically send over the network, stored or printed

• Output nodes receives data (typically in the form of a JSON object) passed along

the connector and processes it

• The debug node then prints a attribute/member of that object or the entire object

(the default is msg.payload)

• Most output nodes send the msg.payload over the specified protocol

EXAMPLE 0

• Debug: prints the message or a member of that message to the debug side

pane optionally the console window Node-RED is running in

• Link: Sends messages to one or more link (input) nodes

• MQTT: Publishes the message to the configured topic (can be overwritten

by changing msg.topic)

• HTTP: Response: Sends a reply to a message created by a http input node

EXAMPLE 0

• Websocket: Outputs data to a websocket

• TCP/UDP: Outputs the message over raw TCP/UDP

• IBMIoT: Published the message as the configured device id on IBMs

Quickstart

• Serial: Sends the message over the serial port

EXAMPLE 0 - SUMMARY

• Node-RED allows for easy, graphical programming

• There are nodes that serve as inputs and outputs

• Inputs provide data which is passed along on the connector (dataflow)

• Outputs “terminate” a dataflow

• But wait there is more!

• Function blocks can be placed along a dataflow and have an input AND (one or more)

output(s)

EXAMPLE 1 – FUNCTIONS

• In the next example we will see how function nodes can be used to alter the

dataflow

• For this we will use a simple delay node which only affects the time data is

processed, not the data itself.

• We will also see a few things about connectors that are possible in Node-RED

EXAMPLE 1

Next add a delay function to our flow.

(Function) Nodes may be dragged onto

existing connectors in order to place them

between two existing nodes.

Clear old output

EXAMPLE 1

Wait, but nothing happens when I press the

button…

Notice: while waiting a blue square appears

below the newly inserted function block when

its “processing” our data.

EXAMPLE 1

Of course our output appears once again,

this time however delayed by 5 seconds.

Lets see if we can “improve” the delay a bit.

Double click the delay node to configure it

EXAMPLE 1

1. Lets change this to 1
(Optionally) 2. nodes

can be renamed

3.

After changing the configuration

the flow must be deployed again

Afterwards test if the delay really

changed.

EXAMPLE 1

In order to demonstrate how data is passed

along connectors add a second debug node

directly to the output of the inject node.

The timestamp in the debug pane is the

same for both (as we only delay the

transmission and don’t alter the data)

EXAMPLE 1

In order to demonstrate how data is passed

along connectors add a second debug node

directly to the output of the inject node.

The timestamp in the debug pane is the

same for both (as we only delay the

transmission and don’t alter the data)

EXAMPLE 1

While we are able to individually turn on

and off data a single debug node can be

used to plot the data from multiple

sources. In terms of programming it is just

called twice with the different messages

as argument

EXAMPLE 1 - SUMMARY

• With the help of function blocks data may be changed, delayed, routed …

• Using these basics a lot of things are possible

• But right now we are still only clicking stuff in our browser…

• Shouldn’t it be the internet of THINGS?

• Please extract the mosquitto.7z and run mosquitto.exe (nothing but a black

window should appear on your screen when you start it)

EXAMPLE 2 - MQTT

• Recap:

• MQTT is a publish subscribe based application protocol

• It requires a broker (central server) that handles the routing of all messages

• Topics are hierarchical, you may subscribe only to the current level or all sub-topics by

adding a # at the end (only # will give you ever topic in “root”)

• Everyone gets his own broker in this example (mosquitto)

• Usually the broker sits somewhere in the cloud but for debugging reasons this is easier

• Node-RED AND the SensorTag are clients for the MQTT broker

EXAMPLE 2 - MQTT

Mosquitto
MQTT Broker

localhost:1883

6LBR
Border Router
[bbbb::100]

Node-RED
Visual Editor and

Framework

localhost:1180

Handles Publishing

and Subscribing of

messages
What we

used so far

Links the IoT

world to your

notebook

Your

colleague's

nodes

Slip Radio

EXAMPLE 2

Add and configure an new input

mqtt node. This serves as an

input node for this example.

Press the Pencil icon next to the

add new mqtt-broker field

EXAMPLE 2

Localhost or your machine or our IP here

EXAMPLE 2

Select the new broker and

enter # as the topic for this

node.

Notice: # means subscribe to

all and can be seen as the

“mother of all hashtags”

The red triangle should

disappear if everything is ok

EXAMPLE 2

It should say connected here

Once connected all messages that are

published to the mosquitto running on the

local machine are shown here. Once again

Node-RED is only one client connected to the

broker just like the SensorTag will be one

soon.

EXAMPLE 2 – CC26XX-WEB-DEMO

• Contiki includes a demo for cc26xx family of devices which the SensorTag is part of

• It contains a few services implemented as individual processes:

• A HTTP server: Which can be used to read the sensors and configure MQTT

• A CoAP server: This is used to read sensors and control the LEDs

• A MQTT client: This is used to publish all values to a broker and listen to control messages

• A UDP to Serial server: Using a program like netcat you can write raw UDP data and the

SensorTag output it via the serial port. All incoming serial messages are transmitted via UDP

as well

• A 6LBR client: This service uploads some statistics to the border router (such as PRR, Parent, …)

EXAMPLE 2

• Open your eclipse and navigate to

contiki/examples/cc26xx/ cc26xx-web-demo

• In the mqtt-client.c change the broker_ip in line 66 to your (WiFi) IP

• Compile and upload the software to the SensorTag

Notice: The IP address is in hex and prefixed with 64:ff9b (RFC6052)

Example IBM Quickstart: 184.172.124.189 → B8AC:7CBD

EXAMPLE 2

• In order for the SensorTag to subscribe to a topics for commands also

comment the following lines in mqtt-client.c

• Your line numbers might be different depending on your last changes (here

the old broker_ip was left in as a comment)

EXAMPLE 2

Lots of JSON

After some time your SensorTag should connect

to a/our border router (fast blinking) and once

connected to the gateway start searching for

the MQTT broker IP. Once the slow blinking

stops you should soon see a message like the

one shown here.

