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Abstract—For the design of dependable and efficient wireless
sensor networks it is essential to estimate the achievable packet
reception rate (PRR) in the deployment environment. Making
such estimation is not trivial as packet delivery success depends
on the level of interference present in the deployment area. In
this work we show that it is possible to obtain a meaningful
representation of the expected interference levels at the target
location by measuring the probability distribution function of
idle period lengths, and use this to estimate PRR before network
deployment. We show how a probability distribution function of
idle period lengths can be measured using off-the-shelf sensor
nodes. We illustrate how to exploit this methodology to estimate
PRR in dependence of the used packet length, and show that
relatively short measurement periods provide enough data to
obtain accurate predictions. We carry out an extensive experimen-
tal evaluation showing that Wi-Fi interference can be captured
using this method which allows PRR predictions in such Wi-Fi
interference setting with an average error of only 3.2%.

Keywords—Dependability, Packet Reception Rate (PRR), Packet
Size, Probability Density Function, Radio Interference, Reliability,
Wireless Sensor Networks.

I. INTRODUCTION

For the design of dependable and efficient Wireless Sensor
Networks (WSNs) it is essential to estimate achievable Packet
Reception Rates (PRR) in the deployment environment. Their
knowledge can be used both to fine-tune communication
protocols and to evaluate if network performance is sufficient
to support a given application. For example, one can employ
PRR estimations to customise a TDMA protocol such that
sufficient spare capacity is provided for potentially needed
retransmissions. Similarly, these estimations can be used to
calculate end-to-end data delivery rates, an essential step to
judge if an application can meet its performance requirements.

Besides the used packet size, achievable PRR depends to
a large extent on the presence of radio interference in the de-
ployment area as WSNs operate in license-free ISM bands and
share the radio spectrum with other wireless technologies. This
problem is especially relevant in the 2.4 GHz frequency space
as wireless sensor nodes need to coexist with IEEE 802.11
(Wi-Fi) devices which transmit at higher power levels [1].
Estimating the achievable PRR is not trivial as it depends on
the specific interference patterns at the network deployment
site. Some previous work estimated the PRR by making general
assumptions regarding the nature of interference expected at
the target area [2]. Such methods, however, are often inaccurate

as the actual encountered interference deviates from the chosen
general interference model. Other previous work made use of
test measurements on links to estimate achievable PRR in a
later deployment [3]. However, such techniques are tailored to
specific protocols and results cannot be generalised.

In this paper we present a novel measurement-based
method to estimate achievable PRR for specific deployment
areas based on the characteristics of interference. We use
wireless sensor nodes to capture the interference patterns at
a given location by measuring how long the channel remains
idle and by computing the corresponding idle distribution. We
define an idle period as a time interval in which the received
signal strength (RSS) of a radio transceiver remains below a
given threshold RThr, indicating that no harmful interfering
source is active. We then measure the Probability Distribution
Function (PDF) of idle period lengths, referred to as IDLE-
PDF. As we will show, the IDLE-PDF can be captured
efficiently using resource constrained motes, and can be used
to estimate PRR with very high accuracy. We further present
an extensive evaluation of the proposed method focusing on
two different aspects.

First, we analyse the cost of obtaining the IDLE-PDF using
off-the-shelf sensor motes and show that, with a surprisingly
short measurement duration, we can obtain a sufficiently
detailed interference model. Second, we analyse the PRR
prediction accuracy of the proposed prediction method using
different interference scenarios. We show that the proposed
PRR prediction method has a high accuracy: estimated PRR
and measured PRR indeed differ on average by only 3.2%.
The contributions of the paper are specifically:
• PRR estimation using the IDLE-PDF: We introduce

the IDLE-PDF as efficient metric for capturing de-
tailed interference patterns. We also describe methods
for PRR estimation based on the IDLE-PDF.

• Measurement tool: We present a tool to measure the
IDLE-PDF based on off-the-shelf sensor node hard-
ware. We show that the tool is able to capture detailed
interference data with little storage requirement.

• Evaluation of PRR estimation: We provide an eval-
uation of the proposed approach in environments with
different interference patterns.

The next section describes related work. In Section III we
give the theoretical background of our work: we first give a
formal definition of the IDLE-PDF and we then describe how
this distribution can be used to estimate PRR. In Section IV



we discuss how the IDLE-PDF is captured in a deployment
area and we describe the dependency between measurement
effort and measurement accuracy. In Section V we analyse the
efficiency and accuracy of the proposed method using several
interference scenarios. Section VI concludes the paper.

