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Abstract—Despite the growing interest in cross-technology
communication, its application to real-world systems is still
limited, as existing schemes are mostly unidirectional and
technology-specific. The lack of generic solutions as well as the
complexity of their integration reduces the applicability in a
broader scope. In this paper, we propose a solution to augment
Wi-Fi, BLE, and ZigBee devices with the ability to transmit and
receive cross-technology broadcast frames alongside their existing
functionality. After experimentally evaluating the performance of
our solution on a variety of hardware platforms, we leverage
it to build a gateway-free smart home, where a smartphone
can simultaneously control heterogeneous smart objects. The
smart objects, which include an off-the-shelf ZigBee light bulb
and a BLE-enabled door lock from different vendors, perform
cross-technology communication while retaining their original
functionality and can maintain duty-cycled operations.

Index Terms—Cross-technology communication, IoT, Nexmon,
Smart door lock, Smart light bulb, BLE, IEEE 802.15.4, Wi-Fi,
ZigBee, X-Burst, Broadcom bcm43, Raspberry Pi, Nexus 6P.

I. INTRODUCTION

In recent years, a considerable number of wireless com-
munication technologies have emerged to satisfy the diverse
requirements of various Internet of Things (IoT) applications.
Although many of these wireless technologies operate on the
same radio frequencies, their incompatible physical layers
(PHYs) often prevent a direct data exchange between devices.

Because of this, the use of multi-radio gateways is necessary
to allow data collection or dissemination across heterogeneous
appliances and networks, e.g., in the context of smart homes
as well as industrial and health-care IoT systems [1], [2].
Gateway-based communication, however, introduces addi-
tional costs as well as translation overhead, reduces scalability,
and further increases the network traffic in already crowded
unlicensed industrial, scientific, and medical (ISM) bands.

To address this issue, recent efforts have focused on the de-
velopment of cross-technology communication (CTC) schemes
giving heterogeneous wireless devices the ability to directly
exchange information. Due to the popularity of the license-
free 2.4 GHz ISM band, the vast majority of works on CTC
have targeted communication between technologies operating
in these frequencies (e.g., Bluetooth Low Energy (BLE),
ZigBee1, and Wi-Fi). CTC schemes are typically based either

1Although we explicitly refer to ZigBee throughout this paper, we implicitly
refer to the body of technologies built on top of the IEEE 802.15.4 PHY.

on energy sensing and the adoption of packet-level proper-
ties [3]–[6] or on PHY emulation techniques enabling commu-
nication at a high throughput [7]–[10]. Their use is promising
not only to avoid the use of multi-radio gateways, but also
to enable on-the-fly reconfiguration of sensors [11] as well as
the development of coexistence mechanisms mitigating cross-
technology interference and improving spectral efficiency [12].

Limited real-world use of CTC. Despite the growing interest
in the topic and the large number of schemes being proposed,
CTC remains so far confined to academia and its application
to real-world IoT systems is still rather limited. For example,
to date, there is still no study showing how to concretely
leverage one of the key benefits of CTC – the ability to perform
gateway-free communication across heterogeneous devices –
to revolutionize a given IoT application domain. A few works
have argued that directly sharing information without the
assistance from multi-radio gateways would be a game changer
in the development of smart homes [4], [9], [13], a sector
plagued by severe interoperability issues leading to frustration
among end-users [14], [15]. However, the concrete use of
CTC in the smart home context or in other IoT applications
that would benefit from gateway-free communication has not
been explored yet, and the corresponding challenges hence
remain unsolved. We identify two main reasons that led to
the status quo.

Lack of generality and missing broadcast support. Existing
CTC solutions, especially recent PHY emulation approaches,
are often not generic, i.e., they exploit properties in the
modulation process to enable a unidirectional data exchange
between two specific technologies (e.g., Wi-Fi →ZigBee [9],
BLE→ZigBee [7], or BLE→Wi-Fi [16]). This limits the
applicability of CTC, as the use of point-to-point unidirec-
tional communication significantly increases the complexity
in coordinating multiple heterogeneous devices. The design of
CTC solutions should rather be steered towards a universal
scheme leveraging technology-independent primitives, so to
transparently transmit data to any device. This would enable
the transmission of cross-technology broadcast frames to
several heterogeneous devices simultaneously, which not only
reduces complexity and traffic, but also facilitates common
network tasks such as neighbour discovery and service adver-
tisement [17].



