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ABSTRACT
Battery-free sensor nodes rely solely on energy harvested from
the environment and thus employ supercapacitors as energy stor-
age to allow perpetual operation in absence of ambient energy.
To guarantee that the sensor nodes can survive in periods where
no harvested energy is available, it is crucial to accurately estimate
the lifetime of these devices. However, as we show experimen-
tally in this paper, an accurate lifetime estimation is non-trivial
due to the supercapacitors’ complex discharge characteristics (e.g.,
leakage currents) and large capacitance tolerances. After showing
that empirical data capturing the supercapacitors’ characteristics is
essential towards an accurate estimation of the system’s lifetime,
we introduce an enhanced leakage model that is computationally
lightweight and evaluate its accuracy experimentally.
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1 INTRODUCTION
Recently, battery-free sensor nodes are emerging as a viable alterna-
tive to conventional battery-powered devices and are used to build
maintenance-free and sustainable Internet of Things (IoT) applica-
tions. Equipped with an energy harvester and a capacitor as energy
storage, battery-free sensor nodes are powered from environmental
sources (e.g., light, vibration, or temperature) and promise to over-
come the shortcomings of batteries, which are often costly both
in terms of maintenance (i.e., battery replacement) and environ-
mental impact (i.e., battery disposal). As the amount of harvested
energy strongly varies over time, battery-free devices often operate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ENSsys ’22, November 6, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9886-2/22/11. . . $15.00
https://doi.org/10.1145/3560905.3568108

intermittently, i.e., they shut down after depleting the accumulated
energy and wait until the capacitor has recharged [1, 19, 20]. While
these devices are suitable for designing reactive systems (where
events of interest occur if harvested energy is available), they are
not feasible in many real-world applications that require perpetual
operation (e.g., alarm or monitoring systems).

In order to provide continuous, battery-free operation despite
fluctuating incoming energy, supercapacitors can be employed as en-
ergy storage [8, 9, 21]. Supercapacitors offer a magnitude higher ca-
pacities than conventional capacitors and can thus store enough en-
ergy to power the devices in absence of ambient energy. At the same
time, they provide an effectively unlimited life cycle, as, in contrast
to batteries, they are not constrained in the number of (re-)charge
cycles [13]. These properties make supercapacitors a promising
candidate to design maintenance-free, long-lasting battery-free
sensor nodes. The deployment of supercapacitor-powered devices,
however, introduces several challenges, including the proper di-
mensioning of the storage capacitance.
Importance of accurate lifetime estimation. In fact, the pro-
vided capacitance largely affects the systems’ lifetime (i.e., how
long the sensor node can operate from the supercap’s power with-
out incoming energy), which is a parameter of utmost importance.
Overestimating the lifetime can lead to underprovisioning of the
storage capacity and hence to accidental power-failures, leading to
unreliable operations and limited applicability. Underestimating the
lifetime and overprovisioning the capacity, on the other hand, limits
the efficiency of the system, as higher capacitances typically come
paired with larger form factors, increased costs, and disadvantages
in the (dis-)charging behavior, such as higher leakage currents and
longer charging times. An accurate lifetime estimation is hence
important to determine the optimal capacitance for a specific appli-
cation, such that (i) the capacity is minimized to avoid costs and
inefficiencies, and to (ii) ensure sustained operation for a given
time in which no harvested energy is available. Furthermore, it is a
necessary basis for energy-aware scheduling, where devices adapt
their duty-cycles according to the incoming energy [4, 24].
Supercapacitor ≠ supercapacitor. In existing works, the super-
capacitor is often treated as an ideal component [8, 9, 12], i.e., the
lifetime (or energy budget) estimation is based on the rated capaci-
tance, without considering any supercapacitor characteristics such
as leakage or charge redistribution effects. This simplistic approach,
however, is insufficient in practice. To illustrate this, we experi-
mentally obtain the lifetime of two sensor nodes powered by five
different off-the-shelf supercapacitors listed in Tab. 1. More specif-
ically, we charge each supercapacitor for 15 minutes to 3.3 V and
derive each sensor node’s lifetime by monitoring its operating volt-
age (i.e., assuming it can operate from 3.3 V to 1.8 V). Fig. 1 shows
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Model C. rated C. meas. Diff Voltage ESR
(mF) (mF) (%) (V) (Ω)

Kemet FT 220𝑎 333 +51,4 5.5 10𝑒

Kemet FM 220𝑏 179 -18,6 5.5 100𝑒

Maxcap 220𝑏 195 -11,4 5.5 6-14𝑑
Eaton KR 220𝑐 263 +19,5 5.5 75𝑒

Eaton PM 100𝑐 149 +49,0 5 2𝑑

Cap. measurement method according to datasheet: 𝑎Discharge
method, 𝑏Charge method, 𝑐Not given.
ESR value given in datasheet: 𝑑Typical, 𝑒Maximum.
Table 1: Supercapacitors studied in this work. The rated
capacitance (C) according to the datasheet can be obtained using
either the charge or discharge method and shows significant
deviations from the actual measured capacitance.