II. RELATED WORK

The aim of our work is to measure interference before
deployment and to use the measurement for PRR prediction.

There has been a vast body of work on interference mea-
surement. However, the existing work generally does not aim
to measure pre-deployment interference to predict achievable
PRR. For example, existing work has addressed interference
measurement for the purpose of interference classification [4],
[5], to generate realistic interference for testbeds [6], and to
select transmission channels in interference scenarios [7], [8].

A small body of work has similar aims to our work which
we discuss in detail in the next paragraphs.

Huang et al. [2] have carried out a statistical analysis
of interference traces and presented a generic model that
characterizes the white spaces in Wi-Fi traffic. They use
this model to estimate PRR in dependence of packet size
and use this information to schedule transmissions such that
delivery ratio is maximised, following the idea by Chowdhury
and Akyildiz [9]. Differently from our approach, these two
works rely on a generic interference model, whereas we use
interference information collected at the deployment area to
construct a specific interference model that is not bound to a
specific technology (e.g., Wi-Fi).

Shariatmadari et al. [10] have proposed a method for PRR
estimation based on interference measurements. It is assumed
that data on a link will be transmitted with a fixed rate.
A receiver measures periodically (using the expected data
transmission frequency) the observed interference. The mea-
surement is used to estimate the achievable PRR. The method
is used to rank channels using PRR as link quality metric. This
work differs from ours in many aspects. First, the interference
measurement is not based on probability distributions. Second,
the estimation technique requires assumptions regarding traffic
patterns used in the network. Third, there are no guidelines
about how long before deployment the interference should be
characterised.

Pöttner et al. [3] characterise an interference environment
by values Bmin and Bmax, and send a trail of test packet
transmissions on a link. Bmax describes the largest number
of subsequent transmission failures while Bmin describes the
maximum number of subsequent successful transmissions.
The two values can be used to configure a communication
protocol such that one can give transmission guarantees for
the measured interference. Similar to our work, interference
patterns are determined by measurement carried out before
deployment. However, the recorded interference patterns are
only useful to configure protocols using transmission spacing
and packet lengths as used in the measurements (i.e., specific
TDMA protocols). The method presented in this paper, instead,
follows a more general approach.

In this work we also describe a method for updating at
runtime the interference measurement collected before the

deployment. This is necessary as the interference environment
may change over time. The related work outlined previously
does not provide this feature and relies on the assumption
that the interference does not vary significantly over time.
A notable exception is the work by Brown et al. [11] which
describes a method to update initially measured Bmin/Bmax
measurements while the sensor network application is running.

III. PACKET RECEPTION RATE AND INTERFERENCE

In this section we give a definition of the IDLE-PDF and
we describe how this distribution can be used to estimate
PRR. First we describe a closed form solution to compute the
PRR from the IDLE-PDF. As the closed form solution has its
limitation with arbitrary shaped IDLE-PDF distributions we
then describe a solver based on Monte Carlo simulation.

A. The IDLE-PDF

Interference levels can be measured by sampling the energy
level in a transmission channel over time. If the sampled energy
level is above a given threshold RThr, a packet transmission
would be destroyed by concurrent activities in the frequency
channel. This is an approximation of the interference process
but is a reasonable assumption for the work presented in this
paper (as shown by our evaluation). Thus, interference can
be represented as a sequence of idle (free channel) and busy
(ongoing activity in the medium) periods of different length.
Using such a recorded interference trace it is then possible
to analyse success rates of packet transmissions. For example,
to estimate PRR, a number of transmissions can be randomly
placed in the recorded interference trace and the success or
failure of these transmissions can be evaluated. Unfortunately,
due to the volume of data it is not possible to store reasonably
long interference traces of this type on practical measurement
systems.

To reduce the required storage space for interference traces
we decide not to store the actual sequence of idle and
busy periods and their respective length. Instead, we record
the distributions of observed busy and idle period lengths.
This measurement does not allow us to reproduce the exact
measured interference trace but it allows us to produce an
interference trace which exhibits the same statistical distribu-
tions of idle and busy periods and period lengths. Thus, the
recorded distribution of idle and busy period lengths (IDLE-
PDF and BUSY-PDF) can be used for analysis of PRR instead
of using an actual recorded interference trace. The IDLE-PDF
and BUSY-PDF can be measured over arbitrary time period
with a fixed storage volume requirement. Thus, measuring
IDLE-PDF and BUSY-PDF is a practically feasible method
for collection of detailed interference patterns.

