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Abstract—Medical measurements and clinical trials are often
carried out in controlled lab settings – severely limiting the
realism and duration of such studies. Our goal is henceforth
to design a body sensor network for unobtrusive and highly-
accurate profiling of body parameters over weeks in realistic
environments. One example application is monitoring the
impact of sleep deprivation on periodic processes in the human
body known as circadian rhythms, which requires highly-
accurate profiling of skin temperature across the human body
over weeks with real-time feedback to a remote medic.

We analyze the requirements on a body sensor network for
such applications and highlight the need for self-organizing
behavior such as adaptive sampling to ensure energy efficiency
and thus longevity, adaptive communication strategies, self-
testing, automatic compensation for environmental conditions,
or automatic recording of a diary of activities.

As a first step towards this goal, we design and build a
prototype of such a non-invasive wearable wireless monitoring
system for accurate body temperature measurements and real-
time feedback to the medic. Through the design, parameteriza-
tion, and calibration of an active measurement subsystem, we
obtain an accuracy of 0.02◦C over the typical body temperature
range of 16-42◦C. We report results from two preliminary
trials regarding the impact of circadian rhythms and mental
activity on skin temperature, indicating that our tool could
indeed become a valuable asset for medical research1.

I. INTRODUCTION

Wearable Body Sensor Networks (BSN) are a promising

emerging technology for unobtrusive real-time monitoring

of vital parameters. Their flexibility, low-cost, and uninter-

rupted operation make them suitable for applications ranging

from telemedicine and health care (enhanced diagnostic

tools, monitoring of elderly patients and chronic diseases),

over e-fitness (monitoring of sporting activities and physi-

cal performance) and interactive gaming, to emotion-based

applications.

1This is the author’s version of the work, and it is not meant for
redistribution. The definitive version was published in:
SORT’11, March 28-31, 2011, Newport Beach, California.
Copyright 2011 IEEE 978-1-4577-0303-4.

Body sensor networks have also the potential to revolu-

tionize medical research. A well-known issue in this field is

the lack of realism in measurements, also known as ”White

Coat Syndrome.” Patients being visited and monitored in

hospital environments often do not behave as in their daily

life, due to the stress and anxiety associated with the clinical

visit and due to the exposure to a different environment.

Unobtrusive 24/7 pervasive monitoring in supportive home

environments using miniaturized body sensors would more

accurately reflect the true values for a given parameter, there-

fore improving the accuracy of data available to researchers.

An example of such applications is accurate measurement

of body temperature in a continuous fashion. There are

many branches of medical science that would benefit from a

non-invasive low-cost tool enabling long-term and accurate

measurement of body temperature. Psychophysiologists can

use peripheral responses, such as variations of skin tem-

perature, as indicators of brain activity, state of mind, or

psychological state. Chronobiologists can derive from long-

term temperature measurements an accurate profile of the

circadian-system activity. The circadian system adjusts and

regulates the body’s internal organization over the 24-hour

day, which is essential to guarantee correct function of,

e.g., the central nervous and immune system. Body core

and skin temperature follow strong rhythms over the 24-

hour day – the so called circadian rhythms. Therefore it is

very important to have precise knowledge and understanding

of the phase, amplitude, and stability of circadian rhythms,

which requires continuous sampling of body temperature

over several days. Furthermore, accurate and continuous

temperature monitoring can lead to early detection of illness,

e.g., breast thermography can indicate early signs of cancer.

In this paper, we design and develop a non-invasive wear-

able wireless monitoring system for accurate body tempera-

ture measurements. Our goal is to support medical research

by providing a miniaturized system that collects precise body

temperature samples at variable sampling rates ranging from

0.01 to 10 Hz. We use high-precision NTC thermistors, pre-



cision amplifiers, and perform thorough calibration, reaching

a temperature accuracy of up to 0.02◦C in the temperature

range 16-42 ◦C. The system is designed to be unobtrusively

worn by patients in their home environments for several

weeks and includes real-time feedback to a care unit, so that

the medical staff can continuously monitor the correctness of

the collected results and guarantee the health of the patient.

We optimize the energy efficiency of our system in order

to achieve lifetimes of several weeks at sampling rates in

the order of 1 Hz. We validate the correct operation of our

system, and show how it can be applied to improve the

quality of measurements in medical research.

The paper proceeds as follows: Section II describes seve-

ral applications of accurate temperature monitoring for me-

dical research, Section III reviews related work in the field.

In Section IV we first discuss requirements and then the

architecture of our system including the hardware platform

we use. Section V describes the integration and calibration

of thermistors to achieve high measurement accuracy. We

evaluate the obtained accuracy in Section VI, and show the

results of two preliminary medical trials. We conclude our

paper in Section VII, including an outlook on future work.