that there are significant differences in the observed lifetimes of the
sensor nodes. Although four of the five supercapacitors have the
same rated capacitance (220mF) and voltage (5.5 V), the differences
in lifetime amount to up to 48%. Such a difference translates into
a lifetime range between 3.5 and 6.5 hours for the nRF52-based
sensor node and between 18.3 and 35.3 minutes for the MSP430-
based sensor node. Moreover, the Eaton PM supercapacitor, with a
rated capacitance of only 100mF, achieves a similar lifetime than
Kemet FM and Maxcap. As we show experimentally in this paper,
these deviations stem from differences in the actual capacitances
and diverse discharge characteristics, such as charge distribution
effects or leakage currents. Interestingly, there are also relative
deviations between Fig. 1(a) and (b), which hints a dependency
of the discharge characteristics on the load current. In fact, the
nRF52-based node (with an average power consumption of appr.
15 µA) runs 10% shorter when powered by an Eaton KR rather than
a Kemet FT supercapacitor, whereas for the MSP430-based node
(170 µA) the difference amounts to only 5%.
Existing work. Previous studies have indeed shown that superca-
pacitors exhibit complex discharging characteristics due to leakage
and charge-distribution effects that largely affect the actual energy
budget and lifetime of the sensor node [3, 7, 15, 18, 22, 23]. In a large
number of these works, the supercapacitor’s behavior is reflected
by means of equivalent circuit models [7, 18, 22], which often re-
quire laborious measurements to extract the required parameters
and are complex to compute. Ultimately, the lifetime estimation
should also be performed on the sensor nodes at run-time (i.e., to
adapt the operation according to the available energy budget) and
thus a light-weight modelling is necessary. Other works propose
an iterative lifetime estimation based on the leakage behaviour of
supercapacitors [14, 23]. While the suggested leakage models are
simple to derive and also applicable on resource-constrained de-
vices, they have been developed and evaluated for larger capacitors
(e.g., 22 F [23]) and do not consider that the discharge characteristics
change depending on the load current.
Our contributions. In this paper, we highlight that empirical data
of a given supercapacitor is necessary to perform an accurate life-
time estimation. More specifically, we show experimentally that
the differences observed in Fig. 1 stem from differences in capaci-
tance and leakage characteristics. Based on these observations, we
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Figure 1: Measured lifetime of an nRF52 (a) and MSP430 (b)
sensor node powered by five different supercapacitors. The
two sensor nodes have an average current consumption of 15.2𝜇𝐴
and 170𝜇𝐴, respectively.

propose an enhanced leakage model considering the load current
that is computationally lightweight and requires only two measure-
ments, integrate it in the lifetime estimation process, and evaluate
it based on experimental data. The remaining paper is organized as
follows:

• We discuss how existing work tackles lifetime estimation
and highlight its shortcomings experimentally (§ 2).

• We introduce an enhanced leakage model (§ 3).
• We evaluate the leakage model as well as its suitability in
estimating the system’s lifetime experimentally (§ 4).

• We discuss limitations and future work (§ 5).

2 THE NEED OF REVISITING THE
LIFETIME ESTIMATION PROCESS

An accurate lifetime estimation is crucial to ensure that sensor
nodes can survive periods where no ambient energy is available.
As discussed in existing work and emphasized in Fig. 1, it is neces-
sary to consider the supercapacitor’s characteristics in this process.
We explain next how to estimate a sensor node’s lifetime in an it-
erative process based on [23] and discuss the shortcomings of this
approach.
Iterative lifetime estimation. Zhu et al. [23] propose to estimate
the lifetime iteratively based on (i) the available energy stored in the
capacitor, (ii) the consumed energy of the sensor node, and (iii) the
energy lost due to leakage, while assuming zero incoming energy.

Starting at 𝑡0 = 0 with the currently stored energy 𝐸𝑐𝑎𝑝 (0), the
remaining energy can be computed in each iteration using Eq. 1.

𝐸𝑐𝑎𝑝 ((𝑛 + 1)𝑇 ) = 𝐸𝑐𝑎𝑝 (𝑛𝑇 ) − (𝑃𝐿 (𝑛𝑇 ) + 𝑃𝐶 (𝑛𝑇 ))𝑇 (1)

where 𝑇 is a given time-window and 𝑃𝐿 and 𝑃𝐶 correspond to the
leaked and consumed power, which are assumed to be constant
within T. The iteration process stops once 𝐸𝑐𝑎𝑝 reaches its minimum
value, such that the next iteration would lead to a power failure
of the sensor node (i.e., if 𝐸𝑐𝑎𝑝 ((𝑛 + 1)𝑇 < 𝐸𝑚𝑖𝑛) and 𝑛𝑇 yields
the expected lifetime. 𝐸𝑚𝑖𝑛 can be calculated using 1