A transmitter usually performs a Clear Channel Assessment
(CCA) before attempting a transmission. If a transmitter aims
to send a packet during a busy period (i.e., when there are
other ongoing activities in the channel stronger than RThr),
the CCA would return false, and the transmission would be
deferred. If the transmitter aims to send a packet during an
idle period (i.e., while the channel is free), the CCA will
return true and the transmission is started. The latter can
only complete successfully if the remaining idle period is
longer than the duration necessary for packet transmission.
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Figure 1: Example sequence of idle and busy periods. The first transmission is
successful while the second one is subject to interference. A fixed packet length
L is used.

In the following paragraphs we use the idle period CDF for calculations. It
has to be noted that the calculations are also possible when the measured CDF
of idle periods is bounded by the exponential CDF. In this case, calculations
are reflecting a worst-case.

Link Loss Probability

We assume that a transmitter is carrying out a Clear Channel Assessment
(CCA) before transmitting a packet. Thus, any start of a transmission of a
packet will fall within an idle period. The packet transmission has a probability
P of completing successfully. This probability depends on the length of the idle
period. Figure 1 illustrates two transmissions, one successful while the other
transmission unsuccessful due to interference.

We assume that the packet size is fixed at length L. This is a reasonable
assumption for many embedded systems which do not allow dynamic adjustment
of size. Alternatively, the length can be seen as upper bound for which reliability
guarantees can be given.

A transmission is equally likely to start at any point within an encountered
idle period of length y and a transmission will complete successfully if it starts
at any point before y−L in the idle period. The probability Pt(y) of a successful
transmission in an idle period of length y can therefore be computed as:

Pt(y) =
y − L

y
∀y > L (3)

The probability Pp(y) of attempting a transmission in an idle period of length
y is derived by taking the exponential distribution of idle lengths into account:

Pp(y) =
y

E(Y )
· pi(y) = y · λ2 · e−λy (4)

The overall probability P of successfully transmitting a packet in an in-
terference environment characterized via pi(x) can be calculated by summing
the products of the probability of a given idle size with the probability of the
transmission being successful for this size:
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Figure 1: Example sequence of idle and busy periods. The first transmission is successful while the second one is subject to interference. A
fixed packet length L is used.

The CCA test assumes that communicating nodes are within
the same collision domain, such that the channel state for the
transmitter is the same as the receiever. This outlined trans-
mission behaviour is illustrated in Figure 1. As transmissions
are not attempted in a busy environment only the IDLE-PDF
is necessary for analysis of the PRR. Hence, in the remaining
paper we focus on measurement and analysis of the IDLE-
PDF. We use the mathematical notation pi(x) to refer to the
probability distribution function IDLE-PDF.

In this work we only consider the raw packet transmission
process and do not assume a particular Medium Access Control
protocol (MAC) behaviour which may have an impact on
the aforementioned assumptions. We do not assume particular
transmission scheduling policies and assume random place-
ment of transmissions within an idle period. For example, if
a 1-persistent Carrier Sense Multiple Access (CSMA) strategy
would be used idle and busy periods would need to be
considered. However, we believe the presented assumptions
are compliant within many used WSN MAC protocols.

In Section IV we will describe in detail how a suitable
IDLE-PDF can be obtained from measurements taken using
off-the-shelf sensor nodes, and discuss the effects of different
durations and resolutions of the measurement. For the remain-
der of this section, we assume that we obtained an IDLE-
PDF that gives an accurate representation of interference in
the target area.

B. Closed Form Solution

The start of a packet transmission falls within an idle period
as we assume CCA before a transmission attempt. The packet
transmission has a probability P of completing successfully.
This probability depends on the length of the idle period
and as well on the packet length L. Figure 1 illustrates two
transmissions, one successful while the other transmission is
unsuccessful due to interference. A transmission is equally
likely to start at any point within an encountered idle period
of length y and a transmission will complete successfully if
it starts at any point before y − L in the idle period. The
probability Pa(y) of a successful transmission in an idle period
of length y can therefore be computed as:

Pa(y) =
y − L
y

∀y > L (1)

The probability Pb(y) of attempting a transmission in an
idle period of length y is dependent on the measured IDLE-
PDF pi(y) and is given as:

Pb(y) =
y

E[y]
· pi(y) (2)