Complex integration in constrained IoT devices. Existing CTC
schemes often require hardware changes [18], [19] or are
implemented on platforms with plentiful resources, such as
laptops [4], [12] and software-defined radios [19]–[21]. Little
effort has been put on simplifying the integration of CTC
functionality on off-the-shelf IoT devices, especially those
with highly-constrained resources (i.e., with limited processing
power, energy budget, and memory capacity). This hinders
the applicability of CTC in real-world systems encompassing
low-power wireless sensors and actuators, which are rather
pervasive in many IoT application domains. Furthermore, CTC
has often been treated as a standalone piece of functionality
and was rarely integrated alongside the native communica-
tion stack of a device. This makes it difficult to upgrade
existing (legacy) devices with CTC-related features without
impairing or even replacing existing functionality. In prior
work [5], we went the first steps towards the development
of a generic framework, named X-Burst, supporting CTC
among constrained IoT platforms. However, we only produced
a preliminary proof-of-concept on ZigBee and BLE devices
running Contiki [22] and did not fully explore how to integrate
CTC beside the existing operations of each device.

Contributions. In this paper, we address the aforementioned
problems and enrich off-the-shelf Wi-Fi, BLE, and ZigBee de-
vices with the ability to transmit and receive cross-technology
unicast and broadcast frames alongside their existing com-
munication stacks. We achieve this by extending the X-Burst
framework [5] with a scheduler orchestrating the transmission
and reception of cross-technology frames in parallel to the
operations of native communication stacks, as well as with
support for Wi-Fi devices. The latter is challenging, given that
common Wi-Fi devices do not expose support for sampling
the received signal strength (RSS) – a necessary feature to
decode cross-technology frames. An experimental evaluation
on a variety of commercial Wi-Fi, BLE, and ZigBee de-
vices shows that we can exchange cross-technology broadcast
frames at data rates above 1 kbps; and further quantifies the
impact of CTC activities on the existing communication stack
of a device as well as on its energy efficiency.

We leverage our findings to build a smart home solution
in which a smartphone can use its Wi-Fi interface to simul-
taneously control smart objects operating in the 2.4 GHz band
without the need of any multi-radio gateway. The off-the-shelf
smart objects, which include a ZigBee light bulb and a BLE-
enabled door lock from different vendors, are augmented with
the ability to interact with surrounding devices using CTC, i.e.,
they still retain their original functionality and can maintain
duty-cycled operations. To the best of our knowledge, this
work showcases the first concrete use of CTC that involves
multiple heterogeneous devices performing gateway-free com-
munication in a real-world IoT context.

The paper proceeds as follows:
• We first highlight how the use of gateways is often

troublesome in the context of smart homes, and discuss
how CTC can be leveraged to ease the problem (Sec. II).

• We enable support for Wi-Fi devices in X-Burst and
enable the creation of a cross-technology broadcast prim-
itive among the three most ubiquitous wireless technolo-
gies in the 2.4 GHz ISM band (Sec. III).

• We enrich X-Burst with a scheduler orchestrating CTC
alongside the native communication stack of a device
without affecting existing functionality (Sec. IV).

• We evaluate experimentally the performance of our cross-
technology broadcast primitive, as well as the impact of
CTC activities on the existing communication stacks and
on the energy efficiency of a device (Sec. V).

• We develop a gateway-free smart home solution allowing
a direct communication among smartphones and commer-
cial devices employing Wi-Fi, BLE, or ZigBee (Sec. VI).

• After discussing our work’s limitations and the open chal-
lenges (Sec. VII), we describe related work (Sec. VIII) and
conclude with a summary of our contributions (Sec. IX).

II. CASE STUDY: GATEWAY-FREE SMART HOMES

The smart home market is one of the main drivers for
the recent growth of the IoT [23]. In the past few years, an
increasing number of vendors have developed a large variety
of devices to extend the smart home ecosystem: examples are
smart light bulbs, door locks, blinds, as well as sensors of
various kinds (e.g., smoke, motion, and air quality).

Smart home appliances have largely different requirements
and can significantly differ in terms of size, price, energy bud-
get, memory, and computational capabilities, as well as em-
ployed wireless technology. They range from mains-powered
devices with plentiful resources to constrained, battery-driven
platforms with limited energy budget.

The latter typically cannot afford the use of Wi-Fi and in-
stead employ low-power wireless technologies such as ZigBee
or BLE. Although these technologies can all operate in the
2.4 GHz band, they are unable to directly exchange data with
each other and with Wi-Fi due to PHY incompatibilities.
Moreover, except for BLE, these low-power wireless technolo-
gies are rarely embedded in consumer electronic devices such
as tablets and smartphones, which are often used to orchestrate
the operations of a smart home. As a result, a smartphone that
does not embed a ZigBee radio cannot directly control any
ZigBee-based smart home device without a gateway.