II. APPLICATIONS

In this section we describe our target applications and

explain the benefits brought by a continuous ubiquitous

temperature monitoring. In particular, we consider the mon-

itoring of circadian rhythms and the study of peripheral

responses as indicators of brain activity and emotions.

A. Impact of Sleep Deprivation on Circadian Rhythms

A circadian rhythm is a roughly 24-hours cycle in biolog-

ical processes such as body temperature, hormone secretion,

sleep, and feeding. These rhythms are induced by cellular

’biological clocks’ in the brain and in almost all peripheral

tissues which are set by exogenous cues – the so called

”zeitgebers”, like daylight/darkness, waking/sleeping, and

feeding/fasting.

Human core body temperature is tightly regulated by the

central and peripheral nervous system. Deep and superficial

body temperatures are sensed, and in turn heat- and cold-

defense responses are regulated (e.g., sweating, shivering,

changes in skin blood flow) [1]. Human core body and skin

temperature follow strong circadian rhythms over the 24-

hour day. In the evening the activity of the sympathetic

nervous system – that is one of the major systems in the

human body – decreases, and the widening of skin vessels

(vasodilatation) in the extremities leads to an increased blood

flow to the periphery with a sharp increase in distal skin

temperature (i.e., skin temperature at the extremities). An

increase in distal skin temperature can also be induced

by changes in posture, light, mental activity, hormones,

and drugs. In the morning, the changes are reversed: an

increase in sympathetic tone induces peripheral vasocon-

striction leading to a reduced blood flow to the periphery, as

the body redirects the blood flow from the shell to the core

(insulation).

The circadian rhythms help to anticipate environmental

changes and demands (e.g., low versus high activity of

metabolism at night and day, respectively) in order to save

energy. Sleepiness and the ability to fall asleep are highest

when the distal skin temperature is increasing. In contrast,

alertness and performance after awakening are fully restored

once the distal skin temperature has newly reached minimum

levels. On the one hand, passive warming (e.g., taking a

warm bath) can facilitate sleep onset; on the other hand

passive cooling (e.g., taking a cold shower) as well as the use

of vasoconstrictive substances (e.g., caffeine) can facilitate

awakening [2].

Prolonged sleep deprivation induces a substantial decrease

in core body temperature and, as shown in animal experi-

ments, can lead to thermoregulatory failures [3]. It is an open

research task to monitor the response of the circadian curve

to prolonged sleep restriction and to verify the hypothesis

that sleep deprivation flattens circadian rhythms. We aim

at monitoring patients for periods ranging from 6 days up

to two weeks with prescribed sleep schedule (including

prolonged sleep restriction) and check the impact on their

circadian rhythms. This goal imposes a first important sys-

tem requirement: the system should support uninterrupted

operation for at least two weeks.

B. Relating Skin Temperature Variations to Cognitive, Emo-

tional, and Psychological States

Emotions induce sympathetic activation that induces cuta-

neous vasoconstriction [4]. Psychologists normally use skin

conductance as a measure to assess the cutaneous sym-

pathetic activation: vasoconstriction induces sweating, and

hence the resistance of the skin decreases. Skin conductance

is typically sampled at 400 Hz using a time window of 1.5

to 6.5 seconds after the stimulus. We want to verify if also

distal skin temperature changes at timescales of seconds due

to changing emotional states.

Dittmar et al. [5] presented preliminary results showing

that the skin temperature measured at the temple decreases

instantaneously as soon as the brain starts to solve an

arithmetic task. We want to confirm those results and verify

if brain activity produces a decrease of skin temperature by

monitoring the temple skin temperature of patients.

III. RELATED WORK

In the last decade, an increasing number of wearable

biomedical sensors have been used for diagnosis and treat-

ment of diseases, and body sensor networks have been suc-

cessfully applied to several health-care applications. Lorincz,

Patel, et al. [6], [7] have proposed Mercury, a wearable

sensor-network platform for high-fidelity motion analysis



that has been used to monitor motor fluctuations in patients

with neuromotor disorders, epilepsy, and Parkinson’s dis-

ease. Malan et al. [8] developed CodeBlue: a sensor-network

infrastructure for emergency medical care, which tracks

patients throughout the medical response process, from the

accident location over ambulances to hospitals. Differently

from these efforts that focus on health-care and emergency-

care applications, our work uses body sensor networks to

support medical research by allowing long-term and accurate

measurements in realistic settings.

Several studies have analyzed the circadian rhythms us-

ing various measurement approaches. Methods such as the

measurement of salivary melatonin, cortisol levels, urinary

6-sulfatoximelatonin, midstream urine temperatures, vagi-

nal [9] and core body temperature by means of rectal probes,

and blood pressure have been used as indicators of biological

internal timing. However, most of these methods require

specialized laboratories, or they cause frequent disturbances

that are unacceptable to most patients [10], [11]. Similarly

to the above studies, we also aim to study circadian rhythms,

but in more realistic home environments and for long-time

periods in a seamless way.