EXAMPLE 2

• On topics: The SensorTag uses IBM Watson IoT Syntax (Quickstart)

iot-2/evt/status/fmt/json → iot-2/evt/event_id/fmt/format_string

• iot-2, evt, fmt: fixed labels

• event_id: used to indicate the type of data being sent. A receiving application can then

select to receive by type of events. Here it is a status update.

• format_string: identifies how the payload is encoded. Any encoding can be used,

however “json” is treated specially by the built-in visualization of Quickstart.

EXAMPLE 2

If we add an mqtt output node (same broker

with the topic: iot-2/cmd/leds/fmt/json) we

are able to switch our red led on (injecting a

String with 1) or off (“0”). Don’t be fooled by

the format identifier of JSON, it is just a

String.

EXAMPLE 2 - SUMMARY

• This time we have interaction with an IoT device (SensorTag)

• We could now go ahead and build a flow that e.g., twitters our (room)

temperature (or even better throw one in the freezer with a bottle of vodka

and twitter that)

• Sadly if we want to embed the information in a interface we need some sort

of storage or delay all http requests until the SensorTag publishes again

EXAMPLE 3 - PERSISTENCE

• There is a storage connector for many database solutions (MySQL, Posgre,

MongoDB) as well as file storage in several formats (SQLite, JSON, Plain)

• We included only a few that can be used without a dedicated server

• More can be found at http://flows.nodered.org/

• To install npm install [name] please run a cmd prompt and “run” nodevars.bat

• In this example we take a look at the JSON storage as we already get the

data in that format from our node

http://flows.nodered.org/

EXAMPLE 3

Similar to the mqtt node the

DataIn node also needs to be

configured before use. The

Data Path is relative in the file.

EXAMPLE 3

This will create a file called

SensorTag.json in .node-red/JsonDB

folder in our home folder which for

Windows is:

%HOMEPATH%\.node-red\JsonDB

EXAMPLE 3

If we now connect the DataIn to a mqtt input

and add a second path with an inject, a

DataOut and a debug. Don’t forget to

configure the DataOut to the same

collection as before. If you now press the

inject you should see the last data sent.

EXAMPLE 3

Lets add a function block

with the following code

between mqtt and DataIn.

Also change the DataIn

node to merge the data

EXAMPLE 3

You may have to delete the SensorTag.json

in order for it to merge properly or change

the Collection to a new one.

On the right side you can now see an insane

amount of data once you press the inject.

EXAMPLE 3 - SUMMARY

• We are now able to store data, with this we can implement caching (only one

value) or a history

• We wrote our first, simple javascript node

• But now the trusty old debug has finally reached its limits

• It is time to learn some visualization

EXAMPLE 4 - GUI

• As Node-RED comes with its own webserver (used for the editor) it usually is

the easiest to add user interface using https as well

• For this basic knowledge about html is helpful

• As data source we will keep the flow from example 4

EXAMPLE 4

This is bit more at once:

1. Add an http input node

2. Add the usual DataOut

3. Add a function node

4. Add a template node

5. And add a http response node

EXAMPLE 4

1. Configure the http input node: URL = /data

2. Configure the DataOut to the Collection of example 4

3. Configure the function node and add the following code

1. msg.mustacheFormattedData = { 'data' : [] };
2. for (var key in msg.payload) {
3. if (msg.payload.hasOwnProperty(key)) {
4. msg.mustacheFormattedData.data.push(
5. {
6. 'key' : key,
7. 'value' : msg.payload[key]
8. });
9. }}return msg;

EXAMPLE 4

4. Configure template node

Node-RED uses node Mustache.js as its template language.

1. <html>
2. <body>
3. This is the payload:
4. {{#mustacheFormattedData.data}}
5. <p></p>{{key}}
{{value}}</p>
6. {{/mustacheFormattedData.data}}
7. </body>
8. </html>

EXAMPLE 4

• Explanation:

• The function node creates a new object under mustacheFormattedData.

Under this element a new object is added called data with the “type” list.

We now push the SensorTag messages the value of a new key value pair into the list with

the timestamp as key.

• The template iterates over the data list and for each key value pair prints a new entry in

the html. We could now properly parse the JSON in the value, add a table and other

fancy stuff but for this tutorial we just print each JSON we received from a SensorTag

and the timestamp when we received it.

EXAMPLE 4

Go to 127.0.0.1:1880/data and behold

EXAMPLE 4 - SUMMARY

• We have a simple example where we save data to disk

• We use html for visualization of the stored data

• In order to convert the data a parse-able format we employ JavaScript

• This nicely formatted data is then “inserted” into our html file on every request

• Instead of printing all the data unprocessed we could also compute the

average of a value or the standard deviation.

EXAMPLE 4 - JSON

• If you want to share your code with others you can export it to your clipboard

and share any way you like. Try it by importing our version of example 4.