Gateway nightmare and user frustration. To cope with
this problem, smart home appliances often come with dedi-
cated gateways: these enable interaction with nearby devices
based on another technology and can act as a bridge to
smartphones and tablets. Unfortunately, due to interoperability
issues [24], it can happen that each vendor requires the
use of a specific gateway, which may cause the deployment
of several gateways within a single home. This introduces
additional hardware, complex installation procedures, and ul-
timately results in costly, inefficient and non-scalable setups.
Fig. 1(a) exemplifies the problem: several gateways need to be
installed to let a smartphone interact with heterogeneous smart
home devices from different vendors.



a) Conventional smart home setup b) Smart home setup with CTC

Fig. 1. The use of CTC in the context of smart homes allows to eliminate
multi-radio gateways, thereby reducing costs and simplifying installation.
With CTC, heterogeneous devices can interact directly and one can allow
a smartphone to control multiple appliances at once with the same app.

Recently, smart home hubs such as the Apple HomeKit or
Samsung SmartThings try to address this issue by providing
support for a variety of appliances from different manufactur-
ers with a single device [25]. However, they introduce a single
point of failure and can only cover a fraction of the devices
available on the market. Making sure that all appliances are
compatible with each other is hence left to the end users: a
quite heavy burden that can transform “the dream home into a
nightmare” [26]. Furthermore, using several different devices
introduces the “app problem", which refers to the obligatory
installation of individual apps for each component [27]. This
state of affairs often leaves customers frustrated and slows
down the further adoption of smart home devices [28].

Easing the problem using CTC. The ideal scenario for end
users is actually the one shown in Fig. 1(b), which depicts
heterogeneous smart home devices that are simultaneously
controlled from a smartphone using a single app, and that
are able to directly interact with each other. Such a scenario
does not only avoid the installation of gateways and maximize
the user’s flexibility when orchestrating all home devices, but
also enables an autonomous control system architecture (i.e.,
smart home devices can independently exchange sensor data
and adjust corresponding actuators without a central entity).

Such a gateway-free scenario can be achieved by means of
CTC [4], [9], which allows a direct information exchange be-
tween devices making use of incompatible wireless technolo-
gies. However, as highlighted in Sect. I, state-of-the-art CTC
solutions are still insufficient to make such a vision become
reality. On the one hand, existing schemes lack generality
and either focus on specific technologies/platforms, or are not
fully bidirectional. Indeed, a technology-independent cross-
technology broadcast primitive allowing a seamless interaction
between both powerful (e.g., smartphones) and constrained
(e.g., smart sensors and actuators) devices supporting BLE,
ZigBee, or Wi-Fi, has not been developed yet. On the other
hand, current CTC solutions do not focus on enabling an easy
integration into existing resource-constrained devices. To be
applicable in the smart home context, CTC should be added
alongside existing operations, i.e., it should have a minimal
footprint (so to still fit the remaining device memory) and

should coexist with the native communication stacks. We show
next how we fill these gaps and ultimately develop a prototypic
solution for the scenario shown in Fig. 1(b).

III. ENABLING A CROSS-TECHNOLOGY BROADCAST
BETWEEN WI-FI, BLE, AND ZIGBEE DEVICES

In previous work [5], we went the first steps towards a
generic framework supporting technology-independent CTC
primitives on constrained IoT devices. We have tailored this
framework, called X-Burst, to a few IoT platforms running
the Contiki operating system and employing a ZigBee or BLE
radio (i.e., the TI CC2650, Zolertia Firefly, and TelosB node).

To make X-Burst applicable to the scenario depicted in
Fig. 1(b), we must also enable a bidirectional communication
with off-the-shelf Wi-Fi devices and support more powerful
appliances such as smartphones. This is a non-trivial task,
as many Wi-Fi devices do not expose support for essential
features such as frame injection or RSS sampling, and as
operating systems for more powerful devices (e.g., Android,
Linux) offer much less flexibility in exchanging data between
user space and radio firmware compared to Contiki.

In this section, we tackle these problems and transform
X-Burst into an OS-independent CTC framework supporting
off-the-shelf Wi-Fi platforms and smartphones, ultimately en-
abling a cross-technology broadcast primitive among ZigBee,
BLE, and Wi-Fi devices. We start our discussion by providing
some background information on X-Burst’s working principle.

A. The X-Burst Framework

X-Burst is a portable CTC framework that allows to convey
information between heterogeneous devices by sending and
receiving precisely-timed energy bursts [5]. These bursts can
be transmitted by adjusting the length of legitimate packets,
and received by observing the energy level on the RF channel,
i.e., by performing a high-frequency RSS sampling. As most
wireless devices have the ability to transmit payloads of
arbitrary length and to perform energy detection (for clear
channel assessment), X-Burst is highly generic and potentially
allows any device to broadcast cross-technology frames. One
just needs to agree on a common RF channel where to
exchange cross-technology frames and on a shared alphabet
to encode and decode information. The alphabet specifies how
symbols are mapped to a predefined set of burst lengths, and
depends on the characteristics of the communicating devices
(e.g., the RSS sampling rate and the radio response time).