Recent studies have shown how the circadian rhythms can

also be monitored under constant routine conditions and free

living conditions [10], [12], [13]. This offers the opportunity

to use continuous skin temperature monitoring of subjects in

their natural environment to assess circadian rhythmicity of

thermoregulation and hence sympathetic activity for several

days. Also the use of actimetry as a method to evaluate

circadian rhythmicity in supportive home environments has

been proposed, but the obtained measurements are strongly

affected by external factors (e.g., the removal of the sensor

for taking a shower before going to bed or a car ride might

be wrongly identified as a sleeping period). Similarly to

the above studies, we also aim to study circadian rhythms

in supportive home environments. In particular, we apply

wireless measurements of skin temperature to monitor the

circadian activity.

The measurement of skin temperature by means of wire-

less devices or wireless data loggers has recently gained

popularity among medical researchers. Chen et al. [14]

have built a prototype belt for non-invasive neonatal tem-

perature monitoring: the system they developed uses NTC

temperature sensors and achieves an accuracy of about

0.1oC. Van Marken et al. [15] recorded the human skin

temperature on hands and feet using iButtons [16], and

Sarabia et al. [10] used the same tool to investigate circadian

rhythmicity through the measurement of wrist temperature.

The DS1921H/Z iButton [16] is a miniaturized digital

thermometer that measures temperature with a resolution

of 1/8oC with an accuracy of ±1oC. According to the

specifications [16], up to 2048 temperature values sampled

at equidistant intervals ranging from 1 to 255 minutes can

be stored. While the iButtons are small, their lifetime is too

short to provide the long-term measurements that we need

for our application. Also, the iButton is a data logger, and

therefore does not offer real-time feedback to the medical

unit. Furthermore, in order to be able to relate variations of

skin temperature to cognitive, emotional, and psychological

states, a much higher sampling rate is needed. The system

we design provides higher accuracy and longer lifetime with

respect to the iButtons, and can also communicate with other

nodes and form a body sensor network, hence providing real-

time feedback to the caregivers.

Modifying the sampling rate, we also use our system

for relating variations of skin temperature to cognitive,

emotional, and psychological states. Similar work has been

done by Brown et al. [17], who have built a modular low-

power body area network for monitoring autonomic nervous

system responses during stress and emotion periods. They

successfully used heart rate and skin conductance measure-

ments to correctly classify the emotional state of patients,

reaching a classification accuracy up to 64%. Differently

from them, we want to analyze the impact of emotions on

peripheral skin temperature.

There are a number of further research activities that

could benefit from our non-invasive accurate temperature

measurement tool, such as investigations of the relationship

of skin temperature changes to the emotions accompanying

music [18] or videos [19], as well as studies of the influence

of solar radiation on skin temperature [20].

IV. REQUIREMENTS, ARCHITECTURE, AND PROTOTYPE

From the applications outlined in Sect. II we first derive a

set of key requirements. We then describe the architecture of

our body sensor network that is driven by the requirements.

Finally, we briefly describe the sensor node platform we

used and the prototype we built.

A. Requirements and Challenges

We derive requirements from the applications described

earlier in the paper, and point out how these requirements

affect the design of the system.

Non-invasiveness. The sensors have to be worn continu-

ously at different places on the body over weeks. Therefore,

the sensor nodes have to be small and lightweight and

must not constrain the test subjects in their daily activities.

In order to achieve a small node size, the energy budget

(battery) and computational resources of sensor nodes are

severely constrained. In order to allow test subjects free

movement, a wireless solution is needed.

Long Lifetime. Monitoring the circadian rhythms re-

quires the system to be run uninterruptedly over several

weeks. Specifically, we require a lifetime of at least three

weeks when taking one sample every 30 seconds. Due to

the limited battery capacity, all system components must

be optimized for energy efficiency by putting hardware into

power-saving sleep modes as often as possible.



High Accuracy and Flexible Sampling Rates. For

monitoring circadian rhythms, temperature measurements

need to have an accuracy of at least 0.05◦C over a typical

skin temperature range of 16-42◦C. As different applications

require different sampling rates in the range from 0.01 Hz

(circadian rhythms) to 10 Hz (emotions), the sampling

frequency should be configurable.

Robustness. The system should be operational over weeks

without interruption and without requiring manual interven-

tion. This is challenging, as the sensor nodes worn on the

body (e.g., on the back of the hands) may be exposed

to extreme environmental conditions such as water (rain,

washing hands, shower), mechanical shock, environmental

temperature variations, but also interference from wireless

transmitters operating in the same frequency band. The

sensor nodes therefore have to be packaged and fixed to the

body in a robust manner and use communication protocols

that adapt to wireless interference.