[{"id":"11493ae5.d79af5","type":"mqtt in","z":"16afb134.e3f76f","name":"","topic":"iot-

2/evt/status/#","qos":"2","broker":"28b723ff.3b934c","x":159,"y":22,"wires":[["2f13c0f5.7a172"]]},{"id":"e580f869.4

02c58","type":"DataIn","z":"16afb134.e3f76f","collection":"1050f15c.e0791f","name":"","update":true,"path":"/","x":59

9,"y":24,"wires":[]},{"id":"f704461e.90a9d8","type":"DataOut","z":"16afb134.e3f76f","collection":"1050f15c.e0791f","

name":"","path":"/","error":false,"x":357,"y":81,"wires":[["d43d6531.749538"]]},{"id":"24a0f1f3.43f24e","type":"inject",

"z":"16afb134.e3f76f","name":"","topic":"","payload":"","payloadType":"date","repeat":"","crontab":"","once":false,"x":1

58,"y":82,"wires":[["f704461e.90a9d8"]]},{"id":"d43d6531.749538","type":"debug","z":"16afb134.e3f76f","name":"","

active":true,"console":"false","complete":"false","x":560,"y":81,"wires":[]},{"id":"2f13c0f5.7a172","type":"function","z":"16

afb134.e3f76f","name":"route","func":"msg.datapath = \"/\" + Date.now().toString()\nreturn

msg;","outputs":1,"noerr":0,"x":363,"y":23,"wires":[["e580f869.402c58"]]},{"id":"b61c635.6dc7aa","type":"http

in","z":"16afb134.e3f76f","name":"","url":"/data","method":"get","swaggerDoc":"","x":104,"y":139,"wires":[["f0b97b9.8

680a88"]]},{"id":"f0b97b9.8680a88","type":"DataOut","z":"16afb134.e3f76f","collection":"1050f15c.e0791f","name":

"","path":"/","error":false,"x":239,"y":137,"wires":[["454508de.d46628"]]},{"id":"b0b7caad.ea7ae8","type":"http

response","z":"16afb134.e3f76f","name":"","x":608,"y":136,"wires":[]},{"id":"454508de.d46628","type":"function","z":"1

6afb134.e3f76f","name":"","func":"msg.mustacheFormattedData = { 'data' : [] };\n\nfor (var key in msg.payload) {\n

if (msg.payload.hasOwnProperty(key)) {\n msg.mustacheFormattedData.data.push(\n {\n 'key' : key,\n

'value' : msg.payload[key]\n });\n }\n}\nreturn

msg;","outputs":1,"noerr":0,"x":361,"y":136,"wires":[["65f9f089.e5dd5"]]},{"id":"65f9f089.e5dd5","type":"template","z":

"16afb134.e3f76f","name":"","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","template":

"<html>\n<body>\nThis is the

payload:\n\n{{#mustacheFormattedData.data}}\n<p></p>{{key}}
{{value}}</p>\n{{/mustacheFormat

tedData.data}}\n</body>\n</html>","x":487,"y":136,"wires":[["b0b7caad.ea7ae8"]]},{"id":"28b723ff.3b934c","type

":"mqtt-

broker","z":"16afb134.e3f76f","broker":"localhost","port":"1883","clientid":"","usetls":false,"compatmode":true,"keepaliv

e":"60","cleansession":true,"willTopic":"","willQos":"0","willPayload":"","birthTopic":"","birthQos":"0","birthPayload":""},{"id

":"1050f15c.e0791f","type":"json-db-

collection","z":"16afb134.e3f76f","name":"SensorTag","collection":"SensorTag","save":true}]

EXAMPLE 5 - COAP

• Sadly CoAP requires a “direct” connection between you and your SensorTag

• This example can be tried when you do your projects with on of your tags as border

router

• For this please start the provided Virtual Machine (VM) and connect a SensorTag to

the machine

• Open contiki/examples/ipv6/slip-radio and change the channel in the project-conf.h

• Enter the same channel in the project-conf.h of the cc26xx-web-demo

• Channels may be from 11 to 26

EXAMPLE 5 - GATEWAY

• Find a partner (better 2 or 3)

• Program the slip-radio example with channel 11-26

• Start the VM with the SensorTag attached as “modem”

• The others program the cc26xx-web-demo example with the same channel

• Take a look at http://[bbbb::100] on the computer the VM is running on

• If no nodes show up under sensors something went wrong…

http://[bbbb::100/

EXAMPLE 5 - COAP

• Unlike MQTT CoAP exposes the SensorTag to the internet directly which has its own

Problems (think denial of service attack)

• In our setup we use Node-RED as a proxy for CoAP therefore your applications or

Node-RED can still access the full functionality while we could use our knowledge of

storage nodes to reduce the number of requests

• Recap:

• CoAP is a REST protocol

• Resources are identified as URLs

• On each Resource you can call GET, POST, PUT, DELETE as with any REST protocol (like HTTP)

EXAMPLE 5

Your node address will

be aaaa::[mac]

CoAP has a registry of all

available resources that can be

GET from

coap://[IP]/.well-known/core

EXAMPLE 5

Using a simple inject to trigger the CoAP

request and putting the output to our trusty

old debug node.

We can see that the amount of data is a bit

to much and gets truncated but at least we

see that every resource comes with a

description, its path and its unit.

EXAMPLE 5

Now lets try with a POST

requiest to coap://[IP]/lt/r

lt stands for LEDs toggle and r is

red

EXAMPLE 5

1. Choose number

Configure our inject node to

number and set the payload to 1

EXAMPLE 5

Notice that (if everything works correctly)

that ever time you press the inject the red

LED on your SensorTag switches on or off.