X-Burst is designed in a modular way to enable a high porta-
bility across multiple platforms and technologies. The original
core modules described in [5] are highlighted in light grey in
Fig. 2, whereas the modules in dark grey refer to the extensions
we will describe in the remainder of this paper. A key role in
making the framework generic plays the hardware abstraction
layer (HAL), which allows the separation of CTC-related
functionality from hardware-specific details. The main CTC
logic (e.g., the encoding/decoding process, the (dis)assembly
of cross-technology frames, and the mapping of symbols to
bursts using a given alphabet) thus remains hardware-agnostic
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Fig. 2. Overview of our solution: X-Burst’s original core modules are
highlighted in light grey; our enhancements are highlighted in dark grey.

and portable, while only radio-related primitives have to be
implemented for each individual device. The HAL contains
functions required to transmit energy bursts of a given length,
to perform RSS sampling, and to configure the radio channel.

B. Enabling CTC on Off-the-Shelf Wi-Fi Platforms

In Contiki, an application has typically full access to the
radio driver and all low-level features: thus, the implemen-
tation of X-Burst, including its HAL, is rather straightfor-
ward. On powerful Wi-Fi platforms (e.g., on a Raspberry
Pi) and off-the-shelf smartphones, however, the radio cannot
directly be controlled by applications, but is shielded by the
operating system. Furthermore, several Wi-Fi modules run
closed-source firmware that does not expose low-level func-
tions (e.g., RSS sampling and monitor mode) by default. Ex-
amples of such closed-source modules are those produced by
Broadcom/Cypress, which are embedded in popular platforms
such as the Raspberry Pi 3/4, as well as several smartphones.

To overcome these limitations, we resort to the architec-
ture shown in Fig. 3, which extends the firmware of the
Wi-Fi radio and exposes the necessary features to the CTC
implementation running in user space. The illustration is
based on our implementation for the Raspberry Pi 3B+ and the
Nexus 6P smartphone, both embedding a Broadcom/Cypress
chip, but the general architecture is also applicable on other
platforms (e.g., using Atheros or Intel Wi-Fi modules). As
a Broadcom/Cypress chip runs closed-source firmware, we
make use of the Ghidra reverse-engineering tool [29] and of
the Nexmon C-based patching framework [30] to extend its
functionality. Ghidra allows to explore the radio’s capabilities
that can then be made available to user-space applications by
patching the corresponding addresses in the firmware. Nexmon
allows to create such custom firmware patches and to enable
monitor mode on a variety of Broadcom/Cypress chips.

We focus on the bcm43 module, embedded in the Rasp-
berry Pi 3B+ and Nexus 6P smartphone and use Nexmon to
extend its firmware to provide X-Burst’s HAL with access
to the necessary radio features. To expose the RSS sampling
capability, we implement a periodic timer triggering an exist-
ing energy detection function and tunnel the obtained RSS
information to user-space applications through the kernel’s

Application (e.g., Android app)

X-Burst CTC Stack (e.g., Python, qPython script)

Wi-Fi Firmware
ConfigurationRSS sampling

 HAL send_burst sample_RSS configure_radio

UDP IOCTLs

Packet transmission

Host OS (e.g., Raspbian, Android)

Wi-Fi Module (e.g., BCM4358, BCM43455c0)

L2 Socket

Host Device (e.g., RPi3B+, Nexus 6P)

Fig. 3. Architecture used to support CTC on Wi-Fi platforms following the
X-Burst core principles. The Wi-Fi radio firmware is extended to expose the
necessary radio features to the CTC implementation running in user space.

network stack. Specifically, we transfer data to user-space by
encapsulating it in UDP frames. When sent to the broadcast
IPv4 address (255.255.255.255), the frames are automatically
accepted by the kernel and passed on to user-space applica-
tions. This way, the HAL can retrieve the frames by listening
to a datagram socket. Using this approach, we can achieve
a RSS sampling rate of 10.3 and 5.9 kHz on the RPi and the
Nexus 6P, respectively. These values are rather slow compared
to BLE and ZigBee radios (e.g., the TI CC2650 BLE radio
offers a RSS sampling rate of 43.5 kHz) and have to be
accounted for in the alphabet computation. We further leverage
IOCTL system calls to configure the Wi-Fi channel (i.e., to
overlap with the operating channels of the other devices2) and
to enable monitor mode. The latter is required to transmit
Wi-Fi frames without prior connection to an access point. To
transmit energy bursts, one can exploit the frame injection
mechanism proposed in JamLab-NG [31]: by leveraging L2
sockets, the HAL can transfer raw Wi-Fi frames with a certain
payload size (i.e., corresponding to a specific burst length)
to the firmware, which are then transmitted using Nexmon’s
sendframe() function.