Real-time Feedback. Running a medical study with

test subjects over weeks is costly and requires substantial

preparation. Therefore, the data is very precious. As the

subjects wear the sensors over weeks, it is required that the

researchers have online and real-time access to the collected

data, for example to detect and fix problems early (fixing

loose sensors), or to detect cheating events (even though test

subjects are paid, they often do not comply with unpleasant

instructions such as sleeping only four hours per day).

Network size. For investigating circadian rhythms, we

need to measure distal skin temperature at the back of the

hands, at the back of the feet, at the trunk of the body (e.g.,

above the liver), and the core body temperature (e.g., in the

ear). Therefore, we need a wireless body area network of

up to ten sensor nodes.

Self-Test. To maximize the quality of the collected data,

we want the body sensor network to detect certain failure

events (such as a loose sensor) by analyzing the sensor

output and to give automatic feedback to the test subject

to fix the problem.

Diary. Medical researchers are interested in correlating

the temperature measurements with the activities of the test

subjects such as going to bed, getting up, sitting, walking,

etc. Hence, the BSN should also detect and record certain

activities (e.g., light sensor to detect darkness, accelerometer

to detect posture and movements). For activities that are

hard to recognize automatically, a simple user interface (e.g.,

button) should be provided to allow the user to indicate the

begin of a certain activity (e.g., food intake). This requires

multiple heterogeneous sensors to be connected to a mote.

Compensation for Ambient Conditions. Traditionally,

skin temperature measurement studies are performed in an

idealized lab setting with constant environmental conditions,

in particular with a constant room temperature. However, we

are aiming at long-term studies in real-world settings, where

environmental conditions are changing. In particular, the en-

Figure 1. Architecture of our BSN and back-end infrastructure.

vironmental temperature fluctuations have a profound impact

on the thermoregulation of the body. Also, environmental

temperature may differ across the body (one foot sticking

out the blanket in bed). Hence, we also need to measure the

environmental temperature distribution across the body and

compensate the skin temperature measurements by means of

appropriate models. Measuring environmental temperature

itself is not easy, as sensors worn on the body are influenced

both by the skin temperature and the environmental tempera-

ture. Hence, we need at least two temperature measurements

(on skin, above skin) at every measurement point on the

body to solve an equation system of two unknowns: skin

temperature and environmental temperature.

In the remainder of this paper we describe the design

and implementation of a BSN meeting these requirements.

Our focus will be on the basic ones – especially on how to

realize very accurate temperature measurements. Advanced

features such as self-testing, diary, and compensation for

ambient conditions are part of ongoing and future work.

B. Architecture

The architecture of our body sensor network is illustrated

in Figure 1. The subject wears multiple, small wireless

sensor nodes on the body. Several sensors (including two

thermistors to measure the temperature on and above the

skin) are attached to each sensor node. Due to the small

size, these sensor nodes are relatively limited in their energy

supply, storage, and computational resources. Therefore, we

include a more powerful sink node in our network that is

larger and therefore offers more resources and power. This

sink node can be worn in the pocket, for example. The

sink node includes additional sensors (e.g., an accelerometer

for activity recognition) and user interfaces (e.g., button

and LEDs). The sink node and the sensor nodes form a

wireless network with a star topology, where the sensor

nodes collect a number of samples and send it to the

sink node. The sink node has a large memory and logs

the received samples. This heterogeneous architecture [21]

offers both unobtrusive measurements by means of small

sensor with limited functionality, and extensive storage and

computational power by means of more powerful sink node

that can fit in a pocket without impacting user comfort.

Whenever the subject enters the range of a base station

installed at home, the sink node forwards collected samples

to the base station wirelessly. The latter consists of a laptop



(a) Tyndall 10mm node (b) Tyndall 25mm node

Figure 2. Wireless sensor nodes used in our body sensor network.

wired to another sensor node to allow wireless communi-

cation between the sink node and the laptop. The laptop is

also connected to the Internet, allowing remote access to

the collected data for the medic. Typically, the user returns

home at least once per day, such that the medic has access

to the data with a latency of at most one day. When the

patient is at home, the medic has instant access to the data.

In some applications with low sampling rates, the sensor

nodes may store enough samples in their small memories,

so that a sink node is not needed. Instead, the sensor nodes

transmit collected data to the base station directly whenever

the subject wearing the body sensor network is in range on

the base station.

C. Hardware Platforms

We use the Tyndall 10mm [22] and 25mm [23] to imple-

ment our architecture. Our choice was motivated by the fact

that the 10mm node matches the size requirements for the

sensor nodes, while the 25mm node is powerful enough to

act as a sink node. Both nodes can communicate with each

other as they use compatible radios. Furthermore, the Tyn-

dall platforms are modular: both nodes are composed of one

or more stackable PCB layers. The main layer contains the

microcontroller and the radio transceiver. Additional stack-

able layers contain sensor interfaces, storage, and additional

radio modules. Compared to the typical monolithic node

designs, this modular approach allows us to customize the

hardware according to our specific application requirements.