Even though a debug node is connected

there is no output as we use a POST

command

EXAMPLE 5

Add a new CoAP input node,

configure a new CoAP server

(Any name and default port). Set

the URL to /test and the method

to POST. On the CoAP request

node change: IP = 127.0.0.1,

payload = (string) “hello” and

URL also to /test.

EXAMPLE 5

So while we don’t have connection to your

SensorTag right now we can still play around

with CoAP as a protocol. But somehow our

payload of 1 does not appear but rather

“undefended”. Lets configure the debug node

to complete msg object.

EXAMPLE 5

So there is a lot of data in the debug but most

importantly there is a req(uest) element. This

request has a payload which is in the form of

a Bytearray. We therefore need a function to

convert it to a String for us:
msg.payload=msg.req.payload.toString('utf8');
return msg;

EXAMPLE 5

Using this method you could now test your

Flow without having a SensorTag available or

reachable.

EXAMPLE 5 - SUMMARY

• CoAP allows us to directly communicate with a Smart Object (no

broker/server needed)

• Unfortunately we did not bring a global prefix with us so we have to make

due with our gateway solution per group

• For testing and bidirectional communication we added a CoAP input node

• But how does contiki know what to do with /lt/r ?

EXAMPLE 5 – RESOURCES (MAKEFILE)

REST_RESOURCES_DIR = ./resources

REST_RESOURCES_FILES += res-leds.c res-toggle-leds.c res-device.c

REST_RESOURCES_FILES += res-sensors.c res-ble-advd.c res-net.c

PROJECTDIRS += $(REST_RESOURCES_DIR)

PROJECT_SOURCEFILES += $(REST_RESOURCES_FILES)

REST Engine shall use Erbium CoAP implementation

APPS += er-coap

APPS += rest-engine

Which files to use in

that folder

EXAMPLE 5 – RESOURCES RES-LEDS.C

static void

res_post_put_handler(void *request, void *response, uint8_t *buffer, uint16_t

preferred_size, int32_t *offset) {

size_t len = 0;

const char *color = NULL;

const char *mode = NULL;

uint8_t led = 0;

int success = 1;

if((len = REST.get_query_variable(request, "color", &color))) {

if(strncmp(color, "r", len) == 0) {

led = LEDS_RED;

} else if(strncmp(color, "g", len) == 0) {

…

if(success && (len = REST.get_post_variable(request, "mode", &mode))) {

EXAMPLE 5 – RESOURCES RES-LEDS.C CONT.

#define RESOURCE_PARAMS "r|g"

RESOURCE(res_leds,

"title=\"LEDs: ?color=" RESOURCE_PARAMS ", POST/PUT mode=on|off\";rt=\"Control\"",

NULL,

res_post_put_handler,

res_post_put_handler,

NULL);

From contiki/apps/rest-engine/rest-engine.h

#define RESOURCE(name, attributes, get_handler, post_handler, put_handler, delete_handler)

EXAMPLE 5 – RESOURCES COAP-SERVER.C

• In the cc26xx-web-demo example a file called coap-server takes care of the

initialization of the rest engine and registers resources to it

• For the res_leds this is done by calling

rest_activate_resource(&res_leds, "lt");

• Where the first argument is the name defined in the RESOURCE and the

second is the path of the resource relative to root

EXAMPLE 5

As with HTTP REST has two

methods of submitting data:

• Via the URL (here)

• Via the Payload

EXAMPLE 5

This time we need two injects

configured to String with a

Payload of “mode=on” and

“mode=off”

EXAMPLE 5 – SUMMARY AGAIN

• You now know how contiki handles resources for REST with CoAP

• Adding a new resource file simply requires adding it to the Makefile and

activating it in coap-server.c

• Resources have a identifier and four function pointers (GET,POST,PUT,DELETE)

• If a resource does not have one of these handlers register NULL instead

EXAMPLE 6 - QUICKSTART

• Both approaches to interact with out Smart Object so far required a

dedicated gateway and used 6LoWPAN over 802.15.4

• For some projects this is not an option though

• The SensorTag comes with a preinstalled firmware (cc2640_SensorTag.hex)

which allows for a smartphone to connect to the tag and act as gateway

• In this next example we will use this firmware

EXAMPLE 6

• Get the SensorTag app from the AppStore

EXAMPLE 6

• Enable the Cloud View slider

• Click the Cloud cell to show URL on iOS or click the open in

Browser link on Android

• Copy down your Device ID (again iOS click the cell on

Android its on the main screen)

EXAMPLE 6

EXAMPLE 6

Add an ibmiot input node and connect it

once again to a debug node. While not as

fancy as the web interface this allows us to

process the data in the cloud

Notice: This time the data is send using BLE

and the phone pushes it to the cloud

EXAMPLE 6 - SUMMARY

• This time we published data without the use of a “dedicated” gateway but

used a simple smatphone

• Contiki’s cc26xx-web-demo also publishes to IBM Quickstart by default

• We could also publish from Node-RED to Quickstart for visualization

• Using (paid) device registration we could employ encryption and run our

Node-RED on IBM’s bluemix as well

EXAMPLE 7 - BLE

• BLE seems to be a nice tool if a commodity hardware smartphone can act as a

gateway/border router

• Using a cheap USB BLE dongle we could also use a PC or Raspberry PI

(version 3 even comes with build in Bluetooth)

• Using a C.H.I.P for 9$ (BLE build in) or a PI zero (5$) with dongle (2$)

we can build a cheap gateway for a lot of sensors

• Sadly Windows has a strange BLE stack so we bypass it

EXAMPLE 7 - BLE

• Requires:

• A compatible USB BLE (4.x) radio build in or USB Dongle

• Zadig tool to replace the driver with a generic WinUSB driver (allows libUSB to work)

• Depending on your hardware this may or may not work out

• If it does you may also use it for the project

EXAMPLE 7

After a few seconds the Flow should indicate

that the SensorTag is now connected. In that

case whenever a sensor changes we get an

update (per sensor with its name a msg.topic)

Notice: This can be changed in the

configuration and only some sensors may be

observed

EXAMPLE 7

• Sadly contiki has no BLE stack (yet)

• But using the cc26xx-web-demo we can send advertisemnets

• We can use these to send data (you should have seen this in the “lecture”)

• Using CoAP we can even change the message using 802.15.4 while BLE is still

enabled

EXAMPLE 7

Using a Scan BLEs node we get a message

for each device in range once (even if its

localName should change)

Notice: We can “restart” the reading by

sending a message to it with

msg.payload.scan=false followed by

msg.payload.scan=true

EXAMPLE 7 - SUMMARY

• Node-RED can interact with smart objects using BLE and existing APIs (such as

Quickstart) to facilitate communication

• While completely without gateway this is as close as we get without actually

using WiFi in our nodes

• TI released one such device recently called the

CC3200STK-WIFIMK or in short a WiFi SensorTag

Please notice the increased battery compartment size

EXAMPLE 8 - PLOTTING

• Sometimes a bit more fanciful visualizations can help a lot

• Quickstart is a good starting point but what if we want to run it locally or with

more traces/datapoints

• For the next example you may use any of the known data sources but as we

have not done anything with mqtt for a while we chose it

• http://flows.nodered.org/node/node-red-contrib-graphs has way more infos

if you need them for your project

http://flows.nodered.org/node/node-red-contrib-graphs

EXAMPLE 8

Use mqtt and parse its msg as JSON. The

function then assigns the RSSI value to the

data element and creates a new timestamp

tstamp for the payload. The iot datasource

logs it (choose any name) to the dashboard

var point={"payload":{}};
point.payload.data=msg.payload.d['RSSI (dBm)'];
point.payload.tstamp= Date.now();
return point;

EXAMPLE 8

When you navigate to http://127.0.0.1:1880/dash you will be greeted by a

empty dashboard. First create a New Dashboard with any name.

Next Create a new chart (the button is in the same position as the Create New

Dashboard was a few seconds ago)

Select Line/Area Chart, give it any name and under add data source add the

one your created in the last slide

No other Values are required

http://127.0.0.1:1880/dash

EXAMPLE 8

EXAMPLE 8

After some time the data gets logged to the dashboard. This is by default not

persistent (and doing so would exceed the scope of this tutorial).

Notice: you can resize every chart in the dashboard by just dragging from the

bottom right corner

Click to

resize

APPLICATIONS

• The SensorTag includes an army of

sensors

• Your goal will be to leverage these

sensors and the inherent connectivity

to create an IoT application

• The following slides will give some

(very basic) examples

APPLICATION 1
ACCELER-O-LERT

• This is a very simple (and due to the use of the default settings in the MQTT

config) slow example of a accelerometer based alert

• If the node experiences acceleration (even the standard 1G of the earth) that

exceeds a certain limit the alert goes off

• In order to spare our ears the we use the leds target instead of buzz for

our cmd (so only a red led instead of the buzzer will go off)

EXAMPLE 1
ACCELER-O-LERT

[{"id":"f8e322c1.b822f","type":"mqtt in","z":"4d13ca19.902f94","name":"listen","topic":"iot-

2/evt/status/fmt/json","qos":"2","broker":"54965a3e.0b6504","x":102,"y":196,"wires":[["311fe381.0188fc"]]},{"id":"42c4eaf1.89a354","type":"in ject","z":"4d13ca19.902f94","name":"init","topic":"","paylo

ad":"","payloadType":"date","repeat":"","crontab":"","once":false,"x":144,"y":399,"wires":[["a8c7e416.7c3038"]]},{"id":"8a315f43.bd475","type":"DataIn","z":"4d13ca19.902f94","collection":"7844c862.d

11e18","name":"","update":false,"path":"/last","x":556,"y":196,"wires":[]},{"id":"311fe381.0188fc","type":"json","z":"4d13ca19.902f94","name":"","x":243,"y":195,"wires":[["b18ee810.5f7fe8"]]},{"id":"b18

ee810.5f7fe8","type":"function","z":"4d13ca19.902f94","name":"extract Acc","func":"old=msg;\nmsg={};\nmsg.payload={};\nmsg.payload.x=old.payload.d['Acc X (G)'];\nmsg.payload.y=old.payload.d['Acc

Y (G)'];\nmsg.payload.z=old.payload.d['Acc Z (G)'];\nreturn

msg;","outputs":1,"noerr":0,"x":393,"y":196,"wires":[["8a315f43.bd475","e158054b.17baa8"]]},{"id":"679eeca8.c795d4","type":"DataIn","z":"4d13ca19.902f94","collection":"7844c862.d11e18","name":""

,"update":false,"path":"/safe","x":418,"y":397,"wires":[]},{"id":"a8c7e416.7c3038","type":"DataOut","z":"4d13ca19.902f94","co llection":"7844c862.d11e18","name":"","path":"/last","error":false,"x":289,"y