E[y] is the expected value of random variable y. The
overall probability P of successfully transmitting a packet in
an interference environment characterised via the IDLE-PDF
can be calculated by summing the products of the probability
of a given idle size with the probability of the transmission
being successful for this size:

P =

∫ ∞
L

Pa(y) · Pb(y) dy (3)

In many observed interference scenarios, the IDLE-PDF
follows an exponential distribution. In this case the IDLE-PDF
pi(x) is given as:

pi(x) =

{
λ · e−λ·x, x ≥ 0

0, x < 0
(4)

With Equation 4, Equation 3 becomes:

P =

∫ ∞
L

λ2 · e−λ·y · (y − L) dy = e−λ·L (5)

This closed form solution using an exponential distribution
is useful for quick PRR estimation. An exponential function
can be fitted to the measured IDLE-PDF to determine λ. Using
Equation 5 and a packet length L provides an estimation of
the achievable PRR. The computational effort of this method is
dominated by the used curve fitting algorithm. This method is
computationally cheap compared to the Monte Carlo Method
we describe next.

C. Monte Carlo Solver

In some environments, a measured IDLE-PDF pi(x) may
not be approximated by a well known distribution function. In
this case the aforementioned closed form solution as described
by Equation 3 is not straightforward to solve for P. To solve
the equation in these cases we use a Monte Carlo approach.

The IDLE-PDF distribution is used to create a trace of
duration T seconds consisting of idle periods only. As trans-
missions do not occur in busy periods these do not have to
be included in this trace. Then, for N packets with length L
a random (with uniform distribution) transmission start point
t < T is selected within the created trace. Transmission
success or failure of each packet is recorded. This process is



repeated for R runs and then the average transmission success
rate across all runs is calculated and, thus, the packet delivery
probability for packets of length L in presence of interference
with IDLE-PDF pi(x) is determined.

The accuracy of this approach depends on the computa-
tional effort invested which is given by the number of tries
specified via N and R. To estimate the effort necessary for
obtaining sufficiently accurate results we compare the closed
form solution with results obtained using the Monte Carlo
method. A distribution is created using Equation 4 with a λ =
100. This distribution is used in the Monte Carlo Solver and its
output is compared with the results given by Equation 3 (Using
packet sizes of L = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
bytes). The solver is configured with T = 100, N = 1000 and
R = 100. The results produced by the simulator are within
0.44% on average to those of the closed form solution and
have a maximum PRR difference of 1.42%. When R = 50
and R = 10 is used the average difference between predicted
PRR by the model and the solver increases by 0.04% and
0.05% respectively. This suggests that reasonable accuracy can
be obtained with limited numbers of simulation runs.

IV. CAPTURING THE IDLE-PDF

In this section we discuss IDLE-PDF measurement consid-
erations and describe a measurement tool based on standard
sensor node hardware.

A. The IDLE-PDF Capture Tool

The IDLE-PDF is captured in the deployment area. Ob-
viously it would be possible to deploy dedicated equipment
to carry out this measurement which would result in unde-
sirable additional deployment costs. Thus, we aim to carry
out interference measurements with the same sensor node
hardware used for the final application. As a result, accuracy
and detail of interference measurements are limited by the
available hardware. However, a benefit is that interference can
be measured at the exact position where it occurs and with the
same hardware impacted by the interference signal.

Modern IEEE 802.15.4-compliant radio transceivers pro-
vide the capability of reading the received signal strength
(RSSI) in absence of packet transmissions. When sampled at
a high rate, these measurements can be used to quantify the
level of interference at a given node. Following the approach
used in [6], [12] (i.e., by boosting the CPU speed, optimizing
the SPI operations that are used to interface the radio), one can
indeed perform a high-speed sampling of the RSSI register on
Maxfor MTM-CM5000MSP nodes up to 50 kHz.

To capture the distribution of idle and busy periods, we
build a Contiki application that carries out RSSI sampling as
described previously and computes statistics on the idle and
busy periods on a specified channel until a set amount of RSSI
samples R is collected (in our application we use R = 12.5
million samples for a 5 minutes sampling window). We make
sure every interrupt is disabled and that no other process can
interfere with our operations since we need to sample at the
highest possible rate. This way, we achieve a sampling rate of
one RSSI value approximately every 24 µs.