Exploiting all the aforementioned features, we are hence
able to fully support CTC on a Raspberry Pi 3B+ and a Nexus
6P smartphone, providing them with the ability to seamlessly
interact with both ZigBee and BLE devices.

Generality of the solution. The ability to access radio-
related features from user-space allows to implement the CTC
functionality in portable user-space scripts following X-Burst’s
original modular structure shown in Fig. 2. Our prototypic
implementation is based on a python script, which is applicable
to Linux-based operating systems like Raspbian or Android
(using a qPython interpreter). As the interaction with the
Wi-Fi firmware is solely carried out in the HAL, this script is
easily portable to different platforms and not limited to Wi-Fi
devices. Furthermore, our firmware patches can also be reused
on other Broadcom/Cypress platforms supported by Nexmon,
as they are written in portable C code.

2Wi-Fi radios use a much wider bandwidth (20 MHz), compared to BLE
and ZigBee devices (2 MHz each). Despite these asymmetries, the energy
bursts and their corresponding length can still be detected.



IV. INTEGRATING CTC ALONGSIDE EXISTING
COMMUNICATION STACKS

In the original X-Burst paper [5], we have shown how
CTC could be integrated alongside Contiki’s network stack,
using ContikiMAC as a running example. Whilst this effort
has shown the importance of integrating CTC next to the
existing functionality of a device, it did not provide a generic
solution. In commercial smart home applications such as the
one shown in Fig. 1, indeed, the devices typically rely on full-
grown ZigBee and BLE stacks, which are not available in
Contiki. Hence, how to seamlessly integrate CTC alongside the
functionality of a commercial smart home device (e.g., a smart
light bulb such as the Ikea Trådfri) still needs to be investi-
gated. In this section, we show how to tackle this problem by
extending X-Burst with a CTC event handler and scheduler.
We further describe how to implement these modules on BLE
and ZigBee platforms available on the market.

A. CTC Event Handler and Scheduler

To coordinate radio access with existing communication
stacks in a seamless way, we introduce a CTC event scheduler
and a corresponding CTC event handler on top of X-Burst, as
shown in Fig. 2. The CTC event scheduler is responsible for
coordinating CTC activities alongside the native communica-
tion stack of a device and fires cross-technology transmission
(CTC TX) and reception (CTC RX) events accordingly. The
strategy with which CTC events are triggered is up to the
developer: one can fire them periodically, or exploit the time
in which the radio is idle. Such idle times can be inferred by
the CTC event scheduler based on knowledge of the MAC
protocol employed by the coexisting network stack [5], [17],
or autonomously learnt by detecting periodicity in time series
capturing the radio’s idle time [32], [33]. The CTC event han-
dler is in charge of configuring the radio for CTC operations,
of initiating the cross-technology receptions or transmissions
according to the scheduler’s instructions, and of restoring the
radio settings used by the coexisting communication stack.

Fig. 4 provides a deeper insight into the operations of the
CTC event handler and scheduler. For simplicity, we assume
that CTC RX events are periodic following a fixed interval
tInterval [17] that is shared across all communicating devices.
After each CTC RX event, the CTC event handler carries out
RSS sampling for a maximum duration tSense to check for
ongoing CTC transmissions. If a valid energy burst is detected
within tSense, the device tries to determine the beginning of
a CTC message by scanning for a preamble and eventually
receives the cross-technology frame. Otherwise, the CTC
operation is terminated immediately and the radio settings used
by the coexisting communication stack are restored: this also
keeps the radio on-time to a bare minimum. After a CTC
TX event, which can be scheduled as soon as the radio is
available (see Sec. IV-B), the CTC event handler triggers the
consecutive transmission of a cross-technology frame until
either an acknowledgement (ACK) is received, or a maximum
time is reached. To ensure correctness of the CTC operation,
one needs to ensure that:

Fig. 4. Inner working of the CTC event handler and scheduler.

• tSense > tAck: the time a device scans for energy bursts
must be greater than the longest ACK duration.

• tScan,preamble > tMsg+tAck: after a device has detected
an energy burst, it should scan for a preamble for a du-
ration that is proportional to the longest message (tMsg)
and ACK (tAck), as the detected energy burst may refer
to the beginning of a CTC transmission.

B. Implementation Remarks

While the CTC event handler is hardware-independent, the
implementation of the CTC event scheduler depends on the
software features of the employed communication stack. We
exemplify our discussion by analyzing the integration of CTC
next to the Silicon Labs EmberZnet ZigBee stack and the
Nordic Semiconductor BLE stack, respectively.

The Nordic Semiconductor BLE stack offers primitives to
request radio-access (for CTC RX and TX operations) during
defined time intervals, while ensuring the proper execution
of BLE-related tasks. This feature allows the CTC event
scheduler to initiate CTC operations such that a reliable data
exchange using BLE is guaranteed and implicitly results in a
prioritization of BLE communication over CTC.

