
Simba: A Unified Framework to Explore and Facilitate the
Design of Battery-Free Systems

Hannah Brunner
hannah.brunner@tugraz.at

Graz University of Technology
Graz, Austria

Jasper deWinkel
jasper.dewinkel@jdew.nl

Delft University of Technology
Delft, Netherlands

CarloAlberto Boano
cboano@tugraz.at

Graz University of Technology
Graz, Austria

PrzemysławPawełczak
p.pawelczak@tudelft.nl

Delft University of Technology
Delft, Netherlands

KayRömer
roemer@tugraz.at

Graz University of Technology
Graz, Austria

ABSTRACT
Battery-free sensing devices have gained growing popularity as
they can operate relying solely on harvested energy and environ-
mentally friendly capacitors. However, despite the increasing num-
ber of battery-free solutions, their design remains a difficult task.
In fact, the limited energy storage capacity and the resulting cou-
pling between energy supply and demand introduce new design
trade-offs that cannot be explored using conventional tools that
consider a constant power supply. To enable fast design space ex-
ploration and facilitate the development of battery-free systems, we
introduce Simba, an open-source simulation framework that allows
to investigate in detail the complex interplay between various de-
vice components. We demonstrate the benefits of Simba in two case
studies, evaluated experimentally, targeting real-world, state-of-the-
art battery-free devices. First, we illustrate how Simba can explore
the dependencies between different component configurations and
assess their impact on the overall system performance. Among
others, we show that changing the storage capacity or slightly mod-
ifying the load behavior can improve data throughput by a factor
of up to 5.1𝑥 and 9.7𝑥 , respectively. Second, we present how Simba
allows to automatically select key parameters that optimize the
operations of a battery-free system (e.g., its checkpointing mecha-
nism), and showcase how Simba enables performance evaluations
based on real-world energy harvesting traces.

CCS CONCEPTS
• Computer systems organization→ Embedded systems.

KEYWORDS
Battery-Free Systems, Sensor Nodes, Simulator

1 INTRODUCTION
The development of battery-free sensor nodes is an attempt to cope
with the extensive scale of the Internet of Things (IoT). A projected
number of tens of billions of connected devices [52] requires long-
lasting, maintenance-free operation, as replacing and disposing
batteries at this volume is impractical, expensive, and not sustain-
able. Battery-free devices are equipped with energy harvesters to
extract energy from ambient sources (such as light, temperature,
or vibrations) and employ capacitors as energy storage in order to
provide energy autonomy and independence from bulky batteries.

This freedom enables the development of devices with tiny form
factors that can be deployed in harsh environments and operate
without maintenance for years. Given these advantages, a large
number of battery-free IoT systems have been developed, includ-
ing radio frequency identification tags [45], Bluetooth Low Energy
beacons [18, 22, 33, 46], sensing platforms [1, 14, 16, 48, 58], a bat-
teryless handheld gaming console [13], and a wireless camera [23].
Designing battery-free systems is complex. Despite the success
of these platforms and the insights gained from their development,
the design of battery-free devices remains a rather complex task.
Large design space.All the mentioned systems differ largely in terms
of harvestable energy, energy storage capacity, and power demand
of the sensor element. For example, depending on the harvesting
source, the incoming power can be in the order of hundreds of
mW [58] down to tens of µW [49], with large differences in tem-
poral availability. Consequently, the employed storage capacitors
in battery-free devices span from tiny ceramic capacitors to large
supercapacitors, while the devices’ operations range from sporadic,
intermittent sensing [1] to powerful radio transmissions [23] and
resource-intensive machine learning [6]. In light of this heterogene-
ity and the diversity across IoT applications in general, developers
are confronted with a large design space. Thus, finding a solution
that best meets the application requirements can be challenging.
Energy dynamics increase complexity. Additionally, unique chal-
lenges emerge from the dynamics of harvested energy that are not
present when dealing with a constant power supply [50]. The per-
formance and power consumption of a device are tightly coupled
with the energy income and vice versa [27]. Furthermore, if energy
is scarce, devices might have to deal with power failures and operate
intermittently, i.e., they turn on and off as energy is available and
apply state-retention mechanisms – so-called checkpointing – to
ensure forward progress [50]. These circumstances make the design
and evaluation of battery-free systems a complex and tedious task,
as common development tools typically assume a constant power
supply and thus cannot capture energy-driven operations.
Existing tools and models. In order to facilitate development, a
number of tools that specifically target battery-free systems have
been introduced, including testbeds [21], debuggers [12, 15], and en-
ergy emulators [27]. While these are valuable to validate and debug
specific designs, they require access to real hardware and have lim-
ited capabilities w.r.t. design space exploration. To better understand

IPSN ’24, May 13–16, 2024, Hong Kong, China H. Brunner et. al

battery-free system designs, other works have focused on modeling
and simulating different aspects of battery-free systems [20, 51].
The community has proposed models of specific device components
(e.g., the energy storage [3, 7, 9], the energy source [35, 36, 53, 55],
or the processing unit [2]), as well as models of the state-retention
process [43]. Although insightful, the modelling of individual com-
ponents does not allow to assess the non-trivial, energy-driven
dependencies within a battery-free system. For example, it has
been shown that the choice of the optimal state-retention mech-
anism depends on the energy harvesting source [4] or that small
changes in the energy storage capacity can significantly improve
the device performance [59]. While previous works point out the
necessity to model the entire system, these works consider only
certain architectures [4, 59] or target specific platforms [20].
The need for a unified simulation framework. We thus argue
that there is a need for a unified simulation framework that com-
bines a variety of device component models and energy harvesting
datasets within a single tool. Such a unified framework would allow
to investigate the complex interactions between different hard-
ware components, gain a better understanding of dependencies in
battery-free systems, and inform future design decisions. It would
further accelerate development, enable evaluation and comparison
of designs in a fair and repeatable manner, as well as foster research
on battery-free systems without the need for specific hardware.
Our contributions. In this work, we present Simba, a simulation
framework for battery-free devices. Simba is built in a modular
and extensible manner, which allows the integration of various
component models and datasets in a single simulation core. We
demonstrate its abilities in two case studies, targeting two different
state-of-the-art battery-free devices. Specifically, we use Simba to
explore the dependencies between the different parts of Botoks [14],
a simple, battery-free sensing device, and show that small changes
in each component can have a significant impact on the overall
performance. For example, changing the storage capacity or slightly
modifying the load behavior can improve data throughput by a
factor of up to 5.2𝑥 and 9.7𝑥 , respectively, while adjustment in the
device’s voltage conversion circuit largely affects availability in
challenging energy harvesting scenarios. Furthermore, we use a
(comparably powerful) handheld console (the Battery-free Game
Boy [13]) to show how Simba can facilitate the design process by
enabling an automatic parameter selection to optimize the device’s
checkpoint mechanism. To support our findings, we evaluate Simba
experimentally and complement the case studies’ simulation results
with measurement data. We further make Simba available open-
source1 for the community to encourage and facilitate research on
battery-free systems without the need for specific hardware.

2 COMPONENTS OF A BATTERY-FREE
SENSOR NODE AND THEIR DEPENDENCIES

A typical architecture of a battery-free device is depicted in Fig. 1
and consists of an energy harvester, an energy storage (i.e., capaci-
tor), a load, and (optional) voltage converters.

1The simulation framework, its tools, examples, and documentation, as well as artifacts
data are available at: https://github.com/LENS-TUGraz/simba.

Converter(s)
LoadHarvester

Capacitor

𝐼𝐻 , 𝑉𝐻, 𝜂𝐻 𝑉𝐿 , 𝐼𝐿 , 𝜂𝐿

𝑉𝑐𝑎𝑝, 𝐼𝑐𝑎𝑝
𝑉𝑐𝑎𝑝

BuckBoost

Figure 1: Architecture of a typical battery-free sensor node.

The energy harvester converts ambient energy of different sources
(e.g., light, movement, or temperature gradients) into electrical en-
ergy and typically provides power in the range of hundreds of µW
to tens of mW, depending on size, energy source, and environmen-
tal conditions. Note that the level of the harvester’s voltage 𝑉𝐻
can vary vastly and might necessitate voltage conversion. Further-
more, many harvesters exhibit distinct, non-linear IV characteris-
tics, which means that the harvesting current 𝐼𝐻 (along with the
output power) depends on the applied voltage𝑉𝐻 . Since the instan-
taneous harvested power is often not sufficient to directly drive
a typical sensor node, a capacitor is employed as energy storage
between the harvester and the load.