We introduce an RSSI threshold RThr defining whether
a channel is idle or busy (RSSI values above RThr identify

a busy channel, RSSI values below RThr identify an idle
channel). We count the number of consecutive RSSI readings
in which a channel remained idle or busy and as soon as the
current channel state (idle, busy) differs from the previous one,
we increment a field in one of two arrays Aidle[i] and Abusy[i].
Each array holds 16 fields which correspond to different ranges
in length of an idle or busy periods. On recording a period, the
length of the period is compared to 16 variable length running
ranges and the corresponding field within either the idle or
busy array is incremented. Because of the limited memory of
the nodes, we truncate the maximum duration of an idle or
busy period to 100 ms.

Storage requirements. In our implementation we chose to
quantise an idle or busy sample (1 bit), counting the length of
a period in sample units and store this recorded value using 16
variable length ranges. An alternative to this would be to store
a trace of recorded samples as either RSSI values or a count
of consecutive samples of a given state (idle, busy). Whilst
some compression of a trace may be possible (e.g. run-length
encoding) storing a distribution, even with no compression,
requires significantly less storage. For comparison, during a
typical 5 minutes sample with no artificial interference 25722
idle and busy periods are present. Storing each period as a 16-
bit integer would require approximately 101 Kbytes of memory
for both distributions. This compares to just 128 bytes for both
distributions storing 16 ranges of 32-bit values.

Limitations. The achieved sampling rate is sufficiently
high to identify the short instants in which the radio medium
is idle due to the Inter-Frame Spaces (IFS) between 802.11 b/g
packets as shown by Hauer et al. [7], [13]. Although the
achievable 50 kHz sampling rate is sufficient to detect IEEE
802.11b frames, it may not be enough to capture all 802.11g/n
frames (the minimum size of a Wi-Fi packet is 38 bytes, and
the maximum speed of Wi-Fi transmissions is 11, 54, and 150
Mbit/s for 802.11b/g/n standards, respectively).

B. Updating the IDLE-PDF at Runtime

The environment in which a sensor network is deployed is
typically dynamic and may change over time. In this case the
IDLE-PDF captured before deployment may become invalid
once the network becomes operational. It is therefore useful
to measure the IDLE-PDF periodically at runtime to either
verify that the IDLE-PDF used for network and application
configuration is still valid or to produce an entirely new
IDLE-PDF in case the surrounding environment has radically
changed. We refer to this process as runtime assurance.

Runtime assurance can run alongside normal WSN soft-
ware on nodes within a deployment. Periodically, a sensor node
may hand control to runtime assurance which then carries out
an interference measurement. The same limitations regarding
measurement time, duration and location applies as discussed
in the previous paragraphs. Runtime assurance may execute
during times a node would normally enter a sleep state in
order to ensure interference measurements do not impact on
normal node operation. The software used for measurement is
the same as the one used for capturing the IDLE-PDF before
deployment (see previous paragraph).



C. Measurement Considerations

It is our aim to capture interference patterns in a deploy-
ment area such that the measurement allows us to estimate
packet delivery probabilities during later network operation.
Independent of the applied measurement technique this ap-
proach can only be successful if the interference impacting on
the deployed network is present during measurement.

When to measure. Obviously, measurements must be
carried out when a representative interference is present in the
deployment. In most deployment areas interference can vary
much over time. For example, in an office building Wi-Fi usage
during the day will create much interference while during night
little activity will be observed. Similarly, interference measured
during weekends is typically lower than during work days.

Figure 2 illustrates the impact of measurement time on the
shape of the recorded IDLE-PDF. Figure 2a shows 4 IDLE-
PDFs captured at night in our university building. Each IDLE-
PDF is captured over a period of 5 minutes and all sampling
phases are one hour apart. All 4 IDLE-PDFs have a very
similar shape and any of the 4 captured IDLE-PDF would be
a good representation of the interference environment present
at night. The 4 IDLE-PDFs shown in Figure 2b are captured
by the same device during daytime. For most times the inter-
ference is similar to the night time interference; however, the
IDLE-PDF recorded at 12:00 clearly differs. During this IDLE-
PDF sampling, an increase in interference (most likely a very
active Wi-Fi client) is present, and the IDLE-PDF distribution
is shifted towards short idle periods. This increases the chances
that a transmission is not completed before interference occurs,
likely leading to a loss of the transmitted packet. The 4 IDLE-
PDFs shown in Figure 2c are captured in the evening. The
IDLE-PDF at 18:00 is comparable to the PDF at night while
the other 3 IDLE-PDF show higher levels of interference.