2𝐶𝑉
2
𝑚𝑖𝑛

, where
𝑉𝑚𝑖𝑛 is the minimum operating voltage of the sensor node.
Revisiting 𝐸𝑐𝑎𝑝 (0). The available energy stored in the supercapac-
itor depends on its capacitance 𝐶 and voltage 𝑉𝐶𝑎𝑝 , and is given
by 1

2𝐶𝑉
2
𝐶𝑎𝑝

. Zhu et al. [23] as well as other related works [8, 9, 12]
commonly rely on the rated capacitance when computing the initial
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Figure 2: Leakage profile over time for different superca-
pacitors at 𝐼𝐶 = 0 (a) and for a single capacitor (Kemet FT) at
different load currents (b). The leakage power is not only highly
dependent on the supercapacitor model, but increases with larger
discharge currents.

energy budget. However, the capacitance of commercial supercapac-
itors typically has large tolerances from -20% to +80% and the given
capacitance value strongly depends on the measurement procedure
[10, 11, 17]. We obtain the capacitances of the five supercapaci-
tors from Tab. 1 using the discharge method. As shown in Tab. 1,
the actual capacitances indeed differ greatly (e.g., Eaton PM and
Kemet FT exceed their rated capacitance by 50%) and we thus argue
that empirically determining the capacitance is a necessary step to
accurately estimate the lifetime.
Revisiting 𝑃𝐿 (𝑡). Apart from the diverse capacitances, the self-
discharge characteristics (i.e., leakage currents) of the supercapaci-
tor play a vital role in the sensor nodes’ achievable lifetime. Super-
capacitors can exhibit leakage currents that range from tens of nAs
to several µAs and might exceed the average power consumption of
the sensor node itself [15]. Such leakage currents strongly depend
on the capacitor model, operating voltage, capacitance, and typi-
cally decay over time, before settling at an equilibrium value [13].
Unfortunately, datasheets provide only limited information: details
about the leakage characteristics are either omitted [6, 11], specified
rather vague (e.g., "if charged to 5V, the terminal voltage remains
>4.2V after 24h" [10]), or the leakage current is determined after
long charging and discharging periods (i.e., >24h [5]), which is not
realistic for energy-harvesting devices.

The leakage behavior must thus be modelled from empirical data,
based on the measured capacitor voltage and consumed energy
[22, 23]. By observing the terminal voltage 𝑉𝐶𝑎𝑝 for a given time-
window 𝑇 , the difference in capacitor energy can be computed
as:

Δ𝐸𝑐𝑎𝑝 = 𝐸𝑐𝑎𝑝 (0) − 𝐸𝑐𝑎𝑝 (𝑇 ) =
𝐶

2
(𝑉𝑐𝑎𝑝 (0)2 −𝑉𝑐𝑎𝑝 (𝑇 )2, (2)

while the consumed energy amounts to

𝐸𝐶 =

∫ 𝑇

0
𝑃𝐶 (𝑡) 𝑑𝑡 ≈ 𝑃𝐶𝑇 =

𝑉𝑐𝑎𝑝 (0) +𝑉𝑐𝑎𝑝 (𝑇 )
2

𝐼𝐶𝑇, (3)

given a constant discharge current 𝐼𝐶 . The leaked energy is the
energy that was dissipated from the capacitor (𝐸𝐿 = Δ𝐸𝑐𝑎𝑝 − 𝐸𝐶 )
and thus the leakage power can be computed using:

𝑃𝐿 =
Δ𝐸𝑐𝑎𝑝 − 𝐸𝐶

𝑇
. (4)

Leakage depending on supercapacitor model.We obtain the leakage
profile over time for the five supercapacitors studied previously ac-
cording to Eq. 4. To this end, we charge them for 15 minutes to 3.3V
and discharge them at a given discharge current 𝐼𝐶 to 1.8V using a
constant current sink. At the same time, we monitor and record the
supercapacitors’ terminal voltage to obtain the leakage profile over
time accordingly. Fig. 2(a) shows that there are differences among
the supercapacitor models both in the time behavior (i.e., in how
fast the leakage power decays after charging), and in the steady
value obtained once the leakage current reaches an equilibrium
state. In the following, we will refer to these different leakage shares
as transient and constant part, respectively. 1 For example, the losses
due to charge redistribution processes are clearly pronounced for
the Maxcap and Kemet FM model, which exhibit increased leakage
within the first 60 and 120 minutes, respectively, that settles to
approx. 2.2 and 3.5 𝜇𝑊 after 6 hours. The Eaton KR and Eaton PM
models, on the other hand, show a rather constant leakage behavior
which decreases minimally over time and amounts to approx. 2.3
and 3.4 𝜇𝑊 (see zoom in Fig. 2(a)). As we will show in Sec. 3, these
leakage curves can be expressed by fitting the experimental data to
an exponential or linear function, similar to the piecewise linear
approximation by Zhu et al. [23].
Leakage depending on load current.While it is widely known that
the leakage is highly dependent on the capacitor model and typi-
cally increases with larger capacitances [13, 15], we observe also a
dependency on the discharge current that has not been considered
in previous work [23]. To illustrate this behavior, we obtain the
leakage power of the studied supercapacitors using different dis-
charge currents. Fig. 2(b) shows the leakage profile for the Kemet
FT supercap and highlights that the capacitors’ losses increase with
higher loads. Note that, for each measurement, the capacitors have
been charged equally to 3.3V for 15 minutes, and that a similar trend
applies to each supercapacitor model (but are omitted because of
space constraints).