On the contrary, the Silicon Labs EmberZnet ZigBee stack
does not provide a seamless scheduling of radio-related ac-
tivity, as ZigBee communication is not bound to fixed time
intervals. In case of non-preemptive access to the radio, the
CTC event scheduler has hence to coordinate the execution
of ZigBee and CTC tasks manually. The only information
available to the scheduler is whether the radio is currently
in use (i.e., if ZigBee communication is ongoing): whenever
this is the case, pending CTC events should be omitted to
avoid disrupting ZigBee activities. However, once a CTC event
has been triggered, ZigBee communication is halted. These
implementation differences, along with their implications, are
analyzed more in detail and evaluated in Sec. V-B.

V. EVALUATION

We perform next an experimental evaluation that quantita-
tively answers the following questions:
• What is the performance of our cross-technology broad-

cast primitive with respect to throughput, robustness, and
communication range? (Sec. V-A)

• Can we transmit cross-technology broadcast frames with-
out impairing existing communication stacks and while
maintaining energy-efficient operations? (Sec. V-B)



Fig. 5. CTC throughput measured by the Nexus 6P smartphone during both
transmission (a) and reception (b) of cross-technology frames with different
payload size to/from different IoT devices. In most of the cases, the achieved
throughput is above 1 kbps.

A. Cross-Technology Broadcast Primitive

Building upon the concepts presented in Sec. III, we demon-
strate and evaluate the performance of our cross-technology
broadcast primitive across Wi-Fi, BLE, and ZigBee devices. In
the following experiments, we focus on the CTC implementa-
tion only, i.e., other communication mechanisms are disabled.

Setup. We use a variety of off-the-shelf IoT platforms: the
Nexus 6P smartphone and the Raspberry Pi (RPi) 3B+ (Wi-Fi),
the Nordic Semiconductor nRF52840 DK and the TI CC2650
LaunchPad (BLE), as well as the Silicon Labs EFR32 Thun-
derboard Sense and the Zolertia Firefly (ZigBee). Unless
stated otherwise, the measurements are performed in an office
environment on (almost) interference-free channels (Wi-Fi ch.
9, ZigBee ch. 20, and BLE ch. 22). All devices are placed
1 m apart and share a common alphabet consisting of 2-bit
encoding with four burst durations (224, 576, 928, 1280µs).

Throughput. In a first experiment, we let the Nexus 6P
smartphone broadcast 100 CTC messages back-to-back to all
other devices and repeat the experiment 10 times. Fig. 5(a)
shows the throughput of each device for different payload
sizes. Higher payload sizes enhance the throughput thanks
to a lower message overhead (e.g., preamble, header and
checksum). At a certain point, however, the probability of
decoding errors increases, leading to a lower throughput. The
variance strongly depends on the RSS sampling capabilities of
the receiving platform, and is particularly higher on the RPi,
as it offers the slowest RSS sampling rate. The throughput in
the other direction is shown in Fig. 5(b) and is more platform-
dependent, as it is a function of the radio response time, i.e., of
the minimum time required between the transmission of two
energy bursts. Overall, Fig. 5 shows that CTC across all three
technologies is possible with a data rate above 1 kbps, which
is more than sufficient for the exchange of control messages
or sensor data on constrained IoT devices. In principle, the
throughput can be significantly improved when using a faster
alphabet that is supported by all devices involved in the
communication. Fig. 6, for example, compares the throughput
achieved by the nRF52840 DK (BLE) and the Thunderboard
Sense (ZigBee) when using the same alphabet used previously
and a faster one consisting of 4-bit encoding with sixteen burst
durations (224, 316, 408, . . . , 1664µs).

Fig. 6. CTC throughput of BLE and ZigBee devices with different alphabets.

Fig. 7. Packet reception rate (PRR) under different interference scenarios.

Fig. 8. PRR at increasing communication distance.

Robustness to RF noise. We repeat the same experiments
with a fixed payload size of 16 byte and evaluate the packet
reception rate (PRR) in the presence of RF noise. To this
end, we record Wi-Fi interference patterns using a TP-Link
USB Wi-Fi adapter and replay them repeatedly on the channel
used for CTC using tcpreplay. The Wi-Fi interference is
generated at a distance of 1 m from the receiving device with a
transmission power of 13 dBm. Fig. 7 shows that, as expected,
the PRR decreases as the amount of RF interference increases.
While the PRR approaches 100% in absence of noise, it
decreases to 72–80% in the presence of audio streaming traffic,
and drops below 50% in the presence of video streaming
traffic. As the cross-technology frames are broadcasted, the
PRR drops in a consistent way for all receiving devices.