The 10mm node [22] (Figure 2(a)) is the smallest node

of the Tyndall family: each layer is roughly 10x10x3 mm

big. The node has been designed to support very low-power

operation for applications with low duty cycles, with a sleep

current of only 3.3µA [22]. Its small size, energy-efficiency,

and low cost make the node suitable for building body sensor

networks. The basic layer includes a Nordic nRF9e5 RF

transceiver operating in the 433 MHz frequency band, as

well as an 8051-compatible embedded microcontroller. The

output power of the radio transceiver is adjustable up to 10

dBm and the typical sensitivity threshold is -100 dBm. The

nRF9e5 microcontroller supports voltage supply down to

1.9V and provides a 10-Bit (extensible to 12) ADC converter

that supports 100k samples per second. The microcontroller

includes a 256-byte data RAM, and the bootstrap loader is

(a) Prototype Board (b) Packaging (top removed)

Figure 3. Our body sensor node prototype and its packaging.

contained in a 512-byte ROM. The user program is loaded

into the first half (4 kB) of an Atmel AT25640A EEPROM,

and the second half (4 kB) can be used for data storage.

The Tyndall 25mm [23] (Figure 2(b)) is a more powerful

node, and has been used in the last years for marine applica-

tions, environmental monitoring of plants and smart spaces,

human interfacing, movement tracking, health-care, and

well-being applications [24]. The basic layer incorporates

an Atmel ATmega128 microcontroller and a Nordic nRF905

radio transceiver operating in the 433 MHz frequency band

that is compatible with the radio used by the 10mm node.

The ATmega128 is an 8-bit microcontroller with 128 Kbytes

of in-system programmable Flash program memory, 4 kB

EEPROM, 4 kB internal SRAM, and a 10-bit ADC.

D. Prototype

Based on the Tyndall 10mm nodes, we developed a

prototype of the body sensor node as shown in Fig. 3(a).

The hardware consists of a 10mm main layer, MF51E [25]

Negative Temperature Coefficient (NTC) thermistors, con-

ditioning circuitry on a custom PCB to connect the sensors

to the microcontroller (described in the next section), and

a battery. Despite using a Lithium Thionyl primary battery

(Tardiran SL-840 with a capacity of 420 mAh) that offers

a very high energy density, the battery dominates the size

of the hardware. The electronics are packaged in an OKW

Minitec Enclosure (Fig. 3(b)) that can be fixed to arms or

legs with a strap.

The software developed for the sensor node samples

temperature at a configurable rate and groups readings in

packets of 30 bytes that are sent wirelessly to the sink node.

We use acknowledgements to monitor connectivity with the

sink node. If the sensor node does not receive an acknowl-

edgment, it stores the packet (and all future data) in local

EEPROM and periodically reattempts to send the data to the

sink. In order to minimize the amount of retransmissions

and hence save energy, we use a linear truncated backoff,

which increases the waiting time linearly with the amount of

consecutive failures. As soon as the communication with the

sink node succeeds again, the sensor node tries to quickly

drain its EEPROM to the sink. In case the EEPROM is filled

before the communication with the sink is restored, new

sensor readings are discarded. We timestamp each reading

so that the sink node can reconstruct the time sequence.



V. ACCURATE TEMPERATURE MEASUREMENTS

Obtaining temperature measurements with an accuracy in

the order of a few hundredths degrees Celsius turned out

to be challenging. In order to exploit the full resolution of

the analog-to-digital converter (ADC), an active conditioning

circuitry is needed. The latter has to be parameterized such

that the relevant temperature range of 16-42◦C maps to the

full input voltage range of the converter. Further, we need to

calibrate the whole measurement circuit in order to reduce

systematic measurement errors.

A. Thermistors

A thermistor is a temperature-dependent resistor with a

non-linear mapping of resistance R to temperature T (in

Kelvin) that can be described by the Steinhart-Hart equation

with device-dependent coefficients a, b, and c:

1

T
= a + b ln(RTh) + c ln3(RTh), (1)

We use as a sensor a thermistor with a Negative Tem-

perature Coefficient (NTC) that can also be modeled by the

simpler B-parameter equation:

T =
B

ln(RTh/r∞)
(2)

where:

r∞ = R0e
−B/T0 (3)

B is the so-called B-parameter, and R0 is the resistance

at temperature T0. Eq. 2 is a special case of Eq. 1 where

a = 1
T0

− 1
B ln(R0), b = 1

B , and c = 0. By setting c = 0 in

the Steinhart equation, the ln3(RTh) term is omitted. The

error introduced by this omission is negligible, as for typical

RTh-values, c ≈ 10−8.