Therefore, the point in time in which the measurement is
carried out has a strong impact on the obtained IDLE-PDF.
However, it depends on the users intention on how to use the
IDLE-PDF which informs the approach to take to deal with the
observed temporal changes. If the user is interested in long-
term average packet delivery reliability figures all measured
IDLE-PDF at different points of time can be aggregated into
one single average-case IDLE-PDF. The average-case IDLE-
PDF for the 12 example PDFs shown in Figure 2 is given in
Figure 2d. If the user is interested in worst-case packet delivery
reliability that might be encountered in the deployment it
would be better to select the worst-case IDLE-PDF (the IDLE-
PDF leaving to the worst PRR prediction) as representation of
the interference situation. For the example given in Figure 2
one would select the IDLE-PDF from 12:00 in period 2.

How long to measure. As previously shown it is important
to consider the point in time when to measure the IDLE-
PDF. The next important aspect to consider is the necessary
sampling duration at each sampling time. Shorter sampling
periods would be beneficial as shorter sampling durations
would require less energy. We intend to use sensor nodes as
sampling devices which often rely on battery power.

Figure 3a shows an IDLE-PDF captured at one point in
time where different sampling durations are used (300, 60,
31, and 9.6 seconds). As it can be seen, the shape of the
IDLE-PDF is not very dependent on the sampling duration.
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Figure 2: IDLE-PDF captured by four nodes on Channel 19 with
5min sampling periods at different times of the day. The first shows
those captured at night; the second during working hours; the third
during the evening. The last shows the aggregation of all three periods.
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Figure 3: IDLE-PDF on Channel 19. The first two figures describe the
impact of using different sample durations. The second two figures
describe the impact of using different sample locations.

Formally, the Kullback-Leibler (KL) divergence can be used
as a measure of the information lost when approximating
the probability distribution with high sampling duration by a
probability distribution with lower sampling duration. Small
values of the KL measure are good as little information is
lost due to lower sampling duration. Figure 3b shows the KL
divergence with 300 seconds sampling duration as base over
an entire day. As it can be seen the KL divergence is very low
except at two measurement points. At these points, as expected,
the KL divergence is higher for low sampling durations. This
analysis shows that high sampling durations provide little
benefit in terms of probability distribution accuracy of the
IDLE-PDF. Combining this insight with the previous aspect
on "when to measure" it seems more beneficial to distribute
a large number of small sampling periods over a long time
period instead of using one long sampling period at one point
in time.

Where to measure. An idle period is defined as a time
duration in which the energy detected in a transmission channel
stays below a given threshold RThr. If interference is measured
in one place it is obviously not guaranteed that interference
measured at a different place in the same area is similar. Thus,
most accurate results can be achieved when measuring the
IDLE-PDF with the node that is later used as receiver for
the packets for which the delivery success rate is computed.
However, it is possible to record interference at one location
and then use this measurement to predict the outcome of
transmissions at different locations in the vicinity of the
measurement spot.

Figure 3c shows the IDLE-PDF captured at 4 different
locations at the same time (the used capture devices are spaced
3 meters apart). As can be seen, the measured interference
patterns are similar. Figure 3d shows the KL divergence with
the distribution captured at one node as base over an entire
day. As it can be seen, the interference patterns at two nodes
are almost identical (very small KL value) to the reference
node while one node (node 12) experiences a slight variation
in terms of measured IDLE-PDF. These experiments show that
it is not necessary to capture the IDLE-PDF at every single
node in the deployment. Instead, it is sufficient to capture the
distribution once for an interference area (in practice, however,
it might be difficult to identify these areas).

V. EVALUATION

For evaluation we use Maxfor MTM-CM5000MSP sensor
nodes running the Contiki operating system [14]. The nodes
are used for both the transmission of data packets and to
capture the IDLE-PDF using the software described in Sec-
tion IV. All experiments are carried out in a university office
environment in a room of approximately 5 m2, vacated for
the duration of each experiment. During packet transmission
tests, the sending sensor node transmits 16 packets per second
with size L randomly chosen from 12 fixed packet sizes to a
paired receiver on a specific channel. Inter-packet spacing is
approximately 1/16 of a second with a small amount of jitter
introduced to avoid any potential synchronisation effects. Each
sender and receiver pair are placed approximately 3 meters
apart around the centre of the room. In the experiments we
use two types of interference. Firstly, Wi-Fi networks operating
on channel 1 in the building carrying university network traffic
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Figure 4: Predicted PRR using the model and solver and actual PRR
for a packet size of 5 under background interference.

are used as a form of uncontrolled background interference,
the access point is located approximately 4m from the room
perimeter. Secondly, we use the network traffic generator Iperf
between two desktop PCs interconnected via Wi-Fi 802.11g on
channel 3 to produce controlled Wi-Fi interference. The Wi-Fi
network used to generate controlled interference operates on an
isolated network using a channel that is not occupied by other
access points. The access point is placed in one corner of the
room with connection to the first PC whilst the client adapter
is placed in the opposite corner connected to the second PC.