Communication range. We evaluate next the communication
range by observing the PRR as a function of the distance
between sender and receiver. Fig. 8 shows that BLE and
ZigBee devices can receive cross-technology frames without
a significant decrease of the PRR until 25 m. In contrast, on
the Wi-Fi based smartphone, the PRR starts to visibly drop
at a distance of 20 m. The reason lies in the wider bandwidth
of Wi-Fi compared to BLE and ZigBee: as the smartphone
measures the energy level on the entire 20 MHz channel,
it is more difficult to detect the 2 MHz-wide energy bursts
generated by BLE and ZigBee.

B. Integration into Existing Devices

Building upon the concepts presented in Sec. IV, we eval-
uate next the integration of CTC alongside the EmberZnet
ZigBee stack running on a Thunderboard Sense and the Nordic
Semiconductor BLE stack running on the nRF52840 DK.

We are interested in quantifying the impact of CTC opera-
tions on the native communication stack running on the device
as well as the additional energy overhead introduced by CTC.



Fig. 9. Packet reception rate (PRR) measured while simultaneously using
CTC in parallel to either ZigBee (a) or BLE (b).

Fig. 10. Measured current consumption during BLE and CTC activities.

Impact on native communication stack. We concurrently
transmit CTC and BLE frames to the nRF52840 DK (or
ZigBee frames to the Thunderboard Sense) and observe the
PRR experienced by both network stacks. Specifically, we
transmit 100 CTC messages back-to-back, while BLE (or
ZigBee) frames are transmitted periodically using different
transmission intervals. Fig. 9 shows the results: the PRR
of CTC activities is always above 90%, in accordance with
the previous experiments. While the BLE communication is
unaffected (PRR=100%), some of the ZigBee frames are lost,
resulting in a PRR≈99%. Although minimal, this difference
highlights the observations made in Sec. IV: depending on the
primitives offered by the platform (e.g., the nRF52840 DK al-
lows to request radio access so that BLE traffic is prioritized),
one may or may not be able to guarantee that CTC has no
impact on the native communication stack.

Energy overhead. We measure the current consumption of the
nRF52840 DK using a Nordic Semiconductor Power Profiler
Kit while the BLE and CTC stacks operate in idle mode.
Fig. 10 shows the results when using a BLE connection
interval and tInterval of 300 ms, as well as a tSense of 6 ms.
Each idle CTC event consumes 257.8µJ of additional energy.
In comparison, a BLE advertisement event costs 54.9µJ, i.e.,
in this configuration, the additional CTC activities increase
the duty cycle from 0.87% to 2.97%. While the exact energy
expenditure depends on the traffic load, hardware character-
istics, and timing configurations (e.g., tInterval), these results
show that duty-cycled operations can be maintained, which is
important for constrained devices with limited energy budget.

VI. BUILDING A GATEWAY-FREE SMART HOME

We leverage our findings to build a gateway-free smart home
application, where a smartphone directly controls heteroge-
neous smart home devices available on the market using cross-
technology broadcast communication, as shown in Fig. 1(b).

TABLE I
MEMORY FOOTPRINT OF THE ENHANCED IKEA TRÅDFRI LIGHT BULB

Existing functionality CTC stack Free / Unused
ROM (kB) 240.69 (94%) 2.72 (1%) 12.58 (5%)
RAM (kB) 18.40 (57.5 %) 0.61 (2%) 12.99 (40.5%)

Fig. 11. Devices used in our gateway-free smart home prototype.

Equipping off-the-shelf smart objects with CTC. We make
use of two off-the-shelf smart home devices to emphasize
the real-world applicability of our solution: an Ikea Trådfri
light bulb using a Silicon Labs EFR32 ZigBee SoC, and a
Danalock V3, a BLE-enabled door lock employing a Nordic
Semiconductor nRF52382 SoC. We replicate the existing
functionality of both devices, including a full-grown ZigBee
and BLE stack, respectively, and integrate our CTC solution
next to it while ensuring a seamless coexistence with the native
communication stack, as described in Sec. IV. This ensures
that both devices can transmit and receive CTC frames while
still performing the original operations, i.e., the two devices
can be controlled with a smartphone as envisioned in Fig. 1(b),
but also with their original remote controllers.

Minimal memory footprint. The integration of CTC on
legacy devices is challenging due to the often limited storage
capacity. For example, the Ikea Trådfri light bulb offers only
256 kB of ROM, out of which 94% is already occupied with
existing functionality. Our solution requires less than 3 kB of
ROM, thus still fitting into the highly constrained memory.
Table I shows the memory footprint of our solution on the
Ikea Trådfri: similar values apply to other platforms.

Demonstration video. Building on top of the cross-technology
broadcast primitive presented in Sec. III, we let a Nexus 6P
smartphone use its Wi-Fi interface to directly and simultane-
ously control the ZigBee-based Ikea Trådfri as well as the
BLE-based Danalock V3 by means of CTC. We assign each
device a fixed 1-byte address and define several commands to
control the appliances accordingly. Our solution requires only
a single smartphone app, shown in Fig. 11(a), and does not
require any gateway. A demonstration video using the devices
shown in Fig. 11(b) is available on YouTube3.