":398,"wires":[["679eeca8.c795d4"]]},{"id":"e158054b.17baa8","type":"function","z":"4d13ca19.902f94","name":"store","func":"msg.last=msg.payload;\nreturn

msg;","outputs":1,"noerr":0,"x":554,"y":147,"wires":[["b3fee716.4740a8"]]},{"id":"b3fee716.4740a8","type":"DataOut","z":"4d13ca19.902f94","collection":"7844c862.d11e18","name":"","path":"/safe","err

or":false,"x":709,"y":147,"wires":[["3e01036f.c406bc"]]},{"id":"3e01036f.c406bc","type":"function","z":"4d13ca19.902f94","name":"normalize","func":"safe=msg.payload;\nlast=msg.last\nmsg.payload={};\

nmsg.payload.x=Math.abs((safe.x-last.x)*50);\nmsg.payload.y=Math.abs((safe.y-last.y)*50);\nmsg.payload.z=Math.abs((safe.z-last.z)*50);\nreturn

msg;","outputs":1,"noerr":0,"x":881,"y":146,"wires":[["da5fba56.f308c8","7bc70bc7.cc77d4"]]},{"id":"9428d616.078898","type":"debug","z":"4d13ca19.902f94","name":"","active":true,"console":"false","co

mplete":"payload","x":1220,"y":146,"wires":[]},{"id":"bbc79741.731568","type":"comment","z":"4d13ca19.902f94","name":"Process

Events","info":"","x":128,"y":137,"wires":[]},{"id":"ad56f6f8.66fec8","type":"comment","z":"4d13ca19.902f94","name":"Set Safe

Position","info":"","x":140,"y":340,"wires":[]},{"id":"562551b7.60932","type":"mqtt out","z":"4d13ca19.902f94","name":"alert","topic":"iot-

2/cmd/leds/fmt/json","qos":"","retain":"","broker":"54965a3e.0b6504","x":1190,"y":214,"wires":[]},{"id":"da5fba56.f308c8","type":"function","z":"4d13ca19.902f94","name":"evaluate","func":"output={};\ni

f(msg.payload.x>10 || msg.payload.y>10 || msg.payload.z>10){\n output.payload=\"1\";\n} else {\n output.payload=\"0\";\n}\nreturn

output;","outputs":1,"noerr":0,"x":1055,"y":213,"wires":[["562551b7.60932"]]},{"id":"7bc70bc7.cc77d4","type":"template","z":"4d13ca19.902f94","name":"toString","field":"payload","fieldType":"msg","form

at":"handlebars","syntax":"mustache","template":"The current deviation from the safe stop is:\nx:{{payload.x}}%, y:{{payload.y}}%,

z:{{payload.z}}%","x":1066,"y":146,"wires":[["9428d616.078898"]]},{"id":"54965a3e.0b6504","type":"mqtt-

broker","z":"4d13ca19.902f94","broker":"localhost","port":"1883","clientid":"","usetls":false,"compatmode":true,"keepalive":"60","cleansession":true,"willTopic":"","willQos":"0","willPayload":"","birthTopic":"","

birthQos":"0","birthPayload":""},{"id":"7844c862.d11e18","type":"json-db-collection","z":"4d13ca19.902f94","name":"alarm","collection":"alarm","save":true}]

Import JSON and

configure MQTT and DB

APPLICATION 2
SMART THERMOSTAT

• While we lack the proper actuators for this example we can still build a simplified

demo (unless you get your hands on a heating/cooling element and maybe a relay

• There are many solutions for such a problem

• Control loop on the device (simple PID controller with the set point changed using CoAP)

• While somewhat impractical we could also put the control loop into the cloud (HVACaaS)

• … like normal people, offline with a dial on the device for temp. (just kidding)

• For those not familiar with HTML/JS development there is a Bootstrap based GUI

used in this example (feel free to modify and reuse it for your own projects)

APPLICATION 2
SMART THERMOSTAT

• [{"id":"5e3ab6fb.471178","type":"http in","z":"27cfae6e.32bad2","name":"readTemp","url":"/temperature","method":"get","swaggerDoc":"","x":102,"y":97,"wires":[["9dfe4895.0ae908"]]},{"id":"c107c9af.26eed8","type":"http

response","z":"27cfae6e.32bad2","name":"readTempResp","x":1115,"y":93,"wires":[]},{"id":"9aebfc90.3a967","type":"debug","z":"27cfae6e.32bad2","name":"","active":true,"console":"false","complete":"payload","x":699,"y":1

67,"wires":[]},{"id":"60375d03.1f4274","type":"inject","z":"27cfae6e.32bad2","name":"read","topic":"","payload":"","payloadType":"str","repeat":"10","crontab":"","once":true,"x":129,"y":500,"wires":[["2824cf0a.19a19"]]},{"id

":"2b2df4a1.583e8c","type":"DataIn","z":"27cfae6e.32bad2","collection":"e4d2f3.50b89d1","name":"","update":false,"path":"/temperature/node","x":473,"y":500,"wires":[]},{"id":"9dfe4895.0ae908","type":"DataOut","z":"27

cfae6e.32bad2","collection":"e4d2f3.50b89d1","name":"","path":"/temperature/target","error":false,"x":322,"y":97,"wires":[["b1cc78a9.624788","22f953eb.d9de2c"]]},{"id":"28b4e90e.da8e56","type":"comment","z":"27cfae