B. Conditioning Circuit

In order to maximize the ADC resolution, we need a

conditioning circuit that maps the thermistor resistance range

[Rmin, Rmax] to a voltage range [0, Vmax] that fully exploits

the input range of the ADC (with Vmax being the maximum

ADC input voltage). With a simple passive voltage divider,

an input voltage of zero cannot be obtained, as the thermistor

resistance is always non-zero. Therefore, we adopt the

solution shown in Fig. 4 based on an operational amplifier,

whose output voltage range can be adjusted to match the

required range through the selection of appropriate resistors

values.

The microcontroller on the Tyndall 10mm platform offers

an external voltage reference for ADC conversion, Aref,

limited to a maximum value of 1.5V that can be obtained by

scaling the supply voltage by means of a voltage divider. The

voltage applied on Aref, VAref , determines the maximum

ADC input value, i.e., Vmax ≤ VAref . Through this confi-

guration we obtain temperature measurements independent

of the supply voltage, as we later discuss in this section.

Figure 4. The complete circuit diagram.

The operational amplifier changes its output voltage vo

in order to compensate the voltage difference present on its

inputs V+ and V−. Consequently, considering that the current

flowing into the op-amp can be neglected due to its high

input impedance, the two branches Ra −RTh and Rb −Rc

can be considered as a voltage divider. With V− = V+,

we obtain the following linear relationship between the

resistance RTh of the thermistor and output voltage vo:

vo(RTh) = Vcc

( RaRc

Ra(Rb + Rc)
− RTh

Rb

Ra(Rb + Rc)

)

(4)

To select the proper values for Ra, Rb, Rc, we need to

solve the equation (4) for the values of the resistors under

the following two boundary conditions:

{

vo(Rmax) = 0
vo(Rmin) = Vmax

(5)

The equation system of (4) and (5) is underconstrained as

we have three unknowns Ra, Rb, Rc but only two equations.

However, since Rb and Rc form a voltage divider whose

output V+ depends only on the ratio Rc

Rb+Rc
, we effectively

have only two unknowns. We therefore solve the equation

system assuming Rb = Ra, but we consider them separately

in the remainder of the paper since their actual values may

differ slightly due to the production tolerance.

One important aspect that affects accuracy is the self-

heating of the thermistor (known as the Joule effect) due to

the current flowing through it. The heat dissipated by the

thermistor is a function of the current flowing through it

and its resistance. The resistance in turn is affected by the

measured temperature. We devise a calibration procedure

in the following section to compensate variations in self-

heating due to changes of environmental temperature. The

current flowing through the thermistor depends on Vcc (but

not on the resistance of the thermistor). Therefore we use a

Torex XC6215 voltage regulator to produce a constant Vcc

of 3.3V. According to the datasheet [26], the regulator has a

swing on the output voltage smaller than ±0.01V. Therefore,



the inaccuracy of temperature measurement due to the self-

heating effect caused by changes in battery voltage is in the

order of ±0.00014◦C, two orders of magnitude less than our

target accuracy.

Combining the conditioning circuit with a voltage divider

to provide the ADC voltage reference VAref as shown

in Fig. 4, we obtain a linear relationship between the

thermistor resistance RTh and the digital ADC output value

Dadc as follows. Dadc is proportional to vo according to
Dadc

2N = vo

VAref
, where N is the number of bits of Dadc. By

solving (4) for RTh with VAref = Vcc ·
Rx

Rx+Ry
, we obtain:

RTh =
RaRc

Rb
−

Rx

Rx + Ry
·
Ra(Rb + Rc)

Rb
·
Dadc

2N
(6)

Note that RTh is independent from the supply voltage.

C. Calibration

To simplify the following discussion, we rewrite (6) as:

RTh = q − ϕ · m (7)

where q = RaRc

Rb
, m = Rx

Rx+Ry
· Ra(Rb+Rc)

Rb
, and ϕ = Dadc

2N .

Equations (2) and (7) describe the complete mapping from

ADC output ϕ to measured temperature T . This mapping

obviously depends on the values of the resistors R∗ as well

as on the thermistor coefficients B and r∞. Although the

latter two values can be obtained from the data sheet of the

thermistor and the resistor values are known, the resulting

measurement accuracy is not sufficient due to the tolerance

of ±0.5% of the thermistor parameters and ±1% of the

chosen resistors.

We therefore need a simple, yet accurate, calibration

procedure of the thermistor and the conditioning circuit. We

came up with a solution that just requires a glass of water

and a precision thermometer [27].