3 AN ENHANCED LEAKAGE MODEL
Based on the empirical data obtained in Sec. 2, we model the leakage
power using the exponential function

𝑃𝐿,𝑒𝑥𝑝 (𝑡) = 𝑎𝑒−𝑏𝑡 + 𝑐 (5)

where 𝑎, 𝑏, and 𝑐 are the model parameters that can be obtained
by means of curve fitting. To this end, we make use of the Python
SciPy library and give an example in Fig. 3(a), showing the mea-
sured leakage profile of the Kemet FT supercapacitor at 𝐼𝐶 = 300𝜇𝐴
(grey) along with its fitted exponential curve (red). While this ap-
proach reduces the storage requirement for one curve to only three
parameters, we observe that for some supercapacitor models (e.g.,
Eaton KR and Eaton PM), the transient part of the leakage power is
minimal and their profile can thus simply be expressed using the
single constant

𝑃𝐿,𝑙𝑖𝑛 (𝑡) = 𝑐 (6)

as shown in Fig. 3(b).

1The transient leakage is due to ions in the carbon electrodes diffusing into the
pores [13] and sometimes referred to as ’charge redistribution’ [15], while the constant
leakage is based on ohmic leakage pathways [22].
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Figure 3: Leakage profiles for the Kemet FT (a) and Eaton KR (b)
supercapacitors at 𝐼𝐶 = 200 𝜇 and 𝐼𝐶 = 500𝜇A. The measured
leakage can be modelled using exponential (a) or linear (b) curve
fitting.
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Figure 4: Linear interpolation of curve-fitted parameters (a,
b, and c) to derive a single leakage model depending on the
discharge current. The linearity of the parameters allows to derive
the model using only two distinct measurement points.

Generalization for different discharge currents. In order to
consider the discharge current dependency of the leakage power
(see Fig. 2(b)), it would be necessary to obtain and store the cor-
responding leakage curve for every load current. This would not
only increase the measurement efforts and storage requirements,
but renders the model inflexible, as the sensor node’s expected load
currents must be known beforehand. However, our empirical study
reveals that the parameters 𝑎, 𝑏, and 𝑐 can be interpolated linearly,
as shown exemplarily for the Kemet FT and Eaton KR supercapaci-
tors in Fig. 4. Equations 5 and 6 can thus be rewritten to the final
leakage power model by

𝑃𝐿,𝑒𝑥𝑝 (𝑡, 𝐼𝐶 ) = 𝑎(𝐼𝐶 )𝑒−𝑏 (𝐼𝐶 )𝑡 + 𝑐 (𝐼𝐶 ) (7)

𝑃𝐿,𝑙𝑖𝑛 (𝑡, 𝐼𝐶 ) = 𝑐 (𝐼𝐶 ) (8)
where 𝑎(𝐼𝐶 ), 𝑏 (𝐼𝐶 ), and 𝑐 (𝐼𝐶 ) are derived using the linear form

𝑥 (𝐼𝐶 ) = 𝑥0 · 𝐼𝐶 + 𝑥1 . (9)

The exponential and linear model are hence reduced to three (or
one) parameter pairs {(𝑎0, 𝑎1), (𝑏0, 𝑏1), (𝑐0, 𝑐1)} and are applicable re-
gardless of the discharge current. Furthermore, to obtain the model,
minimal measurement effort is required, as the linear interpola-
tion of the parameter pairs requires only two measurements. The
generalized model matches the initial curve-fitted leakage profiles
accurately, as shown by the red and yellow lines in Fig. 3 and will
be evaluated more thoroughly in Sec. 4.

4 EVALUATION
In this section, we evaluate the accuracy of the enhanced leakage
model (Sec. 4.1) and the lifetime estimation process (Sec. 4.2).

To this end, we obtain the leakage profiles as described in Sec. 2 at
𝐼𝐶 = {20, 100, 200, 400, 500, 1000}𝜇𝐴 for the five studied supercapac-
itors listed in Tab. 1. We then use the measurements at 𝐼𝐶0 = 20𝜇𝐴
and 𝐼𝐶1 = 500𝜇𝐴 to derive the linear and exponential leakage model
according to Eq. 7, Eq. 8, and Eq. 9, while the remaining measure-
ments are used for evaluation.