6e.32bad2","name":"HTTP interface for the thermostat (reading cached)","info":"This block is used to read the current node temperature from the JSON storage using and HTTT\nIt also contains a form for changing the

temperature","x":230,"y":48,"wires":[]},{"id":"3ea99872.7b60c8","type":"comment","z":"27cfae6e.32bad2","name":"CoAP caching block (INSERT COAP IP HERE)","info":"This block periodically reads the current temperature from

the HDC and stores it into a JSON DB\n\n# Improvement options\n\n- Use sensor fuision and merge all the temperature sensors (HDC, TMP, BMP, SoC)","x":233,"y":457,"wires":[]},{"id":"6f2a9650.894fa8","type":"http

in","z":"27cfae6e.32bad2","name":"setTemp","url":"/temperature","method":"post","swaggerDoc":"","x":107,"y":272,"wires":[["b433348b.e9dda8","b4c3bfe8.c8506","e3938dca.9b4a4"]]},{"id":"2864ba52.b2ef46","type":"Dat

aIn","z":"27cfae6e.32bad2","collection":"e4d2f3.50b89d1","name":"","update":false,"path":"/temperature/target","x":504,"y":324,"wires":[]},{"id":"ee48af6f.643cf","type":"debug","z":"27cfae6e.32bad2","name":"","active":tru

e,"console":"false","complete":"payload","x":467,"y":380,"wires":[]},{"id":"7b15b163.a1a","type":"http

response","z":"27cfae6e.32bad2","name":"","x":531,"y":274,"wires":[]},{"id":"a41f85fc.419d78","type":"comment","z":"27cfae6e.32bad2","name":"HTTP interface for setting the target temperature","info":"This block is used to

write the target temperature to the JSON DB for control purposes","x":220,"y":222,"wires":[]},{"id":"f35f4578.718458","type":"comment","z":"27cfae6e.32bad2","name":"TODO:","info":"You could implemnt some propper

thermostat control using the included PID block","x":105,"y":674,"wires":[]},{"id":"16d7c5e.7c4e23a","type":"PID

control","z":"27cfae6e.32bad2","name":"","target":"18","kp":"1","ki":"1","kd":"1","x":107,"y":718,"wires":[[]]},{"id":"8451b90d.001c88","type":"inject","z":"27cfae6e.32bad2","name":"control","topic":"","payload":"","payloadT

ype":"date","repeat":"5","crontab":"","once":true,"x":141,"y":605,"wires":[["d5bcf765.45edf8"]]},{"id":"d5bcf765.45edf8","type":"DataOut","z":"27cfae6e.32bad2","collection":"e4d2f3.50b89d1","name":"","path":"/temperatur

e/node","error":false,"x":349,"y":604,"wires":[["b6f94e50.d2aca"]]},{"id":"b6f94e50.d2aca","type":"function","z":"27cfae6e.32bad2","name":"save to node_temp","func":"msg.node_temp=msg.payload;\nreturn

msg;","outputs":1,"noerr":0,"x":560,"y":603,"wires":[["64d05913.9575d8"]]},{"id":"64d05913.9575d8","type":"DataOut","z":"27cfae6e.32bad2","collection":"e4d2f3.50b89d1","name":"","path":"/temperature/target","error":fa

lse,"x":781,"y":603,"wires":[["e92dea35.5cfff8"]]},{"id":"e92dea35.5cfff8","type":"function","z":"27cfae6e.32bad2","name":"diff","func":"msgs=[];\nmsg.target_temp=msg.payload;\nmsg.payload = (msg.target_temp-

msg.node_temp);\nmsgs.push(msg);\n\ncontrol={};\nif(msg.payload<0) {\n control.payload=\"mode=off\";\n} else {\n control.payload=\"mode=on\";\n}\nmsgs.push(control);\nreturn

msgs;","outputs":"2","noerr":0,"x":946,"y":602,"wires":[["c30ee78f.acf6b8"],["2bab99cd.15e626"]]},{"id":"5980e76e.55f888","type":"debug","z":"27cfae6e.32bad2","name":"","active":false,"console":"false","complete":"payloa

d","x":1255,"y":564,"wires":[]},{"id":"b433348b.e9dda8","type":"template","z":"27cfae6e.32bad2","name":"toString","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","template":"The target

temperature has been set to {{payload.target}}

!","x":308,"y":380,"wires":[["ee48af6f.643cf"]]},{"id":"b1cc78a9.624788","type":"template","z":"27cfae6e.32bad2","name":"toString","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","template":"T

he current target temperature was reported as {{payload}}

!","x":519,"y":168,"wires":[["9aebfc90.3a967"]]},{"id":"c30ee78f.acf6b8","type":"template","z":"27cfae6e.32bad2","name":"toString","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","template":"

We need to change the temperature by {{payload}} !","x":1097,"y":565,"wires":[["5980e76e.55f888"]]},{"id":"65019474.15b9cc","type":"comment","z":"27cfae6e.32bad2","name":"Mockup control

loop","info":"","x":141,"y":558,"wires":[]},{"id":"2824cf0a.19a19","type":"coap request","z":"27cfae6e.32bad2","method":"GET","observe":false,"url":"coap://[aaaa::212:4b00:69e:d589]:5683/sen/hdc/t","content-

format":"text/plain","raw-buffer":false,"name":"requestTemp","x":282,"y":500,"wires":[["2b2df4a1.583e8c"]]},{"id":"2bab99cd.15e626","type":"coap

request","z":"27cfae6e.32bad2","method":"POST","observe":false,"url":"coap://[aaaa::212:4b00:69e:d589]:5683/lt?color=r","content-format":"text/plain","raw-

buffer":false,"name":"heaterOut","x":1107,"y":635,"wires":[[]]},{"id":"f02ff8a3.dd77b8","type":"template","z":"27cfae6e.32bad2","name":"htmify","field":"payload","fieldType":"msg","format":"handlebars","syntax":"mustache","t

emplate":"<html>\n<head>\n<style>\nbody {\n padding-top: 50px;\n}\n\n.starter-template {\n padding: 40px 15px;\n text-align: center;\n}\n</style>\n<script

src=\"https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js\"></script>\n<link rel=\"stylesheet\" href=\"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css\" integrity=\"sha384-