A. Model Based PRR Prediction

In our first experiment we use interference introduced
by the university Wi-Fi network. We record the IDLE-PDF
over a period of 24 hours where in each hour the IDLE-
PDF is recorded with a sample period of 5 minutes. The
average IDLE-PDF distribution is then calculated from the
24 individual recorded distributions. Thus, an interference
profile is created which describes the average interference level
over 24 hours. We use the exponential model introduced in
Section III to model this measured average IDLE-PDF. We
then transmit packets of size L = 5 bytes over a duration of
20 hours and record the achieved PRR which is then compared
to the model predicted PRR. To determine parameter λ which
characterises the exponential model, we fit the model to the
measured data using a total least squares fit. The model is
expected to give a PRR prediction close to the observed PRR
where the observed PRR may oscillate around the predicted
value.

The results of the experiment are shown in Figure 4. The
measured PRR (sliding window of 5 minutes) is shown over
the experiment duration of 20 hours. The model predicted PRR
matches very well the observed values. As expected, the PRR
oscillate around the predicted value. The overall measured PRR
over the entire duration of the experiment is Pmeasured =
89.9%, while the model prediction is Pmodel = 91.9%.

In this case, the exponential model produced from the
captured distributions can be used to estimate the achievable
PRR reasonably well. However, in many cases the observed
distributions do not follow exactly an exponential shape and
therefore the model will produce less accurate approximations.
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Figure 5: Predicted and actual PRR for different packet sizes under
increasing interference (predicted prefixed with p and actual prefixed
with a).

More accurate results can even be obtained in the case pre-
sented here by using the Monte Carlo Solver described in
Section III. The solver will always produce more accurate
results as it uses the actual measured IDLE-PDF instead of
an approximation as used by the exponential model. Figure 4
includes the PRR prediction obtained using the solver which
provides a PRR prediction of Psolver = 88.6%. The prediction
of the solver is 1.3 pp (percentage points) below the actual
achieved PRR; in case of the model the prediction is 2 pp
above the achieved PRR.

It has to be noted that the interference distribution used
for PRR prediction was recorded during 24 hours before
the experiment was run for 20 hours. The interference is
introduced by packet transmissions on the university campus
network. This shows that interference characteristics can be
very stable over long periods of time. In situations where this
would not be the case, the IDLE-PDF might need to be updated
during network operation as we have described in Section IV.

B. Monte Carlo Simulation Based PRR Prediction

We now use our network traffic generator to produce six
different levels of Wi-Fi interference. We vary the rate of the
generated interference between 500 kbit/s and 10 Mbit/s,
and record the IDLE-PDF over a 1-hour period measuring
two distributions with a sample duration of 5 minutes and
using the average of these two distributions. We then calculate
the expected PRR for different packet lengths L in presence
of the different interference intensity levels using the Monte
Carlo solver. Thereafter we transmit packets of the different
sizes L in the environment exposed to the different interference
intensity levels. For each intensity we record the achieved PRR
for each packet size L over a 2 hours window. The aim of this
experiment is to evaluate achievable PRR prediction accuracy.

The results of the experiment are shown in Figure 5. The
figure shows that generally for lower interference intensities
the predicted PRR closely matches that of the recorded values
across all packet sizes. PRR predictions under 500 kbit/s of
interference have an average error (average distance between
predicted PRR and actual PRR over all packet sizes) of 2.32%
and a worst-case error (maximum distance between predicted
PRR and actual PRR for all packet sizes) of 4.97% as described
in Table I.



Table I: Average and worst-case PRR prediction error. The overall
average of all average errors is 3.18%.

Interference Level Worst-Case Error Average Error

500kbit/s 4.97% 2.32%
1000kbit/s 10.07% 4.13%
2000kbit/s 13.10% 6.62%
4000kbit/s 9.66% 2.7%
8000kbit/s 15.07% 2.41%
10000kbit/s 1.85% 0.91%

Overall Average 9.12% 3.18%

As the interference intensity increases, both the average
error and worst-case error increases. At an interference level
of 2000 kbit/s the worst-case is 13.10% and the average is
6.62%. The error eventually falls as the PRR approaches 0%,
this can either be due to the increased level of interference
as seen with 10000 kbit/s of interference intensity or with
increased packet transmission size at lower intensity as with
4000 kbit/s.