The capacitor buffers incoming energy and thus allows the load
to operate even if its power demand exceeds the momentarily har-
vested power. Capacitors in existing battery-free systems range
from tiny ceramic capacitors (e.g., 10 𝜇𝐹) to large supercapacitors
(e.g., 1 − 10 𝐹). The choice of storage capacitance is mostly dictated
by the application requirements, the harvesting potential, as well
as space constraints. Given their size and the amount of incom-
ing energy, capacitors are either used to buffer enough energy to
constantly supply the load, even in periods of energy absence, or
to collect small amounts of energy to operate the load in bursts
(i.e., intermittent operation). In the latter case, the energy storage
capacity highly affects the behavior of the device: larger storage
allows longer sustained operation, but yields increased charging
times; devices with smaller storage are more reactive, but can only
operate for short periods. For capacitors, the energy storage ca-
pacity depends on its capacitance and the used voltage range (i.e.,
𝐸cap = 𝐶

2 (𝑉
2
cap, max −𝑉 2

cap, min)), where the voltage range is largely
depending on the employed converter architecture.

Battery-free devices employ either a converter-less or converter-
based architecture. In converter-less systems, the harvester, capaci-
tor, and load are directly coupled. While these systems avoid con-
verter losses, are very cheap, and can be built in tiny form factors,
they are inflexible and exhibit many dependencies that can cause
inefficiencies. More specifically, all components share the same op-
erating point (𝑉𝐻 = 𝑉cap = 𝑉𝐿). Thus, the harvester’s output voltage
must be compatible with the load’s voltage specification, as the load
can only operate within certain voltage limits (𝑉𝐿 ≈ 1.8 . . . 3.3𝑉 for
typical MCUs). Furthermore, the energy harvesting performance
(driven by 𝑉𝐻) is directly dependent on the capacitor’s state-of-
charge (∝ 𝑉cap) and consequently on the load’s power consumption
(𝐼𝐿). In a converter-based system, instead, one or more voltage con-
verters are used to decouple the operating points of the harvester,
capacitor, and load. For example, a boost converter can be placed
between the harvester and the capacitor such that the harvester
can be operated at its optimal voltage (i.e., the maximum power
point [21]) to maximize the power output. As a result, the harvester

https://github.com/LENS-TUGraz/simba

A Unified Framework For Battery-Free Systems IPSN ’24, May 13–16, 2024, Hong Kong, China

must not match the load’s specifications, as the capacitor can be
charged to any voltage level (𝑉cap > 𝑉𝐻). Additionally, a buck con-
verter can be used to separate the capacitor from the load. This
way, the capacitor can be charged higher than the load’s maximum
operating voltage to increase the storage capacity utilization. Fur-
thermore, the buck converter supplies the load with a constant
(minimal) operating voltage, which is typically more efficient. Note
that converter-based architectures are often more expensive and
also complex tomodel, as (non-linear) converter efficiencies (𝜂𝐻 , 𝜂𝐿)
and quiescent currents have to be considered.

Finally, the load is typically a sensor node consisting of a pro-
cessing unit (MCU), sensors, and a wireless radio. The load ap-
plies energy-driven computing [50], i.e., it acts according to energy
availability, and typically operates either energy-neutral or inter-
mittently. In energy-neutral operation, the load adapts its power
consumption (e.g., duty cycle) to balance energy demand and sup-
ply, avoiding power failures and ensuring continuous operation. If
energy is very scarce, the load must accept power failures and op-
erate intermittently but might employ state-retention mechanisms
(e.g., checkpointing) to guarantee the application’s correct forward
progress. In either configuration, the load’s performance highly
depends on the energy budget. For example, the load might experi-
ence power failures (if𝑉𝐿 <𝑉𝐿,𝑚𝑖𝑛) or it may dynamically adjust its
current consumption 𝐼𝐿 depending on the capacitor voltage 𝑉𝑐𝑎𝑝 .

3 THE SIMBA FRAMEWORK
In this section, we introduce the Simba simulation framework and
explain how it can capture all dependencies while keeping a generic
and modular structure.

3.1 Architecture and Design Rationale
Simba’s overall architecture is highly modular and hardware-agn-
ostic (as depicted in Fig. 2) and allows to study the performance of
a battery-free sensor node as well as the interactions between its
device components in a repeatable and easy way.

Since we target a typical battery-free sensor node as described in
Sec. 2, the sensor nodemodel consists of four modules: a capacitor,
a harvester, a converter, and a load. For each module, the user
can choose from a set of module implementations. The module
implementations describe the (real-world) hardware components
and can be extremely versatile (see Sec. 3.4). For example, they
might contain simple representations of ideal components, complex
analytical models, or experimental data (e.g., power traces from
energy harvesting devices or microcontrollers). For each compo-
nent, module factories create a single module instance based on
a module configuration, which selects the desired module imple-
mentation and configures its parameters accordingly. The module
instances use pre-defined interfaces to interact with the simulation
core (see Sec. 3.2) and store logging information (e.g., component
state, voltage level, etc.).

In order to explore design trade-offs or to compare the perfor-
mance of different components, a trade-off exploration tool can
readily replace or re-configure the individual module instances and
retrieve performance metrics from their logs. For example, in Sec. 5

we use this tool to obtain checkpointing-related performance met-
rics as a function of various capacitor and converter configurations
and derive optimal device settings from these results.

3.2 Simulation Principle
Simba’s simulation core implements a carefully designed discrete-
time simulation of the sensor node’s behavior that considers the
complete set of dependencies described in Sec. 2 (and in Fig. 1).
Basic system model. In battery-free systems, the capacitor’s state
of charge (∝ 𝑉cap) is often extremely dynamic, as the incoming
current and power consumption can change rapidly and the energy
storage capacity is comparably small. Since 𝑉cap affects both the
harvester’s and load’s efficiency, the system must be simulated in a
closed-loop and with small time granularity.

The simulation procedure is thus centered around the capacitor’s
energy state, where its current-voltage relation is defined as

𝑉cap (𝑡0 +𝑇) =
1
𝐶

∫ 𝑡0+𝑇

𝑡0
(𝐼cap (𝑡) − 𝐼leak (𝑡)) 𝑑𝑡 +𝑉cap (𝑡0), (1)

where 𝐼cap (𝑡) is the instantaneous current flowing into or out of the
capacitor and is assumed to be constant within 𝑇 , while 𝐼leak (𝑡) de-
scribes the internal capacitor losses (e.g., due to self-discharge). The
current flow 𝐼cap (𝑡) is the difference between the incoming current
𝐼cap,in and the outgoing current 𝐼cap,out as well as the converter’s
quiescent currents 𝐼quiescent and is given by

𝐼cap (𝑡) = 𝐼cap,in (𝑡) − 𝐼cap,out (𝑡) − 𝐼quiescent (𝑡) . (2)
Note that the harvester and the capacitor might be decoupled

and operate at different voltage levels. Hence, the current flowing
into the capacitor 𝐼𝑐𝑎𝑝,𝑖𝑛 is not equal to the harvesting current 𝐼𝐻 .
Accounting for the different operating points and the converter’s
boost efficiency 𝜂𝐻 , 𝐼𝑐𝑎𝑝,𝑖𝑛 can be calculated as

𝐼𝑐𝑎𝑝,𝑖𝑛 (𝑡) = 𝐼𝐻 (𝑡)𝜂𝐻 (𝑡)
𝑉𝐻 (𝑡)
𝑉𝑐𝑎𝑝 (𝑡)

. (3)

The same principle applies to the buck converter stage between
capacitor and load, yielding 𝐼𝑐𝑎𝑝,𝑜𝑢𝑡 as

𝐼𝑐𝑎𝑝,𝑜𝑢𝑡 (𝑡) = 𝐼𝐿 (𝑡)
1

𝜂𝐿 (𝑡)
𝑉𝐿 (𝑡)
𝑉𝑐𝑎𝑝 (𝑡)

. (4)

𝐼cap,in = 𝑓 (𝐼𝐻 ,𝑉𝐻 ,𝑉cap, 𝜂𝐻) and 𝐼cap,out = 𝑓 (𝐼𝐿,𝑉𝐿,𝑉cap, 𝜂𝐿) are
strongly affected by the choice of device components and must be
calculated carefully while considering all dependencies described
in Sec. 2. For example, the harvesting current 𝐼𝐻 does not only
depend on the harvester (and its environmental conditions), but is
strongly affected by the applied voltage 𝑉𝐻 , which, in turn, is set
by the converter and depending on the capacitor’s voltage 𝑉cap.
Module interfaces and simulation core. Simba’s extendable
plug-and-play architecture defines consistent interfaces between
different modules of the same type. The simulation core of Simba
uses these interfaces to interact with each module and performs
a discrete-time simulation as sketched in Alg. 1. After each time
step𝑇 , the simulation core retrieves the modules’ states to compute
𝐼cap (according to (2), (3), and (4)) and instructs the capacitor,
harvester, converter, and load modules to update their status
accordingly. Note that the capacitor module itself is responsible
for updating its state of charge according to (1), as this allows

IPSN ’24, May 13–16, 2024, Hong Kong, China H. Brunner et. al

…

Simulation Core

SolarPanel

TEG

IVCurve

Artificial
(constant, sine…)

Battery-free sensor node

Harvester ConverterCapacitor Load

…

BQ25570

BuckBoost

None
(converter-less)

…
ConstantLoad

TaskLoad

JITLoad
(Checkpointing load)

Capacitor
config.