1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7\" crossorigin=\"anonymous\">\n<link rel=\"stylesheet\" href=\"https://cdnjs.cloudflare.com/ajax/libs/bootstrap-

touchspin/3.1.1/jquery.bootstrap-touchspin.min.css\">\n<script src=\"https://cdnjs.cloudflare.com/ajax/libs/bootstrap-touchspin/3.1.1/jquery.bootstrap-touchspin.min.js\"></script>\n\n</head>\n<body>\n \n<nav

class=\"navbar navbar-inverse navbar-fixed-top\">\n <div class=\"container\">\n <div class=\"navbar-header\">\n <button type=\"button\" class=\"navbar-toggle collapsed\" data-toggle=\"collapse\" data-

target=\"#navbar\" aria-expanded=\"false\" aria-controls=\"navbar\">\n Toggle navigation\n \n <span class=\"icon-

bar\">\n \n </button>\n Smart Thermostat Interface\n </div>\n </div>\n</nav>\n \n<div

class=\"starter-template\">\n<div class=\"row\">\n<div class=\"col-sm-12\">\n<h3> Current Node Temperature</h3>\n<h1> {{payload}}°C</h1>\n</div>\n</div>\n\n<div class=\"row\">\n<div class=\"col-sm-

12\">\n<h3> Current Target Temperature</h3>\n<h1>{{target_temp}}°C</h1>\n</div>\n</div>\n\n<div class=\"row\">\n<div class=\"col-md-4 col-md-offset-4\">\n<form action=\"temperature\"

method=\"post\">\n<div class=\"form-group\">\n<input type=\"text\" id=\"spinedit\" class=\"spinedit\" name=\"target\" value=\"{{target_temp}}\">
\n</div>\n<input type=\"submit\" class=\"btn btn-info btn-lg\"

value=\"Change Target Temperature\">\n\n</form>\n</div>\n</div>\n</div>\n\n<script>\n $(\"input[name='target']\").TouchSpin({\n verticalbuttons: true,\n min: 0,\n max: 100,\n step: 1,\n

});\n</script>\n\n</body>\n</html>","x":925,"y":93,"wires":[["c107c9af.26eed8"]]},{"id":"b4c3bfe8.c8506","type":"function","z":"27cfae6e.32bad2","name":"extract fields","func":"msg.payload=msg.payload.target;\nreturn

msg;","outputs":1,"noerr":0,"x":325,"y":324,"wires":[["2864ba52.b2ef46"]]},{"id":"e3938dca.9b4a4","type":"template","z":"27cfae6e.32bad2","name":"htmify","field":"payload","fieldType":"msg","format":"handlebars","syntax"

:"mustache","template":"\n<html>\n<head>\n<style>\nbody {\n padding-top: 50px;\n}\n\n.starter-template {\n padding: 40px 15px;\n text-align: center;\n}\n</style>\n<link rel=\"stylesheet\"

href=\"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css\" integrity=\"sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7\"

crossorigin=\"anonymous\">\n</head>\n<body>\n \n<nav class=\"navbar navbar-inverse navbar-fixed-top\">\n <div class=\"container\">\n <div class=\"navbar-header\">\n <button type=\"button\"

class=\"navbar-toggle collapsed\" data-toggle=\"collapse\" data-target=\"#navbar\" aria-expanded=\"false\" aria-controls=\"navbar\">\n Toggle navigation\n <span

class=\"icon-bar\">\n \n \n </button>\n Smart Thermostat Interface\n

</div>\n </div>\n</nav>\n \n<div class=\"starter-template\">\n<h1> Target Temperature has been changed to {{payload.target}}°C!</h1>\n<a href=\"temperature\" class=\"btn btn-info btn-lg\"

role=\"button\">Back\n\n </div>\n\n

\n</form>\n</body>\n</html>\n","x":321,"y":273,"wires":[["7b15b163.a1a"]]},{"id":"22f953eb.d9de2c","type":"function","z":"27cfae6e.32bad2","name":"store","func":"msg.target_temp=msg.payload\nreturn

msg;","outputs":1,"noerr":0,"x":512,"y":91,"wires":[["36bbd7ec.f16278"]]},{"id":"36bbd7ec.f16278","type":"DataOut","z":"27cfae6e.32bad2","collection":"e4d2f3.50b89d1","name":"","path":"/temperature/node","error":false,"

x":726,"y":92,"wires":[["f02ff8a3.dd77b8","14368ef2.9a25f1"]]},{"id":"e75db2ef.f942f","type":"debug","z":"27cfae6e.32bad2","name":"","active":true,"console":"false","complete":"payload","x":1149,"y":167,"wires":[]},{"id":"

14368ef2.9a25f1","type":"template","z":"27cfae6e.32bad2","name":"toString","field":"payload","fieldType":"msg","format":"hand lebars","syntax":"mustache","template":"The current node temperature was reported as

{{payload}} !","x":969,"y":168,"wires":[["e75db2ef.f942f"]]},{"id":"e4d2f3.50b89d1","type":"json-db-collection","z":"27cfae6e.32bad2","name":"thermostat","collection":"thermostat","save":true}]

Import JSON and

configure COAP and DB