We place the thermometer and the thermistor within 1 cm

distance inside a glass (diameter 85mm, height 220mm)

filled with one liter of water. The water has an initial

temperature of about 42◦C and cools down naturally until

16◦C. This operation requires more than 2 hours, in which,

on average, the temperature of the water drops of 0.01◦C

every 2.8 seconds. As the response time of our calibration

thermometer is one second, we have enough time to charac-

terize the thermistor with the desired accuracy.

While the water slowly cools down, the thermometer and

the ADC output ϕ are sampled simultaneously at regular

intervals to obtain data points (ϕi, Ti). Plugging such a data

point into equations (2) and (7), we obtain one equation with

our calibration parameters as unknowns. Doing this for many

data points, we obtain an overconstrained equation system

than can be solved for the calibration parameters by means

of least squares optimization. Specifically, we can combine

(2) and (7) and rewrite as follows:

Q − ϕ · M = eB/T (8)

where Q = q
r∞

and M = m
r∞

. Using the B parameter

from the data sheet of the thermistor, we have to solve for

just two calibration parameters Q and M . As r∞ depends

on B (see Eq. 3) and as Q and M depend on r∞, we also

compensate the inaccurate value for B obtained from the

data sheet.

Inserting n data points (ϕi, Ti) into (8), we obtain the

following overconstrained linear equation system with two

variables M and Q, and n equations:






−ϕ1, 1
...

...

−ϕn 1






·

[

M
Q

]

=







eB/T1

...

eB/Tn






(9)

Rewriting this as A · x = Y , we obtain a solution

x = [M,Q] that minimizes (A · x − Y )2 by means of least

squares optimization. This optimal solution can be found by

solving the linear system of two equations (A⊤A)x = A⊤Y .

Plugging the obtained calibration parameters Q, M , and

B into (8), we can now compute an accurate estimate of

temperature T given an ADC sample ϕ.

An evaluation showed that the resulting accuracy varies

over the temperature range [16,42]◦C. We conjecture that

this is due to the self-heating effect which is not explicitly

modeled in our equations. We therefore split the temperature

range into two sub-ranges [16,32.5]◦C and [32.5,42]◦C and

obtain separate calibration parameters (Mr, Qr) for each

range r. This results in an accuracy in the order of 0.02◦C
over the whole range, as described in Section VI-A.

D. Adaptive Sampling

The calibration process eliminates systematic measure-

ment errors to a large degree. However, we still have to

deal with noise. Assuming that noise can be modeled by

a Gaussian distribution, we can take multiple samples and

compute the average in order to reduce the noise. However,

taking multiple samples also increases the consumption of

precious energy. We therefore want to select the minimum

number of samples that allows us to meet the accuracy

requirement of the application.

To facilitate this adaptive sampling, we employ an em-

pirical approach to obtain a mapping between number of

samples and resulting accuracy. Using the same setup as for

calibration, i.e., glass of warm water with thermometer and

thermistor placed next to each other, we obtain a new series

of data points (ϕi, Ti). As the water is cooling down very

slowly, we obtain multiple data points i1, i2, ... with the same

value for T , i.e., Ti1 = Ti2 = ..., but with different values

for ϕ, i.e., ϕi1 6= ϕi2 6= ... due to measurement noise. For a

given number of samples N we now compute an averaged

data point (Ti,
1
N

∑

k=1...N ϕik
).

Using the previously computed calibration parameters Q,

M , B, and the averaged data point, we now compute the

measured temperature T using (8). By repeating the experi-

ment, we obtain multiple measured temperatures for a given
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Figure 5. Performing calibration improves the accuracy obtained when using the nominal values of the thermistor.
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Figure 6. Accuracy and noise as a function of the number of averaged samples.

ground truth temperature. By subtracting the minimum from

maximum measured temperature, we obtain a measure for

magnitude of the noise for a given ground truth temperature

and a given number of samples N . The resulting graph in

Fig. 6(b) (see evaluation for details) can then be used to

select the number of samples in order to obtain a given

accuracy.

VI. EVALUATION

In this section, we evaluate the accuracy of temperature

measurements with our prototype and run preliminary ex-

periments with a test subject wearing the body sensors. We

can identify the circadian rhythms from skin temperature

measured at the non-dominant hand over 24 hours. We

also show the high impact of environmental temperature

on the skin temperature readings. We further carry out an

experiment to show the impact of mental activity on the skin

temperature measured at the temple.

A. Accuracy

As detailed in Section V-C, we calibrate our system by

letting a glass of water cool down from 42◦C to 16◦C while

continuously sampling the ADC, computing the average of

50 consecutive ADC samples over a duration of 12.5 ms

(i.e., effective sampling rate of 80 Hz), and send the result

to the sink node. A laptop logs the readings from the ther-

mometer and from the sink node via serial interfaces. We ob-

tain calibration parameters M = 140.31 and Q = 837530.87.