4.1 Enhanced Leakage Model
We first evaluate how well the generalization of the leakage curves
for different discharge currents (i.e., the linear interpolation of the
parameters 𝑎, 𝑏, and 𝑐) matches the actual obtained leakage power.

Towards this goal, we compare the initial curve fitted leakage
function 𝑃𝐿,𝑒𝑥𝑝 (𝑡) obtained at a given 𝐼𝐶 with the generalized func-
tion 𝑃𝐿,𝑒𝑥𝑝 (𝑡, 𝐼𝐶 ) and compute the absolute and relative error using
Eq. 10 and Eq. 11, respectively:

𝐸𝑒𝑥𝑝,𝑎𝑏𝑠 (𝑡) = 𝑃𝐿,𝑒𝑥𝑝 (𝑡) − 𝑃𝐿,𝑒𝑥𝑝 (𝑡, 𝐼𝐶 ) (10)

𝐸𝑒𝑥𝑝,𝑟𝑒𝑙 (𝑡) =
𝐸𝑒𝑥𝑝,𝑎𝑏𝑠 (𝑡)
𝑃𝐿,𝑒𝑥𝑝 (𝑡)

. (11)

In addition, analogue to Eq. 10 and Eq. 11, we compute the er-
ror functions 𝐸𝑏𝑎𝑠𝑒 (𝑡) for the existing leakage model. Recall that
in this model, only a single leakage curve is obtained at a given
discharge current. In our evaluation, we use the leakage profile ob-
tained at 𝐼𝐶 = 200𝜇𝐴, and hence define 𝐸𝑏𝑎𝑠𝑒,𝑎𝑏𝑠 (𝑡) = 𝑃𝐿,𝑒𝑥𝑝 (𝑡) −
𝑃𝐿,𝑒𝑥𝑝 (𝑡) |𝐼𝐶=200𝜇𝐴 . Fig. 5 shows the average relative (a) and ab-
solute (b) leakage model error for the Kemet FT supercapacitor at
different discharge currents. The existing leakage model is only
accurate at the discharge current it has been obtained from (i.e., at
200𝜇𝐴). At smaller currents, the leakage is highly overestimated
(e.g., the average relative error amounts to more than 800% at
𝐼𝐶 = 20𝜇𝐴). Larger currents, on the other hand, lead to an un-
derestimation (e.g., the average absolute error is as low as −754𝜇𝑊
at 𝐼𝐶 = 1000𝜇𝐴). Instead, the leakage model error of the exponential
model remains rather constant across all evaluated discharge cur-
rents, as the average relative error never exceeds 9.8%. Furthermore,
we obtain comparable results across all five supercapacitors, with
maximum average errors between 9.8% and 17.5%.

4.2 Lifetime Estimation
We evaluate next the accuracy of the lifetime estimation process
using the enhanced leakage model, compare it to the existing ap-
proaches, and verify its applicability for actual sensor nodes.
Comparison to existing work. We first compare the accuracy
of different lifetime estimation approaches by emulating a sensor
node that exhibits a constant load current. Specifically, we calcu-
late the lifetime estimation iteratively as shown in Sec. 2 using
the experimentally obtained capacitance, the given discharge cur-
rent, and by applying the existing, our enhanced exponential, and
our enhanced linear leakage model. Additionally, we compute the
expected lifetime in a naïve way neglecting any leakage currents,
i.e., considering an ideal capacitor with the (i) rated and (ii) mea-
sured capacitance and using𝑇𝑛𝑎𝑖𝑣𝑒 =

𝐶 (𝑉0−𝑉𝑚𝑖𝑛 )
𝐼𝐶

. We finally derive



Leakage-Aware Lifetime Estimation of Supercapacitor-Powered Sensor Nodes ENSsys ’22, November 6, 2022, Boston, MA, USA

20 100 200 400 500 1000
Discharge Current (μA)

0

200

400

600

800

Er
ro

r (
%

)

(a) Relative leakage power error

20 100 200 400 500 1000
Discharge Current (μA)

−600

−400

−200

0

Er
ro

r (
μW

)

(b) Absolute leakage power error

Enhanced leakage model Existing leakage model

Figure 5: Relative (a) and absolute (b) error of the enhanced
exponential and existing leakage model for the Kemet FT su-
percapacitor. The enhanced exponential model matches the ob-
served leakage regardless of the used discharge current.