…

Supercap

TantulumCap

IdealCapacitor

VCap
Update
f(Icap, dt)

VOC

IH(VH,ηH)

VH,VL(VCap)
ηL,ηH(VCap,IL)

IL(VCap,VL)
Update
f(dt, Vcap, VL)

Harvester
config.

Converter
config.

Load
config.

Module configurations select and con-
figure desired module implementation.

Module implementations contain a
model (or dataset) of certain device
components. They must comply with
pre-defined module interfaces and
may provide custom parameters for
configuration.

Module instances provide
pre-defined interfaces to simulator,
store component status,
and collect logging data.

Simulator instance interacts with
module instances to perform simulation.

Module factories () create one
module instance of each component.

State-of-chargeIncoming power Hysteresis state

Update
f(dt)

Application state

Update
f(VCap)

Trade-off exploration tool

Experiment n

Experiment 3

Experiment 2

Experiment 1

Configuration

Results

specifies
• Base configuration
• Design parameters
• Performance metrics
retrieves
• Simulation results

User

…

Figure 2: The modular and extensible architecture of Simba allows to simulate any combination of device components (i.e.,
capacitor, harvester, converter, and load). A trade-off exploration tool sets up simulator instances according to the user-
defined design space, runs the simulations concurrently, and retrieves the requested performancemetrics for each configuration.

a simulator-agnostic implementation of the capacitor’s leakage
behavior (i.e., 𝐼leak (𝑉cap, 𝑡)).

Algorithm 1 Simba’s simulation principle.
Reset modules to start conditions, 𝑡 = 0
while 𝑡 < 𝑡sim,max do

// Retrieve capacitor’s state-of charge

𝑉cap ← 𝑓 (Capacitor)

// Retrieve harvesting-related values

𝑉𝐻 ← 𝑓 (Converter,𝑉cap)
𝐼𝐻 ← 𝑓 (Harvester, 𝑡,𝑉𝐻)
𝜂𝐻 ← 𝑓 (Converter,𝑉𝐻 , 𝐼𝐻)

// Retrieve load-related values

𝑉𝐿 ← 𝑓 (Converter,𝑉cap)
𝐼𝐿 ← 𝑓 (Load,𝑉𝐿,𝑉cap)
𝜂𝐿 ← 𝑓 (Converter,𝑉cap, 𝐼𝐿)
𝐼quiescent ← 𝑓 (Converter,𝑉cap)

// Compute current flow from/into capacitor

𝐼cap = 𝐼𝐻 · 𝑉𝐻
𝑉cap
· 𝜂𝐻 − 𝐼𝐿 · 𝑉𝐿

𝑉cap
· 1
𝜂𝐿
− 𝐼quiescent

// Update modules’ states

Capacitor ← 𝑓 (Capacitor, 𝐼cap,𝑇)
Converter ← 𝑓 (Converter,𝑉cap)
Load ← 𝑓 (Load,𝑉cap,𝑉𝐿,𝑇)
Harvester ← 𝑓 (Harvester,𝑇)

// Compute timestep until next update

𝑇 ← 𝑓 (Capacitor, Converter, Load, Harvester)
𝑡 = 𝑡 +max(𝑇min,min(𝑇,𝑇max))

end while

3.3 Implementation Details: Simulator
Simba is implemented using Python, which provides flexibility, en-
ables quick development of new modules, and offers established
support for data processing and visualization.

Timestep computation. The simulation is based on discrete (in-
teger) time intervals, where the minimum timestep 𝑇𝑚𝑖𝑛 is config-
urable (𝑇min,default = 1 𝜇𝑠). Furthermore, the timestep 𝑇 is variable
and computed during run-time to increase simulation speed. More
specifically, it is set to the time of the next update within any of
the submodules. For example, the load might change its power
consumption if its application schedules a different task, while the
harvester might change its current output due to environmental
changes. Additionally, users can specify a maximum timestep 𝑇max
to trade simulation speed for accuracy.
Logging. Simba adopts a two-layered logging mechanism. The
simulation core can be instructed to log generic information (i.e.,
any values available in Alg. 1), allowing quick comparison of sys-
tems despite different module implementations. Furthermore, each
module can log fine-grained, component-specific data and derive
statistics that are made available to the trade-off-exploration tool.
Trade-off exploration tool. Simba provides a trade-off explo-
ration tool that allows to automatically run simulations in a user-
defined design space and retrieves the desired performance metrics
from the modules’ logs. More specifically, the users can specify a
base configuration (of each module) and an arbitrary number of
design parameters as well as performance metrics they want to
explore. Note that the parameters and metrics are not restricted
to a single module: iterating over any component/parameter com-
bination is possible. The trade-off exploration tool permutes the
parameters, sets up the simulation core accordingly, and runs the
simulations concurrently (i.e., using multiprocessing) to speed up
the exploration process.

The obtained results can then be used to optimize the system
w.r.t. a figure of merit. In battery-free systems, optimization objec-
tives (e.g., overall efficiency, availability, data throughput etc.) and
constraints (e.g., physical size, maximum energy income etc.) are
extremely application-specific and often require multi-objective
decision-making. This is outside the scope of this work, but we give
a simple example of how to use the trade-off exploration tool to
optimize a system’s parameters in Sec. 5.

A Unified Framework For Battery-Free Systems IPSN ’24, May 13–16, 2024, Hong Kong, China

3.4 Implementation Details: Modules
Simba provides several module implementations for each device
component. These include simplistic models and generic represen-
tations of typical components used in battery-free systems (i.e., to
foster research and design space exploration), but also datasets and
models from real-world components (i.e., to facilitate the design
and validation of battery-free sensor nodes without access to real
hardware). The provided modules (see Fig. 2) are not exhaustive but
should serve as a starting point and will be extended with additional
modules of state-of-the-art components in the future.
Harvesters. The simplest harvester module implementation pro-
vides an arbitrary, artificial signal (e.g., constant current, sine wave,
etc.) with adjustable amplitude and frequency: it is intended for
short-term investigations, benchmarking, or to derive principal
trends. For long-term evaluation, we implement models of different
energy harvesters based on real-world harvesting traces. These in-
clude a datasheet-based photovoltaic (PV) cell model [55] integrated
with year-long datasets of solar irradiation for both indoor [25] and
outdoor [47] use cases, as well as current traces of thermoelectric
generators (TEG) in residential settings [40]. Finally, Simba includes
a module for pre-recorded IV curves/surfaces that can be obtained
using existing tools (e.g., Ekho [27] or Shepherd [21]) or common
source measurement units (SMU). For the latter, we provide scripts
for two different SMUs to automatically acquire and process the IV
curves of energy harvesters.
Capacitors. We implement capacitor modules for ideal capac-
itors (𝐼leak = 0) and tantalum capacitors. In the latter, we model
the leakage as a function of the capacitance, rated voltage, and
instantaneous voltage according to the manufacturer’s description
of the AVX TAJ series [5, 59].2

Converters. Simba provides a converter module that resembles
a converter-less architecture and modules containing generic mod-
els of a buck-, boost-, and buck-boost configuration, where in-
put/output voltages and the corresponding conversion efficiencies
can be configured arbitrarily. For our case studies and experimental
evaluation, we further build models of more complex, real-world
converter structures (including a load switch with hysteresis and
the popular BQ25570 power management IC [31]). They are de-
scribed in more detail in Sec. 4 and Sec. 5, respectively.
Loads.We develop two loadmodules that can be configured to ref-
lect the power consumption of many (battery-free) IoT applications.

The TaskLoad implements a simple round-robin scheduler that
executes user-specified tasks of a certain length and current con-
sumption. To enable quick modeling of heterogeneous hardware
platforms, the current consumption of each task accounts for the
(average) power demand of both MCU and peripherals. However,
developers may also implement more fine-grained modules to inves-
tigate other load-specific properties. To simplify the load modeling
process, we provide a tool based on the popular nRF PPK2 power
profiler that directly derives a load’s task configuration from corre-
lating current measurements and GPIO traces (i.e., given that the
load under test indicates each task by toggling a GPIO pin). We

2Simba’s interfaces also allow the integration of supercapacitor models, which are
typically more complex [3, 7] but very valuable for battery-free operation. We aim to
tackle the integration of such models in future work.

show how to use the TaskLoad to represent a typical sensor node
application in our first case study in Sec. 4.

The JITLoadmodels an intermittent load supporting just-in-time
(JIT) checkpointing. This means, that the load enters a state-saving
mode (i.e., it stores a checkpoint) just before power failure, i.e., once
the capacitor voltage reaches a certain lower threshold. Upon restart,
the checkpoint is restored and the normal operation resumes. We
use this load in our second case study and discuss important design
decisions targeting JIT-loads in Sec. 5.