Figure 5 compares the temperature readings obtained with

the thermometer and the thermistor, and also shows the ob-

tained temperature when using calibration parameters from

the data sheet. Figure 5(b) shows how calibration improves

the accuracy by up to approximately 0.5◦C and is therefore

indispensable for obtaining an accuracy below 0.1◦C.

Using the same setup, we measure the accuracy over the

temperature range of interest 16-42◦C using three different

calibration approaches, and the model described in Sec-

tion V-C. Figure 6(a) shows the results. When using an un-

filtered dataset, i.e., the original set of collected data points

(ϕi, Ti), the error varies in the range [0,0.25]◦C. The same

applies for a filtered dataset, in which we perform a moving

average over 250 samples over the original data points. For

this reason, we split the dataset into two sub-ranges and

compute different calibration parameters M and Q for the

different subsets as described in Sect. V-C. We choose as

cut-off point between the two sub-ranges 32.50◦C, which

maximizes the accuracy. By using the resulting calibration

parameters for the sub-ranges, the error is less than 0.02◦C
over the temperature range of interest.

Finally, we assess the variability of the measurements due

to noise as a function of the number of samples used for

averaging as described in Sect. V-D. The results in Fig.

6(b) show that N = 50 samples represents a good tradeoff

between accuracy and energy efficiency. The figure can also

be used to find the number N of samples required to limit

the noise to a certain amount required by the application.
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Figure 7. Monitoring of the circadian rhythms through a continuous
measurement of the hand temperature.

B. Monitoring Circadian Rhythms

We instruct a 24-years old male subject in normal health

conditions to wear our body sensor network and monitor the

skin temperature of his non-dominant hand over a period of

24 hours. The subject is living his normal life. Our goal is

to verify whether we can identify circadian rhythms from

continuous hand temperature measurements outside of the

controlled temperature environment of a lab.

Figure 7 shows the raw data collected between a Friday

evening and a Saturday evening at a sampling rate of 1Hz.

The small interruption of connectivity at 6 AM is due to

a communication failure. As we sample the temperature

every second, we can notice variations due to user mobility,

emotional status, and due to changes in environmental

temperature. If we filter the data using a moving average

over 5000 samples, we can see the expected trend over the

course of a day. In the evening, as a result of vasodilatation,

we see an increase of temperature, followed by a decrease as

soon as the patient goes to bed. In the following morning, the

temperature starts rising again. This proves that our sensor

node does a commendable job in detecting the circadian

rhythm through hand temperature measurements.

As mentioned in Section IV-A, the environmental temper-

ature has a strong impact on skin temperature. In particular,

patient mobility causes frequent changes of the ambient

context including environmental temperature. This is even

more visible when the patient moves from indoor to outdoor

environments and vice versa. Figure 8 shows how the skin

temperature is affected by a variation up to more than

2◦C when the patient spends a few minutes outdoor (data

is collected during autumn in north Germany). For this

reason, it is important to compensate the impact of ambient

temperature as discussed in Sect. IV-A. We will address this

difficult issue in future work.

C. Monitoring Mental Activity

We also measure the skin temperature at the temple of

a 24-year old male subject in normal health conditions and
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Figure 9. Impact of mental activity on temple skin temperature.

investigate the impact of mental activity on its temple skin

temperature. We let the patient wear the sensor node and

relax on an armchair. After fixed periods of time, we let

the patient relax or ask him to interact, read, write, and

perform mental tasks. We sample the temperature at 80

Hz; Figure VI-C shows the collected data. Contrary to the

results of Dittmar et al. [5], we can neither see sudden

variations of temperature, nor can we unequivocally say that

the brain activity decreases the skin temperature measured

at the temple at timescales of hundreds of milliseconds.

VII. CONCLUSIONS AND FUTURE WORK

Body sensor networks have the potential to revolutionize

medical research. Non-invasive and accurate measurements

of body temperature in a continuous fashion over weeks in

realistic environments can substantially improve the quality

of data available to medical researchers such as psychophys-

iologists and chronobiologists.

In this paper, we design a body sensor network archi-

tecture and nodes that can accurately measure the body

temperature in a non-invasive fashion and send real-time

feedback to the medic. Our design guarantees a long battery

lifetime, hence uninterrupted operations for several weeks.

We use this body sensor network to run a preliminary

study of the circadian rhythms over a 24-hour period, and

show that starting from measurements of hand temperature



in non-constrained environments we can see the expected

temperature fluctuations. We further analyze the impact of

ambient temperature variations on skin temperature and

verify whether mental activities affect the skin temperature

measured at the temple.

Providing accurate temperature measurements over long

periods of time with a small node as described in this paper

is the cornerstone of our work. Next we will focus on ad-

vanced self-organization functionalities such as self-testing,

adaptive communication protocols, automatic compensation

for environmental conditions, or automatic generation of a

diary of activities.
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