the accuracy of these estimates by comparing them against the
experimentally measured lifetimes of the five studied supercapac-
itors (assuming 𝑉0 = 3.3𝑉 and 𝑉𝑚𝑖𝑛 = 1.8𝑉 ). As shown in Fig. 6,
the naïve approach based on the measured capacitance falls short
when estimating the lifetime, as neglecting the supercapacitors’
leakage power results in an (over)estimation error from 31 to 46%
and 12 to 17% for the Kemet FT and Eaton KR supercapacitor. The
naïve approach based on the rated capacitance leads to an underes-
timation of the lifetime of up to -13% and -6%, respectively, as the
actual capacitance is considerably higher (see Tab. 1). In contrast,
including the supercapacitors’ leakage profile can indeed improve
the estimation accuracy significantly. At a discharge current of
𝐼𝐶 = 200𝜇𝐴, the estimation error for the existing and the enhanced
exponential model stays below 2% for both capacitors. However,
as anticipated from the results in Fig. 5, the existing model fails
at other discharge currents, while the exponential model remains
accurate with errors ranging from 0.8 to 5.5% and 0.43 to 4.8% for
the Kemet FT and Eaton KR supercapacitor, respectively. Further-
more, the enhanced linear model proves to be an adequate fit for
the Eaton KR supercapacitor (see Fig. 6(b)), as the transient part of
the leakage remains minimal and modelling the constant leakage
is sufficient. For the Kemet FT, on the contrary, the transient leak-
age is more pronounced and hence the linear model leads to an
overestimation of the lifetime.
Lifetime of sensor nodes.We finally compare the different life-
time estimation approaches against the measured lifetime of the
two off-the-shelf sensor nodes used in Fig. 1, when powered by the
different supercapacitors. To determine the lifetime, we first observe
the load current of both sensor nodes using a power profiler [16].
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Figure 6: Comparison of different lifetime estimation ap-
proaches for the Kemet FT (a) and Eaton KR (b) supercapacitor
depending on different constant discharge currents. The naïve
approach over- or underestimates the lifetime consistently, while
the error of the lifetime estimation based on the enhanced expo-
nential model stays below 6.9% in all experiments.

Although the sensor nodes exhibit periodic current spikes (e.g., dur-
ing BLE transmissions) of up to 8.5𝑚𝐴 (nRF52) and 2.5𝑚𝐴 (MSP430),
we perform the lifetime estimation based on the average current
consumption. As the current consumption depends on the oper-
ating voltage, we obtain the currents at 𝑉𝑛𝑜𝑑𝑒 = {3.3, 3, 2.5, 2}𝑉
and use their mean value amounting to 𝐼𝐶,𝑛𝑅𝐹52 = 15.2𝜇𝐴 and
𝐼𝐶,𝑀𝑆𝑃430 = 170𝜇𝐴, respectively. Fig. 7 shows that the introduced
lifetime estimation process based on the enhanced leakage model
gives accurate results despite these simplifications. Across all five
supercapacitors, the absolute estimation error remains below 3.3%
for the nRF52 and below 3.4% for the MSP430 using the exponential
model, while the naïve approach would overestimate the lifetime by
up to 27.1 and 36.8%, respectively. Note that the estimation based on
the linear model is only feasible for certain supercapacitor models
and works best for the Eaton KR and Eaton PM supercapacitors with
estimation errors of up to 0.3 and 3.3% for the nRF52-based node
and up to 0.3 and 3.5% for the MSP430-based node.

5 DISCUSSION & FUTUREWORK
In this paper, we have shown that considering the real capacitance of
the supercapacitor as well as its leakage behavior is crucial to obtain
an accurate lifetime estimation of a supercapacitor-powered sensor
node and propose a model that requires only three measurements
in total (i.e., one to determine the capacitance and two to derive
the leakage model). In the following, we discuss the limitations of
our approach and give an outlook on future research directions.
Generalization for different voltages and architectures. This
work considers sensor nodes that are powered directly by the su-
percapacitor (i.e., converterless). Hence, the leakage characteristics
between 3.3 and 1.8V have been investigated, as this operating
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Figure 7: Comparison of lifetime estimation approaches for
two sensor nodes based on nRF52 (a) andMSP430 (b) powered
by five different supercapacitors. The enhanced linear model
leads to an overestimation of the lifetime for supercapacitors with
large transient leakage, but is an adequate fit for the Eaton KR and
Eaton PM supercapacitor.

range is common for popular microcontrollers. Since supercapac-
itors also offer higher rated voltages (e.g., 5.5V), one can charge
them further to make use of the entire capacity and employ a linear
converter to provide the required supply voltage. To support such
an architecture, it is necessary to include the converter efficiency
in the lifetime estimation process and to consider the voltage de-
pendency of the leakage currents in the model. Note that we have
confirmed the linearity of the model parameters (𝑎, 𝑏, and 𝑐) also
for different charging voltages and thus aim to derive an overall
model that is applicable to any voltage in future work.
Generalization for (large) load currents.As discussed in Sec. 4.2,
our lifetime estimation approach is based on the average current
consumption of the sensor node.While this has proven to be feasible
for current peaks of several𝑚𝐴 (e.g., up to 8.5𝑚𝐴 for the nRF52), it is
not sufficiently accurate if large load currents are required.We show
this in Fig. 8, which shows the measured and estimated lifetime of
an MSP430-based LoRa node exhibiting current peaks of more than
40𝑚𝐴 during transmission. The error of the lifetime estimation stays
below 7.6% for the Eaton PM supercapacitor only, but is severely
degraded for all the others. This is due to neglecting the equivalent
series resistance (ESR), which introduces considerable drops in
the supercapacitor’s terminal voltage. The ESR values reported in
the supercapacitors’ datasheets (see Tab. 1) roughly correlate with
the observed lifetime estimation errors and their influence will be
investigated in more detail in future work.