4 CASE STUDY 1: USING SIMBA FOR DESIGN
SPACE EXPLORATION

In this section, we use Simba to explore and discuss the design space
of an existing state-of-the-art battery-free sensor node and validate
Simba experimentally. We show that changes in each single device
component can have a significant impact on the overall system’s per-
formance and that Simba accurately captures these dependencies.

4.1 Used Platform and Experimental Setup
Platform. In this case study we focus on Botoks, an open-source,
batteryless sensor [14] that contains a TI MSP430FR5994 MCU, a
Microsemi ZL70550 ultra-low power radio, a small solar cell, and
a 100 𝜇𝐹 storage capacitor. Botoks is intended to operate intermit-
tently, i.e., it turns on opportunistically once harvested energy is
available and operates until its capacitor is depleted. We consider
Botoks to be a good example of simple, tiny, low-cost, batteryless
‘fire-and-forget’ IoT platforms (such as beacons).
Experimental setup.We use a Botoks platform for the harvesting
circuit (i.e., solar panel and converter), but replicate its load and
capacitor on a bread-board (using an MSP430FR5994 Launchpad,
a custom ZL70550 radio breakout board, and various capacitors).
This allows us to access the MCU’s GPIOs and to quickly try out
different capacitor configurations. To supply Botoks, we either use
a Keysight 2450 source meter (bypassing the solar panel) or create a
repeatable and controlled light source by illuminating Botoks with
a wirelessly-controlled LED bulb [37] placed in a closed lightbox.
For each measurement, we monitor and record the MCU status
(i.e., indicated by its GPIO pins), the load voltage, and the capacitor
voltage for 10 seconds using a Saleae Pro 8 logic analyzer [44].

4.2 Modelling Botoks
Modelling the load. Botoks provides an example application, in
which the device wakes up, performs a measurement, and immedi-
ately sends the result to an (always-on) receiver. It then remains in
reception mode to deplete (i.e., ‘burn’) the remaining energy in the
capacitor as fast as possible to eventually turn off, recharge, and
wake up again. To model this behavior, we use the TaskLoad mod-
ule and define four separate tasks (i.e., INIT, SENSE, SEND, BURN)
with their corresponding lengths and current consumptions.
Modelling the converter. On Botoks, the harvester is directly
connected to the storage capacitor and thus the input stage mod-
eling is trivial (i.e., 𝑉𝐻 = 𝑉𝑐𝑎𝑝 , 𝜂𝐻 = 1). Between capacitor and
load, Botoks uses a MIC841 comparator with hysteresis in combi-
nation with a low-drop-out regulator (LDO). This way, the MCU is
turned on and off at fixed voltage thresholds and always operates

IPSN ’24, May 13–16, 2024, Hong Kong, China H. Brunner et. al

Component Botoks
hardware

Simba
module impl.

Module
parameters

Chosen (default)
parameters

Capacitor 100 µF MLCC IdealCapacitor
Capacitance
Initial voltage

100𝜇𝐹
3.1𝑉

Converter MIC841 comp.+
S1313A22 LDO LDO+Hysteresis

𝑉𝐿
𝑉Low
𝑉High
𝑖quiescent

2𝑉
2.4𝑉
3.1𝑉
3 𝜇𝐴

Load MSP430FR +
ZL70550 radio TaskLoad

List of tasks with length
and current consumption
(Task: 𝑡Task, 𝑖Task)

INIT: 2.3𝑚𝑠, 600 𝜇𝐴
SENSE: 0.75𝑚𝑠, 700 𝜇𝐴
SEND: 7.25𝑚𝑠, 1960 𝜇𝐴
BURN:∞, 3140 𝜇𝐴

Harvester KXOB25-02X8F
solar panel Artificial

Waveform
Amplitude 𝐼𝐻

constant
600 𝜇𝐴

Table 1: Module configuration representing Botoks. The pa-
rameters reflect the device’s non-optimal default configuration.

SENSESENDBURN

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40Time (s)

1
2
3

Vo
lta

ge
 (V

)

Vcap, VH
VL

(a) Trace measured on real hardware.

SENSESENDBURN
(b) Trace obtained from Simba.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40Time (s)
0

2

Vo
lta

ge
 (V

)

Vcap, VH
VL

Figure 3: Voltages and load states of Botoks measured exper-
imentally (a) and simulated by Simba (b). As the harvester and
capacitor are directly coupled, they share the same voltage level.

at a constant voltage level. We model this converter architecture
in a dedicated LDO+Hysteresis module considering the LDO’s ef-
ficiency 𝜂𝐿 =

𝑉𝐿
𝑉cap

[54], the hysteresis thresholds (𝑉High,𝑉Low), and
a constant, configurable quiescent current.
Modelling the capacitor and harvester.We choose the Ideal-
Capacitormodule to represent Botoks’ capacitor and set its capac-
itance accordingly. As harvesters, we either use the Artificial-
Source module (i.e., when supplying the device from the source
meter with constant current), or the IVCurvemodule (i.e., to model
the solar cell’s behavior). For the latter, we obtain the solar panel’s
IV curve for different brightness levels using the source meter.
Verification.We model Botoks according to the module selection
and configurations in Tab. 1. As shown in Fig. 3, the voltage traces
and state information obtained from Simba (a) closely resemble the
actual behavior of the Botoks platform measured experimentally
(b). For more details on the simulation error (such as differences in
charging time), we give a quantitative comparison in the following
experiments (Sec. 4.3), where we consecutively replace each device
component and reconfigure each module, respectively.

4.3 Design Space Exploration and Evaluation
We now use Simba to discuss a number of possible design decisions
for Botoks. To support our findings and evaluate Simba, we also
provide experimental data complementing the simulation results.

4.3.1 Exploring the impact of capacitor size. Adequate sizing of
the energy storage (i.e., the capacitor size) is a critical aspect when
designing intermittently-powered systems. A common approach is
to select theminimum required energy storage that allows the device
to complete its largest atomic operation [11]. This minimizes the

25
50
75

E w
as

te
d/E

to
ta

l (
%

) (a) Energy wasted in BURN state.

0.0

0.5

T S
am

pl
e,

m
ea

n (
s)

(b) Average time between two samples.
Measured values

0 20 40 60 80 100 120
Capacitance (F)

0

200

400

#P
ac

ke
ts

(c) Number of successful packets.
Measured values

IH=100 A IH=400 A IH=1000 A

Figure 4: Impact of capacitance on Botoks’ energy usage,
charging time, and number of transmitted packets. Larger ca-
pacitances have a negative impact on device efficiency and latency.

device’s charging time (i.e., maximizing reactivity), the capacitor’s
physical size, and the amount of energy that is wasted. The latter
refers to the remaining energy in the capacitor that is insufficient to
achieve any progress but needs to be consumed before recharging.
The optimal capacitance depends onmany factors, such as the load’s
power consumption (including start-up and actual processing), the
converter structure, and the incoming harvested energy.

Using Simba, it is possible to quickly explore the impact of the
capacitor size on Botoks’ system performance. To this end, we
simulate Botoks for a time period of 10 seconds using different
capacitances (ranging from 10 to 120 𝜇𝐹) and energy harvesting
conditions (𝐼𝐻 = {100, 400, 1000} 𝜇𝐴) and obtain the amount of
wasted energy, the average time between two successful packet
transmissions (𝑇Sample,mean), and the number of successful packets
(#𝑃𝑎𝑐𝑘𝑒𝑡𝑠) from its logs.

Fig. 4 shows that small capacitances are highly beneficial, as they
minimize the time between two successive samples, thus increasing
the total number of packets. For example, at an input current of 𝐼𝐻 =

100 𝜇𝐴, decreasing the capacitance from the original 100 𝜇𝐹 to 22 𝜇𝐹
allows to transmit 3.8x more packets within the same time window.
On Botoks, large capacitances are a major source of inefficiencies,
since they force the load to spend most of its active time in BURN
state to deplete the capacitor and eventually recharge (as also shown
in Fig. 3). We explore this design choice in more detail in Sec. 4.3.2.