3https://youtu.be/whD_H-UynJY



VII. DISCUSSION AND FUTURE WORK

Our demonstration setup can be extended to other smart
home platforms operating in the 2.4 GHz band. This is possible
as our CTC implementation is non-invasive (i.e., no hardware
modifications are required) and thus, provided that low-level
radio-features are accessible, existing smart home devices can
support CTC with a simple firmware update. Note that the
applicability of our solution is not limited to smart homes:
it can be used, for example, in the context of industrial
applications consisting of heterogeneous networks.

The smart home presented in Sec. VI relies on predefined,
mutually available commands and device addresses. A com-
mon application layer that is well-understood across all CTC-
enabled devices as well as a neighbour discovery service
are required to build generic and scalable solutions. To this
end, one can exploit recent efforts towards new connectivity
standards increasing compatibility among smart home prod-
ucts [34] and towards the development of cross-technology
neighbour discovery schemes [17]. We will investigate how to
incorporate these efforts in our solution in future work.

Finally, a real-world application requires security mecha-
nisms to provide authentication and encrypted communication.
Although encryption algorithms are available on the targeted
hardware platforms (e.g., as part of the ZigBee or BLE stack),
secure cross-technology key management and data exchange
is an open challenge. Along with efficient authentication
schemes tailored to the CTC context, e.g., [35], this is also
an interesting direction for future work.

VIII. RELATED WORK

CTC has recently attracted a lot of attention in the research
community, as a direct data exchange between devices with
incompatible PHYs allows the development of many attractive
services, including channel coordination [12], coordinated data
aggregation [36], sensor reconfiguration [11], as well as clock
synchronization across heterogeneous devices [37].

CTC is also promising to avoid the use of multi-radio
gateways, which may be especially beneficial in smart home
applications. Such a use case has been discussed theoreti-
cally [4], [9] and a few works have showcased a unidirectional
communication from smartphones to individual light bulbs [7],
[13]. In this work, instead, we let smartphones broadcast data
to multiple commercial smart home appliances simultaneously,
and allow a seamless control using a single app.

Existing work on CTC can be broadly classified into two
categories: packet-level modulation and PHY emulation. In the
latter, the payload of one technology is adjusted to embed a
legitimate frame of another. This approach allows to transmit
at high data rates from a high-end transmitter to a low-end
receiver (e.g., Wi-Fi→ ZigBee [8] or BLE→ ZigBee [7]), but
is asymmetric (i.e., it only works in one direction) and highly
technology-specific. Recent studies have focused on enabling a
data exchange also in the reverse direction: for example, [13],
[20] allow the transmission of ACK frames. XBee [9] and
LEGO-Fi [19] enable high-throughput communication from

low-end to high-end devices using cross-decoding and de-
mapping, but require hardware modifications.

Earlier CTC approaches are based on packet-level mod-
ulation (i.e., on the manipulation of packet-level properties
such as transmission power [38], packet length [3], [6], or
timing intervals [4], [21]) and are less technology-specific
than PHY emulation. Moreover, they are also more suitable
for bidirectional communication: for example, DCTC [21]
and FreeBee [4] support ZigBee ↔ Wi-Fi data exchange,
whereas [5] showcased ZigBee ↔ BLE communication. In
contrast to PHY emulation, however, the achievable through-
put is lower due to the limited granularity of packet-level
properties and RSS sampling rates, with achievable data rates
ranging from a few bps [4] to several kbps [5].

Although several CTC solutions exploiting packet-level
modulation have been proposed, none of them allows a fully-
bidirectional exchange across BLE, ZigBee and Wi-Fi devices.
In this work, we create a platform-independent primitive en-
abling an all-to-all cross-technology broadcast communication
on off-the-shelf BLE, ZigBee, and Wi-Fi devices. We have
described a preliminary prototype of this primitive in a demo
abstract [39]: in this paper, we fully describe its design and
apply it in a real-world IoT scenario.

IX. CONCLUSIONS

In this paper, we have showcased a prototypic gateway-free
smart home in which heterogeneous smart devices can directly
interact with each other and be simultaneously controlled from
a smartphone using a single app. To this end, we have first
enriched the X-Burst framework with the ability to perform
cross-technology broadcast transmissions across off-the-shelf
BLE, ZigBee, and Wi-Fi devices. We have then designed and
implemented concepts to extend existing smart home devices
with full-grown ZigBee and BLE stacks with CTC functional-
ity without affecting their normal operations. An experimental
evaluation shows the performance of our solution, including
its robustness, energy overhead, and achievable data rate.
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