Furthermore, using a constant load current for the lifetime es-
timation can be a pitfall for certain sensor nodes. As pointed out
by Ahn et al. [2], MCUs based on digitally-controlled oscillators
show a large variation in the power consumption depending on
their supply voltage. As supercapacitor-powered sensor nodes have
to deal with large variations in operating voltage (e.g., due to the

Ke
met

 FT
Ke

met
 FM

Ma
xc

ap
Ea

to
n K

R
Ea

to
n P

M

0

200

400

600

Lif
et

im
e 

(s
)

MSP430 + LoRa

Measured Enhanced exponential model

Figure 8: Comparison of themeasured and estimated lifetime
for an MSP430-based LoRa node. Due the ESR and its effect
at large load currents, the accuracy of the lifetime estimation is
severely degraded.

depletion of the stored energy), it might be necessary to model this
dependency to achieve an accurate lifetime estimation and is an
interesting direction for future work.
Considering different charging currents. This work focuses
on the impact of the discharge characteristics of supercapacitors
on the sensor node’s lifetime estimation. However, previous work
has shown that the amount of charging current (and charging time,
respectively) also affects the available energy in the supercapaci-
tor [3]. For large charging currents (or short charging times), the
amount of energy at a given terminal voltage is reduced due to
charge redistribution (i.e., 𝐸 ≠ 𝐶𝑈 2

2 ). As the currents provided by
small energy harvesters (e.g., solar panels) are typically low and
charging times are often rather long, we consider this effect to be
negligible in our experiments, but will investigate its impact in
future work w.r.t. common energy harvesting scenarios.
Modelling after deployment and during run-time. In the fu-
ture, we aim to implement our work in a way that allows on-device
modelling of the supercapacitor-powered node. This way, an ac-
curate lifetime estimation is possible after deployment and during
run-time, so to enable reliable energy-aware scheduling. We deem
this a necessary step for accurate estimations, as in our experiments
we could observe differences in the capacitance and leakage behav-
ior even for the same type of supercapacitor. We will investigate
the variability across the same model of supercapacitor (e.g., due
to manufacturing differences) in future work. To realize on-device
modelling after deployement, simplifications of the leakage model
and estimation process as well as measurement procedures that
can be realized on constrained embedded devices will be explored.

6 CONCLUSION
The deployment of supercapacitors enables perpetual operation of
battery-free sensor nodes despite varying energy income. However,
as shown experimentally in this paper, supercapacitors have large
tolerances and exhibit considerable leakage currents. Modelling
of these characteristics is crucial to perform an accurate lifetime
estimation, so to ensure that the sensor nodes can operate in periods
where no energy is available. We thus propose a lifetime estimation
approach including a leakage model that can be derived with little
measurement efforts and evaluate its accuracy experimentally using
five different supercapacitor models.



Leakage-Aware Lifetime Estimation of Supercapacitor-Powered Sensor Nodes ENSsys ’22, November 6, 2022, Boston, MA, USA

REFERENCES
[1] M. Afanasov et al. 2020. Battery-less Zero-maintenance Embedded Sensing at the

Mithræum of Circus Maximus. Proceedings of the 18th Conference on Embedded
Networked Sensor Systems (SenSys ’20).

[2] S. Ahmed et al. 2020. Demystifying Energy ConsumptionDynamics in Transiently
Powered Computers. ACM Transactions on Embedded Computing Systems (2020).

[3] J. Ahn et al. 2022. State-of-Charge Estimation of Supercapacitors in Transiently-
Powered Sensor Nodes. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2022).

[4] Bernhard Buchli, Felix Sutton, Jan Beutel, and Lothar Thiele. 2014. Dynamic
Power Management for Long-Term Energy Neutral Operation of Solar Energy
Harvesting Systems. In Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems (SenSys ’14).

[5] Eaton. 2019. Datasheet Eaton PM. [Online] https://www.mouser.at/datasheet/
2/87/eaton-pm-supercapacitors-cylindrical-pack-data-she-1608781.pdf – Last
access: 2022-09-14.

[6] Eaton. 2020. Datasheet Eaton KR. [Online] https://www.mouser.at/datasheet/2/
87/eaton_kr_supercapacitors_coin_cells_data_sheet-1608770.pdf – Last access:
2022-09-14.

[7] Roberto Faranda. 2010. A new parameters identification procedure for simplified
double layer capacitor two-branch model. Electric Power Systems Research 80 (04
2010), 363–371.

[8] F. Fraternali et al. 2018. Pible: Battery-Free Mote for Perpetual Indoor BLE
Applications. Proceedings of the 5th Conference on Systems for Built Environments.