Fig. 4 further shows that the capacitance cannot be minimized
arbitrarily, as a minimum capacitance 𝐶min is required to achieve
any meaningful operation. Note that 𝐶min depends on the harvest-
ing current (as it affects the net current flow out of the capacitor),
and thus allows designers to tune the capacitance according to the
application’s requirements. For example, if Botoks is intended to
be used in outdoor scenarios (e.g., 𝐼𝐻 ≈ 1000 𝜇𝐴), a capacitance of
10 𝜇𝐹 is sufficient and increases the number of successful packets
by a factor of 1.5 and 5.1 compared to 22 𝜇𝐹 and 100 𝜇𝐹 , respec-
tively. This configuration, however, trades generality for system
performance, as Botoks could not operate in low-light conditions.
Evaluation. Using the setup described in Sec. 4.1, we obtain the
number of packets and mean time between samples for different
capacitances (𝐶nom = {10, 22, 47, 100} 𝜇𝐹) and input currents (𝐼𝐻 =

{100, 400, 1000} 𝜇𝐴) experimentally and plot them along with the
simulation results in as markers in Fig. 4. The absolute simulation

A Unified Framework For Battery-Free Systems IPSN ’24, May 13–16, 2024, Hong Kong, China

0.0

0.5

E W
as

te
d

E T
ot

al
(%

)

0.0

0.5

T S
am

pl
e,

m
ax

(s
)

Measured values

100 200 400 600 1000 1500
Input current IH (A)

0

1000

#P
ac

ke
ts Measured values

(a) Application with tSense < tSend

'BURN' 'LOOP'

0.0

0.5

E W
as

te
d

E T
ot

al
(%

)

0.0

0.5

T S
am

pl
e,

m
ax

(s
)

200 400 600 800 1000
Input current IH (A)

0

100

#P
ac

ke
ts

(b) Application with tSense tSend

'BURN' 'LOOP' 'SHUTOFF'

Figure 5: Impact of different load implementations for an ap-
plication with a short (a) and long (b) sensing task. Compared
to repeated sensing (LOOP), burning the residual energy (BURN) is
only beneficial in certain application scenarios.

error we observe is on average 5.2% and 5% for 𝑇Sample,mean and
#𝑃𝑎𝑐𝑘𝑒𝑡𝑠 and never exceeds 10.1% and 10%, respectively.
Takeaway. The employed capacitance significantly affects the de-
vice’s efficiency and throughput and should be selected as small as
possible according to the expected harvesting current. Note that
Simba is able to show this effect in less than a minute with sufficient
accuracy, while the manual measurement of even a small amount
of configurations is a labor-intensive task.

4.3.2 Exploring different load implementations. In intermittent sys-
tems with scarce incoming energy and small storage buffers, devices
are often able to perform only a single task/useful operation per
power cycle. Any successive task that runs afterward might not
be able to complete such that any progress to this point is lost
and the time between two successful tasks is unnecessarily pro-
longed [1]. For sensing applications (and event detection), this is
especially problematic, as the latency of sensor data can affect the
measurement quality significantly and might be more important
than the actual data throughput. To minimize latency (i.e., maxi-
mize reactivity), devices like Botoks employ a technique where the
residual energy is depleted as quickly as possible, e.g., by entering
a high-power consumption state, so to quickly force a recharge. As
hinted in Sec. 4.3.1, we are interested in exploring the effectiveness
of this approach for the given hardware configuration.

To do so, we compare the existing load implementation (BURN)
with a version that tries to sense and transmit as many samples
as possible. In this implementation (LOOP) the load repeats the
SENSE and SEND task from Tab. 1 until the device turns off. Fig. 5 (a)
shows the amount of wasted energy, the maximum time between
two samples (i.e., to assess the latency), as well as the number
of transmitted packets for a 10-second simulation using Botok’s
default configuration. It can be seen that BURN is not beneficial,
as LOOP achieves 3.5 − 9.7 times more packet transmissions while
offering a similar reactivity and minimizing the wasted energy.
This is due to the large amount of residual energy in the (oversized)
capacitor and a comparable low power consumption of the BURN
state, resulting in a large amount of time/energy that has to be
spent to deplete the capacitor before rebooting.

However, the BURN approach can be feasible for other application
characteristics, i.e., if there is less residual energy in the storage or
if the power consumption difference between active operation (i.e.,

0

50

100

Pa

ck
et

s

(a) Simulation results
Measured values

Config1 Config2 Config3
Threshold-Config

0

5

E H
ar

ve
st

ed
 (m

J) EH, max@20klux

13klux 15klux 18klux 20klux

0 1 2 3
VH(V)

0.0

0.2

0.4

0.6

0.8

1.0

P H
(m

W
)

Config 3Config 2Config 1
VHigh3 VHigh2VHigh1

VLow

(b) PV curve

15klux PMPP@15klux 20klux PMPP@20klux

Figure 6: Impact of different capacitor and voltage threshold
configurations on application and harvesting performance.
Config3 (featuring a low 𝑉High and large 𝐶) is superior compared
to Config1 and Config2 (a). This is due to the solar panel’s PV
characteristics, delivering more power in certain voltage ranges (b).

sensing and sending) and BURN state is higher. We show this behav-
ior in Fig 5 (b), where we again compare BURN and LOOP but let the
device sense 100 times before transmission (i.e., 𝑡𝑆𝐸𝑁𝑆𝐸 = 75𝑚𝑠),
effectively decreasing the residual energy and average power con-
sumption in active state. In this configuration, BURN’s fast capacitor
depletion after a successful transmission indeed decreases latency
between 3.9 and 23% for 𝐼𝐻 ≤ 800 𝜇𝐴. Once the harvesting current
exceeds the load’s average active current, LOOP again outperforms
BURN, as it does not require the load to reboot between two sam-
ples. Finally, in Fig 5 (b) we also explore the performance of a third
approach (SHUTOFF), where the load can voluntarily shut itself off
(i.e., disable the converter output) after completion of its tasks and
only restarts, once capacitor recharges to its turn-on threshold. As
shown in Fig. 5 (b), SHUTOFF yields the best performance as the
capacitor does not need to be depleted fully, and thus no energy is
wasted. This allows to decrease𝑇𝑆𝑎𝑚𝑝𝑙𝑒,𝑚𝑎𝑥 by a factor of 0.32-0.65
and 0.4-0.71 compared to LOOP and BURN, respectively.
Evaluation. We modify Botok’s firmware to support the LOOP
approach and evaluate the simulation results experimentally for
different input currents (see markers in Fig. 5 (a)). Across all data-
points, the absolute mean and maximum simulation errors amount
to 3.9% and 8.4% for the maximum sample time, as well as 5.7% and
9.1% for the number of transmitted packets. Note that SHUTOFF is
not evaluated experimentally, as this approach requires substantial
hardware modifications. For more details, we refer the reader to
previous works [1, 11, 24] that propose concepts similar to SHUTOFF.
Takeaway. Simba allows to quickly compare different load imple-
mentations (even across different hardware capabilities). In this
example, we show that the effectiveness of BURN is highly depen-
dent on the application characteristics. This capability is especially
helpful if the same hardware platform should be used in similar, yet
different applications (e.g., to assess the performance for various
sensors or sampling rates), but can also be used in early design
stages (e.g., to assess if hardware modifications are worthwhile).

4.3.3 Exploring the effect of converter configurations. As shown in
Sec. 4.3.1 and Sec. 4.3.2, the device’s performance significantly de-
pends on the amount of available (residual) energy in the capacitor.
The latter is not only depending on the employed capacitance, but
also on the voltage range in which the capacitor can be used (i.e.,
𝐸Cap ≈ 1

2𝐶 (𝑉
2
High −𝑉

2
Low). On Botoks, this range is determined by

IPSN ’24, May 13–16, 2024, Hong Kong, China H. Brunner et. al

𝐶 (𝜇𝐹) 𝑉High (𝑉) 𝑉Low (𝑉)
Config1 22 (22*) 3.74 (3.65*)

2.4Config2 47 (58*) 3.1 (3.05*)
Config3 100 (110*) 2.75 (2.65*)
*Actual capacitance/voltage level (due to component tolerances)

Table 2: Converter threshold and capacitance selection

the converter’s hysteresis thresholds, which enable/disable the load
supply at fixed voltage levels. The turn-on threshold 𝑉High ensures
that the device does not turn on too early (i.e., if not enough energy
has been collected yet), while the turn-off threshold 𝑉𝐿𝑜𝑤 prevents
an MCU brownout that can result in excessive power draw.

Consequently, by selecting𝑉High and𝑉Low, the same energy bud-
get 𝐸Cap can be provided using different capacitances. Intuitively,
one would expect a similar performance for similar 𝐸Cap configurat-
ions (given that𝑉High and𝑉Low are in a reasonable range). However,
due to the direct coupling between the energy harvester and the
capacitor, this assumption does not hold true, and the converter’s
threshold configuration significantly affects the device behavior.