C. IDLE-PDF Variations

In Section IV-C we have shown that the IDLE-PDF mea-
surement must be carried out at a point in time at which the
interference of interest is present. In this experiment we show
the impact of changes in the IDLE-PDF on predicted packed
delivery rates. In this experiment we create controlled Wi-Fi
interference in the testbed which varies over time.

The experiment consists of transmissions of 0.5 Mbit/s
for a duration of 50 minutes. Thereafter, we increase the level
of interference by increasing the transmission speed on the Wi-
Fi network to 4 Mbit/s for a duration of 20 minutes. Finally,
we drop the level of interference back to 0.5 Mb/s for a
duration of another 50 minutes. Before starting the experiment,
we create the interference levels of 0.5 Mbit/s and 4 Mbit/s
and record both IDLE-PDFs by using a sampling duration of
5 minutes over 2 hours. We select the average IDLE-PDFs for
both cases, and use them with our Monte Carlo Simulator to
determine expected PRR for both interference scenarios.

Figure 6 shows the results of the experiment for two packet
sizes (L1 = 5 bytes, L2 = 20 bytes). The achieved PRR over
time (using a 5 minutes sliding window) is shown. In addition
the PRR using the two different IDLE-PDFs is shown as well.
It can be seen that the achieved PRR is dropping in the period
of increased interference. For both interference levels very
accurate PRR are predicted when using the respective IDLE-
PDF (a maximum difference in PRR of 5.1% for 500Kbps and
6.7% is observed).

The experiment also shows that it is essential to capture
a suitable IDLE-PDF for prediction of achievable network
performance (see discussion in Section IV-C). If it is for
example important to predict worst-case PRR the IDLE-PDF
representing high interference levels would be suitable. How-
ever, this would require that the worst-case IDLE-PDF was
observed before network deployment.
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Figure 6: Predicted and measured PRR in an environment with
variable interference. Wi-Fi traffic is used as source of interference
(0.5 Mbit/s for a duration of 50 minutes, 4 Mbit/s for a duration
of 20 minutes, 0.5 Mbit/s for a duration of 50 minutes).

VI. CONCLUSIONS

In this paper we have described a method for capturing
interference in a deployment area by recording the distribution
of idle period lengths (the IDLE-PDF). We have shown how
a recorded IDLE-PDF can be used to estimate the expected
PRR in a deployment area. To estimate the PRR using the
IDLE-PDF we provide two methods. The first method assumes
that the IDLE-PDF can be approximated using an exponential
distribution. By fitting the exponential distribution to the
measured distribution it is possible to obtain the PRR. The
second method uses a Monte Carlo method to provide the PRR
estimation from the measured IDLE-PDF. The first method
requires less computational effort while the second method
provides slightly better prediction accuracy and works as well
in situations where the IDLE-PDF does not follow an expo-
nential distribution. As our evaluation shows the Monte Carlo
based prediction has an accuracy with an average difference of
3.2% between predicted PRR and measured PRR (see Table I).

We have found that the IDLE-PDF is a good measure for
capturing interference in a resource efficient way. Capturing
the IDLE-PDF requires a constant amount of storage space
independent of the sampling duration while the alternative



method of recording interference traces requires an amount
of storage space proportional to the interference measurement
duration. Thus, the IDLE-PDF can be captured efficiently
with off-the-shelf nodes during network operation; this feature
is important for updating IDLE-PDF measurements once the
network is deployed. We have also discussed how an IDLE-
PDF should be measured and have shown that frequent but
short sampling is beneficial compared to long but infrequent
sampling. A representative IDLE-PDF, i.e., an IDLE-PDF able
to produce accurate PRR predictions, can be captured in many
situations with a single sampling period of 30 seconds.

In this paper we have focused on prediction of PRR.
However, we believe that analysis of the captured IDLE-PDF
can be also be used for other purposes. For example, analysis
of the IDLE-PDF on all channels can provide information for
channel ranking. Channels providing the best PRR may be used
by a communication protocol. This application has the same
aim as the work presented by Shariatmadari et al. [10] but
using the IDLE-PDF would allow more efficient interference
analysis on nodes and would not require assumptions on traffic
patterns used in the network.
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