[9] Kang Eun Jeon, James She, Jason Xue, Sang-Ha Kim, and Soochang Park. 2019.
luXbeacon: A Batteryless Beacon for Green IoT: Design, Modeling, and Field
Tests. IEEE Internet of Things Journal (2019).

[10] Kemet. 2020. Datasheet Kemet FM. [Online] https://www.mouser.at/datasheet/
2/212/1/KEM_S6012_FM-1103835.pdf – Last access: 2022-09-14.

[11] Kemet. 2020. Datasheet Kemet FT. [Online] https://www.mouser.at/datasheet/
2/212/1/KEM_S6014_FT-1103848.pdf – Last access: 2022-09-14.

[12] Gael Loubet, Alexandru Takacs, and Daniela Dragomirescu. 2019. Implementation
of a Battery-Free Wireless Sensor for Cyber-Physical Systems Dedicated to

Structural Health Monitoring Applications. IEEE Access (2019).
[13] Pierre Mars. 2012. Coupling a supercapacitor with a small energy-harvesting

source. EDN 57 (06 2012).
[14] Geoff Merrett, Alex Weddell, Adam Lewis, N.R Harris, Bashir Al-Hashimi, and

Neil White. 2008. An Empirical Energy Model for Supercapacitor Powered
Wireless Sensor Nodes. Proceedings of 17th International Conference on Compute,
Communications, and Networks (ICCCN ’08), 1 – 6.

[15] Geoff V. Merrett and Alex S. Weddell. 2012. Supercapacitor leakage in energy-
harvesting sensor nodes: Fact or fiction? Proceedings of the 9th International
Conference on Networked Sensing Systems (INSS ’12).

[16] ST Mictroelectronics. 2018. STM32 Nucleo expansion board for power consump-
tion measurement.

[17] Ohmite. 2019. Datasheet Maxcap. [Online] https://www.mouser.at/datasheet/2/
303/cap_max-1669785.pdf – Last access: 2022-07-20.

[18] Pankaj Saha, Satadru Dey, and Munmun Khanra. 2019. Accurate estimation
of state-of-charge of supercapacitor under uncertain leakage and open circuit
voltage map. Journal of Power Sources 434 (2019), 226696.

[19] U. Senkans et al. 2017. Applications of Energy-Driven Computing: A Transiently-
Powered Wireless Cycle Computer. Proceedings of the 5th International Workshop
on Energy Harvesting and Energy-Neutral Sensing Systems (ENSsys ’17).

[20] J. De Winkel et al. 2020. Battery-Free Game Boy. IMWUT ’20: Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies.

[21] Fan Wu, Jean-Michel Redouté, and Mehmet Rasit Yuce. 2018. WE-Safe: A Self-
Powered Wearable IoT Sensor Network for Safety Applications Based on LoRa.
IEEE Access 6 (2018), 40846–40853.

[22] Ying Zhang et al. 2011. Modeling and characterization of supercapacitors for
wireless sensor network applications. Journal of Power Sources (2011).

[23] T. Zhu et al. 2009. Leakage-Aware Energy Synchronization for Wireless Sensor
Networks. Proceedings of the 7th International Conference on Mobile Systems,
Applications, and Services (MobiSys ’09).

[24] Ting Zhu, Abedelaziz Mohaisen, Yi Ping, and Don Towsley. 2012. DEOS: Dy-
namic energy-oriented scheduling for sustainable wireless sensor networks. In
Proceedings of IEEE INFOCOM.

https://www.mouser.at/datasheet/2/87/eaton-pm-supercapacitors-cylindrical-pack-data-she-1608781.pdf
https://www.mouser.at/datasheet/2/87/eaton-pm-supercapacitors-cylindrical-pack-data-she-1608781.pdf
https://www.mouser.at/datasheet/2/87/eaton_kr_supercapacitors_coin_cells_data_sheet-1608770.pdf
https://www.mouser.at/datasheet/2/87/eaton_kr_supercapacitors_coin_cells_data_sheet-1608770.pdf
https://www.mouser.at/datasheet/2/212/1/KEM_S6012_FM-1103835.pdf
https://www.mouser.at/datasheet/2/212/1/KEM_S6012_FM-1103835.pdf
https://www.mouser.at/datasheet/2/212/1/KEM_S6014_FT-1103848.pdf
https://www.mouser.at/datasheet/2/212/1/KEM_S6014_FT-1103848.pdf
https://www.mouser.at/datasheet/2/303/cap_max-1669785.pdf
https://www.mouser.at/datasheet/2/303/cap_max-1669785.pdf

	Abstract
	1 Introduction
	2 The Need of Revisiting theLifetime Estimation Process
	3 An Enhanced Leakage Model
	4 Evaluation
	4.1 Enhanced Leakage Model
	4.2 Lifetime Estimation

	5 Discussion & Future Work
	6 Conclusion
	References