We demonstrate these effects by selecting three converter and
capacitor configurations that yield the same 𝐸Cap3, as summarized
in Tab. 2, and simulate Botoks at different illuminance levels that
roughly represent sunny outdoor field conditions [39]. The results,
shown in Fig. 6 (a), reveal two main effects w.r.t. to the converter
thresholds. First, if a small capacitor in combination with a high
turn-on threshold is chosen (Config1), the device might not be
able to turn on at all in low light conditions, as the solar panel
can only supply a limited harvesting voltage 𝑉𝐻 , which might lie
well below its specified open circuit voltage and may never exceed
𝑉High. Second, the converter’s voltage thresholds directly control
the operating point of the solar panel and thus heavily affect the
harvesting efficiency. In comparison to the energy harvested at its
optimal operating point at 20 klux (i.e., if𝑉𝐻 = 𝑉Solar,MPP), the panel
can extract only 65% in Config1, but more than 97% in Config2
and Config3, respectively. The solar panel’s PV curve in Fig. 6 (b)
confirms this observation, as Config2 and Config3 allow the panel
to operate in ranges close to 𝑃MPP. It is worth noting that this applies
also to other illuminance levels. More specifically, in Config2 and in
Config3, between 98.3-99.7% and 91.5-97% of 𝐸H,MPP are harvested.
This highlights that well-configured directly coupled systems can
be extremely efficient while minimizing complexity, size, and costs.
Evaluation.We evaluate the configurations from Tab. 2 experimen-
tally by adjusting the resistors on Botoks’ comparator and retrieving
the number of transmitted packets as well as the average sample
time𝑇Sample,mean. Fig. 6 (a) shows a measurement outlier at 13 klux
with Config2 (red) that is caused by our measurement setup. At this
particular setting, the turn-on threshold 𝑉High2 is very close to the
recorded solar panel’s maximum voltage 𝑉𝐻 . A very small change
in the device’s position causes the panel voltage to increase slightly
and allows Botoks to turn on. This observation emphasizes that
aggressive tuning toward optimal parameters can be problematic
for battery-free devices, as the performance degradation is typically
not gradual but their operation fails completely (cmp. capacitor
selection in Sec. 4.3.1). Excluding this outlier, we obtain an absolute

3Note that due to hardware imperfections (see Tab. 2), the actual energy budget differs
slightly for each configuration. Nevertheless, the described effects are still valid.

0

50

Pa

ck
et

s

(a) Simulation results
Measured values

Config 1 Config 2 Config 3
Threshold-Config

0

5

10

E H
ar

ve
st

ed
 (m

J) EH, max@20klux

13klux 15klux 18klux 20klux

0 1 2 3
VH(V)

0.0

0.5

1.0

1.5

P H
(m

W
)

Config 3Config 2Config 1
VHigh3 VHigh2 VHigh1

VLow

(b) PV curve

15klux PMPP@15klux 20klux PMPP@20klux

Figure 7: Impact of different capacitor and voltage threshold
configurations on application and harvesting performance.
Since the solar panel is operated outside of its optimal operating
point (b), Botoks performs poorly (a).

simulation error of 4.2% (mean) and 7.5% (max) for 𝑇Sample,mean,
and 3.8% (mean) and 8.2% (max) for #𝑃𝑎𝑐𝑘𝑒𝑡𝑠 , respectively.
Takeaway. Due to the non-linear PV characteristics of solar panels,
the harvesting efficiency is strongly dependent on the converter’s
voltage thresholds, leading to performance differences despite the
same energy budget. As a result, and in contrast to Sec. 4.3.1, we
observe that larger capacitances (allowing the selection of a small
𝑉High) are beneficial for the device’s performance. This example
emphasizes that the design choices for battery-free systems are non-
trivial and that Simba can help to shed light on these dependencies.

4.3.4 Exploring different energy harvesters. Although well-config-
ured directly coupled systems can be very efficient, they limit de-
signers to solar panels that exactly match the load specification.
We show this limitation in Fig. 7 (a), where we repeat the previous
simulation, but supply Botoks with a Panasonic AM1417 solar panel
(and supply Simba with the corresponding IV curves). This panel
provides a lower open-circuit voltage and thus only Config3 is
feasible. Furthermore, considering the PV-curve in Fig. 7 (b), the
efficiency constraints of directly-coupled systems are highlighted:
although the AM1417 provides almost 50% more output power, only
about 50% of it are actually harvested and thus the performance
of Botoks is degraded. This is because the solar panel cannot be
operated close to its maximum power point (𝑉MPP,AM1417 ≈ 1.5𝑉),
which lies outside of the load’s operating range.
Evaluation. Again, we evaluate the simulation results in Fig.7 (a)
experimentally and observe errors of 4.0 and 1.2% (mean) and 6.1%
and 6.6% (max) for 𝑇Sample,mean and #𝑃𝑎𝑐𝑘𝑒𝑡𝑠 , respectively.
Takeaway. Simba can accurately integrate harvesters with non-
linear IV curves (e.g., solar panels) into the simulation, and is thus
able to clearly show the shortcomings of a direct coupling between
harvester and converter. If certain solar panels are a requirement,
designers have to resort to boost converters that allow the operation
of load and harvester at different voltage levels. We give an example
of such an architecture in Sec. 5.

5 CASE STUDY 2: USING SIMBA TO FACILITATE
DESIGN CHOICES

In the previous case study, we have used Simba to dive through
the parameter space of a simple, directly coupled sensor node, ex-
ploring the effects of each device component. We next show how

A Unified Framework For Battery-Free Systems IPSN ’24, May 13–16, 2024, Hong Kong, China

OActive
(useful)

OffOff R C CActive
(useful)

A
(l.)

A
(u.)

R C A
(l.)

VLow

VHigh

VChkpt

C
ap

ac
it

o
r

V
o

lt
ag

e

Time
OFF RESTORE CHECKPOINTACTIVE (useful/lost)Load States:

tRestore tActive,useful
tChkpttOff

tUnavailable

tOn

tChkpt,period
tActive,lost

Figure 8: JIT-checkpointing mechanism of the battery-free
Game Boy. Once the voltage reaches𝑉𝐶ℎ𝑘𝑝𝑡 , a checkpoint is saved
periodically until shut-off. After recharging, at 𝑉𝐻𝑖𝑔ℎ , the check-
point is restored and the device resumes its application.

Simba can help to select appropriate parameters for a specific de-
vice and application. In particular, we use the trade-off exploration
tool to optimize the checkpointing mechanism of the battery-free
Game Boy [13] and perform a long-term simulation based on real
harvesting traces to evaluate its performance.

5.1 Used Platform and Experimental Setup
Platform. The battery-free handheld concolse [13] is a power
failure resilient Game Boy emulator powered solely by energy har-
vested from solar panels and button presses. It embeds a powerful
Ambiq Apollo3 ARM Cortex-M4 MCU, an ultra-low power LCD
display, and off-the-shelf energy harvesting switches that generate
small amounts of energy while playing. The main power sources are
solar panels, which are managed by a TI BQ25570 harvester/power
management chip [31]. To ensure forward progress through power
failures, the system state is (re)stored to and from external non-
volatile memory (FRAM).
Experimental setup. For experimental evaluation we use the
open-source battery-free Game Boy hardware running Tetris and
only modify its storage capacitor and converter threshold settings.
Similar to Sec. 4, we power it using artificial light in a closed box
and collect voltage and GPIO traces using a logic analyzer.

5.2 Modelling the Battery-Free Game Boy
Modelling the load. The battery-free Game console runs a Game
Boy emulator software, which we consider to have a constant
current consumption (𝐼Active). To operate correctly despite power
failures, the Game Boy employs a JIT-checkpointing mechanism
as sketched in Fig. 8. This means that once the capacitor voltage
reaches a certain lower threshold 𝑉Chkpt (i.e., shortly before power
is lost), a CHECKPOINT operation is triggered periodically to copy the
application state to non-volatile memory. After a power failure and
at device restart, a RESTORE operation retrieves the application state
such that the device can resume correctly. Note that any computa-
tion after the last checkpoint is lost. We model this behavior using
the JITLoad module and specify the voltage threshold, checkpoint-
ing period, computing power consumption, as well as the length
and power consumption of the CHECKPOINT and RESTORE operation
according to experimentally-obtained current consumption traces.
Modelling the converter. The employed TI BQ25570 is a state-of-
the-art energy-harvesting chip that offers both a boost- and buck

Component Game Boy
Hardware

Simba
module impl.

Module
parameters

Chosen (default)
parameters

Capacitor 3300 µF Alum. Elec. IdealCapacitor
Capacitance
Initial voltage

3300 𝜇𝐹
3.3𝑉

Converter TI BQ25570 BQ25570

𝑉Low
𝑉High
𝑉𝐿
𝑓𝑀𝑃𝑃

3.3𝑉
3.97𝑉
3𝑉
0.8

Load
Apollo 3 +
LCD display +
Fujitsu FRAM

JITLoad

(𝑡Restore, 𝑖Restore)
(𝑡Chkpt, 𝑖Chkpt)
𝑉Chkpt
𝑡Chkpt-Period
𝑖Active

(255𝑚𝑠, 2570 𝜇𝐴)
(33𝑚𝑠, 2780 𝜇𝐴)
3.4𝑉
270𝑚𝑠

3180 𝜇𝐴

Harvester 8x Panasonic AM1417
solar panel IVCurve

Solar panel
Illuminance

AM1417x8
13𝑘𝑙𝑢𝑥

SolarPanel
(for long-term eval.)

𝑉open-circuit
𝐼short-circuit
𝑉MPP
𝐼MPP

3.56𝑉
14.8𝑚𝐴

2.6𝑉
12.1𝑚𝐴

Table 3: Module configuration of the battery-free Game Boy.

converter as well as voltage management features. The boost con-
verter allows charging the capacitor even if𝑉𝐻 <𝑉𝐶𝑎𝑝 and is further
used to operate the harvester at a certain voltage level maximizing
the harvesting efficiency. The operating voltage (𝑉𝐻) is derived
from the harvester’s open-circuit voltage and a constant, config-
urable factor (𝑓MPP). To model the boost converter’s efficiency, we
create a look-up table based on the experimental data from [42] and
set it according to the harvesting current and voltage. The buck con-
verter supplies the load with a constant, configurable voltage (𝑉𝐿).
Again, we use a look-up table to account for the converter’s efficien-
cies.Since only limited data is available, we obtain the efficiencies
experimentally as proposed in [30]. Finally, the BQ25570 integrates
voltage comparators to enable/disable the buck-converter at certain
voltage thresholds. On the Game Boy, the lower threshold is fixed
to 𝑉Low = 3.3𝑉 , while the upper turn-on threshold is configurable
using on-board jumpers (𝑉High = {3.63, 3.97, 4.3, 4.61, 4.87}𝑉). We
model the chip’s behavior and embed the look-up tables in a dedi-
cated BQ25570 converter module.
Modelling the capacitor and harvester.We use the IdealCap-
acitor module with its capacitance configured accordingly and
the IVCurve module supplied with IV curves from the Game Boy’s
solar panels. Although Simba would also support the modelling of
hybrid energy harvesters, we do not include the Game Boy’s button
harvesting functionality, as the provided energy is comparably
small and difficult to reproduce reliably in the experiments.
Verification and evaluation. We summarize the Game Boy’s
module configuration in Tab. 3 and verify that the simulation traces
closely match the real-world behavior in Fig. 9. To quantify the
simulation accuracy, we obtain the average charging time (𝑡Off)
and operating time (𝑡On) both experimentally and in simulation
using five illuminance levels (10, 13, 15, 18, and 20 klux), three
capacitors (𝐶 = 1000, 3300, 6800 𝜇𝐹), and three converter threshold
settings (𝑉High = 3.63, 3.97, 4.3𝑉). Across all measurement points,
the absolute simulation error amounts on average to 4.4% and 6.5%
for 𝑡Off and 𝑡On, and never exceeds 16.4% and 13.5%, respectively.

5.3 Using Simba to Simplify Design Decisions
The Game Boy employs a JIT-checkpointing approach (see Fig. 8)
and thus its performance depends, among others, on the selected
voltage thresholds and the employed capacitance. In the following,

IPSN ’24, May 13–16, 2024, Hong Kong, China H. Brunner et. al

CHKPT_OKCHKPTRESTORE

0 2 4 6 8 10Time (s)

2

4

Vo
lta

ge
 (V

)

Vcap
VL
VH

(a) Trace measured on real hardware.

CHKPT_OKCHKPTCOMPUTERESTORE
(b) Trace obtained from Simba.

0 2 4 6 8 10Time (s)
0.0

2.5

Vo
lta

ge
 (V

)

Vcap
VL
VH

Figure 9: Voltages and load states of the battery-free Game
Boy measured experimentally (a) and simulated by Simba (b).
Due to the boost converter, the capacitor can charge despite a low
harvesting voltage (i.e., even if 𝑉𝐻 < 𝑉cap).

we discuss important performance metrics in the context of JIT-
checkpointing and show how to tackle their trade-offs using Simba.
Performance metrics and trade-offs in JIT-checkpointing.
While checkpointing is necessary to ensure correct operation in the
presence of power failures, it introduces state-saving and restoring
overheads that can impede forward progress. Forward progress
describes the relative time [59] or energy [43] that a device spends
on useful work. Considering Fig. 8 and the definition in [59], we
define the forward progress 𝛼 for the Game Boy as

𝛼 =

∑
𝑡Active,useful∑

𝑡Active (useful+lost) +
∑
𝑡Off +

∑
𝑡Restore +

∑
𝑡Chkpt

(5)

Forward progress is, among others, affected by the amount of
energy storage that the device provides. If the energy storage is
very small, 𝑡On is short, and thus the majority of time/energy is
spent on restoring and state-saving, minimizing the time of actual
useful work. Large energy storage, on the other hand, increases 𝑡On
and thus the checkpointing overheads are comparably small. The
latter, however, comes at the cost of increased charging times, which
makes the system less reactive. This can have a negative impact
on data quality (i.e., for sensing applications) or user experience
(i.e., for the Game Boy). On the Game Boy, the system remains
unresponsive (i.e., the user cannot play) when the device is in OFF
and RESTORE state, respectively. Consequently, following Fig. 8, we
define the unavailability for the Game Boy as

𝑡Unavailable = max
𝑖∈𝐼
(𝑡Off,i + 𝑡Restore,i) (6)

where 𝐼 corresponds to all power cycles during the operation period.
Maximizing forward progress by tuning 𝑉Chkpt. To maximize
forward progress, the selection of the checkpoint threshold 𝑉Chkpt
(i.e., when the device starts to save the application state) is crucial:
If 𝑉Chkpt is too low, the energy left in the capacitor might be insuf-
ficient to complete the checkpoint and no forward progress can
be made. If 𝑉Chkpt is too high, superfluous checkpoint operation(s)
and an increasing amount of lost computation (𝑡Active,lost) limit
the forward progress. The optimal checkpoint threshold 𝑉Chkpt,opt
is thus the minimum voltage at which a checkpoint will succeed
without any energy income.

In principle,𝑉Chkpt,opt can be computed analytically but requires
knowledge about the employed capacitor, the energy demand of

0 2 4 6
Capacitance (mF)

2

4

6

t u
na

va
ila

bl
e,

m
ax

 (s
)

(a) Unavailability f(C, VHigh).

VHigh(V)
3.63
3.97
4.3

4.61
4.87

0 2 4 6
Capacitance (mF)

0.0

0.2

0.4

0.6

0.8

Fo
rw

ar
d

pr
og

re
ss

(b) Forward progress f(C, VHigh).

VHigh(V)
3.63
3.97
4.3

4.61
4.87

Figure 10: Trade-off between unavailability and forward
progress for different configurations of capacitance 𝐶 and
voltage threshold 𝑉High of the Game Boy. Feasible parameter
pairs (i.e., where 𝑡Unavailable < 1 𝑠) are highlighted in light grey.

the load’s checkpointing process, as well as the losses in the con-
verter and capacitor. Simba allows obtaining 𝑉Chkpt,opt in a device-
agnostic and simple way. To do so, we supply the trade-off explo-
ration tool with the base configuration (Tab. 3) without an energy
harvester (i.e., 𝐼𝐻 = 0) and let it iterate over 𝑉Chkpt from 𝑉High
to 𝑉Low in steps of 0.01𝑉 while collecting the 𝑛𝑢𝑚Chkpt,success in-
formation from the load. 𝑉Chkpt,opt is then given by the minimum
𝑉Chkpt for which 𝑛𝑢𝑚Chkpt,success = 1.

Following this approach and using the Game Boy’s default config-
uration (from Tab. 3), we obtain 𝑉Chkpt,opt = 3.35𝑉 . In comparison
to the default value (𝑉Chkpt,default = 3.4𝑉), when simulating at illu-
minance levels of 10, 13, 15, 18, and 20 klux, the forward progress
𝛼 improves between 9.4% and 10.1%.
Trading forward progress and unavailability by selecting
𝑉High and 𝐶. As discussed previously, forward progress and un-
availability are strongly affected by the amount of energy stor-
age. On the Game Boy, the energy storage depends on the capaci-
tance 𝐶 , the voltage thresholds, and the converter efficiency (i.e.,
𝐸 ≈ 1

2𝐶 (𝑉
2
High −𝑉

2
Low)). Considering the fixed turn-off threshold

(𝑉Low=3𝑉), forward progress and unavailability are thus a function
of𝑉High and𝐶 . How to properly trade-off forward progress and un-
availability is in general highly application-specific, but we give an
example for the Game Boy using the following constraints (C1, C2).
In an outdoor setting with moderate sun exposure (delivering a
harvesting current of 3.4𝑚𝐴 [13]), the user should not experience
an outage of more than one second (i.e., 𝑡Unavailable ≤ 1 𝑠) (C1). At
the same time, the forward progress should be maximized (C2).

To find an appropriate parameter pair, we evaluate forward
progress and unavailability for a large number of𝑉High and𝐶 using
Simba. Specifically, we use the Game Boy’s default configuration
and let Simba iterate over capacitances from 1 to 6.8mF (in steps
of 0.1mF) and the five possible 𝑉High settings. Fig. 10 shows the
discussed trade-off: with increasing 𝑉High and 𝐶 (corresponding to
larger available energy storage), the forward progress rises but the
unavailability is affected negatively. From the obtained results, we
retrieve all feasible parameter pairs, as highlighted in Fig. 10 (a) and
(b) in grey. Note that for each𝑉High there exists a𝐶min that ensures
a successful checkpoint even in the absence of incoming energy
and a 𝐶max, such that 𝑡Unavailable ≤ 1𝑠 (C1) is still satisfied. Out of
the feasible candidates, we select the parameter pair that yields the
maximum 𝛼 (C2) and obtain {𝐶Opt = 5.1𝑚𝐹,𝑉High,Opt = 3.63𝑉 } as
the optimal parameters for our system.

A Unified Framework For Battery-Free Systems IPSN ’24, May 13–16, 2024, Hong Kong, China

01/01/23
16/06/23
28/06/23

0.00 0.00 0.06 0.25 0.41 0.73 0.90 0.82 0.49 0.32 0.11 0.00 0.00 0.00 0.00
0.19 0.20 0.12 0.28 0.35 0.50 0.61 0.33 0.21 0.04 0.10 0.09 0.07 0.01 0.00
0.19 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.91 0.37 0.09 0.01

(a) Forward progress

< 0.25
> 0.25
> 0.5
> 0.75

01/01/23
16/06/23
28/06/23

15521412 61 2.98 1.53 1.10 0.92 0.96 1.53 2.43 9.36 227 360036003600
13 3.23 4.80 2.48 2.01 2.47 1.93 2.06 9.73 12 9.66 9.47 14 53 548
16 1.50 0.00 0.00 0.00 0.00 0.00 0.88 0.83 0.00 1.19 1.37 2.66 8.32 545

(b) Unavailability tUnavailable (s)

< 1s
< 5s
< 10s
> 10s

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Time (HH)

0

1000

Irr
ad

ia
nc

e
(W

/m
2)

(c) Irradiance (W/m2)
28/06/23
16/06/23
01/01/23

Figure 11: Hourly forward progress (a) and unavailability (b)
based on real-world energy harvesting traces (c) obtained
by Simba using 𝐶=5.1𝑚𝐹 and 𝑉High=3.63𝑉 . Adverse weather
conditions degrade device performance significantly.

Evaluation with real-world harvesting traces. We now use
Simba to evaluate this configuration in a realistic deployment sce-
nario, i.e., using real-world energy harvesting traces. To this end,
we make use of the SolarPanel harvester module that incorporates
(i) a PV cell model [55] based on parameters that are commonly
available in datasheets and (ii) real-world solar irradiance traces
such as the NREL [47] or ENHANTs [25] data sets. We configure
the module to use the Game Boy’s PV cell parameters (see Tab. 3)
as well as outdoor solar traces from Colorado [47], and let Simba
simulate the Game Boy’s operation for two entire months (January
and June 2023). In Fig. 11, we show the hourly forward progress (a)
and unavailability (b) for three days to demonstrate how solar irra-
diance affects device performance. Designers can use this feature
to estimate whether the system meets the application requirements
for a given deployment location (i.e., if irradiance traces are avail-
able) and to explore seasonal effects. For example, the hourly mean
forward progress (between 5:00 and 20:00) is 0.61 in June, but only
0.34 in January, due to the limited amount of sun hours and lower
irradiance in winter.

6 DISCUSSION AND FUTUREWORK
In this work, we have introduced Simba to simplify the design and
evaluation of battery-free devices. Simba introduces an extendable
foundation for the community to expand upon. In this section, we
discuss the current limitations and potential future work.
Usability. Although the architecture of Simba is simple to under-
stand, the initial configuration of platforms as well as the implemen-
tation and validation of new modules requires domain knowledge
and careful modeling to provide reasonable results. To support users
to get started, we complement Simba’s source code with examples,
tools to create new modules automatically, and a dedicated docu-
mentation page [8]. Additionally, together with the community we
aim to collect feedback and improve Simba ’s usability.
Improvement and extension of component modules. In the
future, we plan to improve the existing module implementations
and aim to add additional modules of state-of-the-art components.
As Simba is intended to explore the interactions between device
components in a quick and easy way, the provided modules so
far are rather generic. For example, the load modules include the
average power consumption of both MCU and peripherals, hence
trading simplicity for accuracy. To investigate MCU-related effects

(such as checkpointing approaches or energy-aware scheduling),
Simba’s interfaces and modularity would allow the integration of
more fine-grained load modules, tailored to specific needs and hard-
ware, where the load behavior is not modeled based on tasks, but
on instruction level. This way, users could also integrate models
that consider the voltage dependency of an MCU’s power consump-
tion [2] or effects of different memory accesses [34]. Furthermore,
it is of interest to integrate code congruity, as used in existing
simulators [17, 51], enabling direct debugging and reuse of the
load’s software on the target platform. Furthermore, the current
BQ25570module has only limited accuracy w.r.t. its cold-start mode.
However, the cold-start (i.e., the initial charging to the converter’s
operating voltage) can be extremely inefficient and lead to long
(non-negligible) activation times [56]. Thus, modeling this behavior
and comparing it to other charging chips is an interesting avenue
for future work. Finally, we also encourage the community to con-
tribute newmodule implementations to the open-source framework,
so to eventually create a database that facilitates early design-space
exploration without access to real hardware.
Exploring energy-neutral operation.While both case studies in
this paper both discuss intermittently powered battery-free devices,
Simba can also be used to explore (and evaluate) energy-neutral
operation due to its integration of energy harvesting datasets and
the ability of long-term simulation.
Automating parameter and component selection. In Sec. 5 we
show a simple, ‘manual’ parameter selection mechanism, which we
aim to expand to a powerful optimization framework, including a
user-friendly GUI. It should be able to consider different design pa-
rameters (e.g., harvesting potential, checkpointing frequency) and
objectives (e.g., costs, physical size) and to optimize according to
dedicated cost functions. For example, the user could specify a cer-
tain load and energy harvesting profile for which the optimization
framework then provides the optimal capacitance and threshold set-
tings. Note that such optimizations include multi-objective decision-
making and are beyond the scope of this paper. Furthermore, in
our case studies, we mainly focus on optimizing the parameters of
certain (fixed) components, while such an optimization framework
would also allow the selection of optimal components for a given
problem (e.g., by choosing from a pool of different converters or
capacitor types).
Federated energy storage and networking. Previous work has
proposed the use of federated energy storage (i.e., multiple capaci-
tors matching the load’s energy demand) to increase the availability
of battery-free devices [11, 28]. Due to its system model centering
around a single storage capacitor, Simba is not compatible with
such approaches. Furthermore, Simba’s design is based on the ar-
chitecture of a single battery-free sensor node and does not consider
communication or networking functionalities. As we are not aware
of any simulation environment targeting federated storage archi-
tectures or networking using battery-free devices, we deem this an
interesting direction for future work.

7 RELATEDWORK
In the recent years, a large number of battery-free devices have
been developed [1, 6, 11, 13, 16, 18, 22, 33]. While the majority of

IPSN ’24, May 13–16, 2024, Hong Kong, China H. Brunner et. al

them target specific applications (e.g., certain sensing or monitor-
ing tasks [1, 23, 41, 48]), there is also an increasing trend towards
battery-free general purpose and prototyping platforms [6, 10, 11,
29, 38]. To simplify and accelerate the development and to enable
the evaluation of such devices, researchers have contributed dif-
ferent types of works, which can be broadly categorized into (i)
models, (ii) development tools and testbeds, and (iii) simulators.
Models of battery-free systems and their components. Lots of
efforts have been put into modelling single components of a battery-
free device, including different energy harvesters (e.g., piezoelectric
harvesters [36], PV panels [55], radio-frequency harvesters [53])
and converter architectures [24, 42]. Furthermore, there exist mod-
els for supercapacitors that consider the effect of intermittency
(i.e., rapid charging and discharging) [3] or leakage currents [7, 60]
on its state of charge. Others have focused on modeling and evaluat-
ing the impact of load-specific behavior, such as the checkpointing
process [4, 43] or the MCU’s power consumption in the presence
of a varying operating voltage [2]. There exists also a limited num-
ber of works that model the interactions between the different
components. DEBS [24] shows that the adjustment of the turn-on
threshold based on the load’s operations can improve the system’s
efficiency. In [59], the impact of capacitor size on checkpointing
efficiency is explored. Note that these models are specific to cer-
tain device architectures, while Simba allows to unify and explore
existing component models in a unified framework.
Development tools and testbeds. Besides models, researchers
have introduced important tools that allow designers to debug
and evaluate battery-free systems based on real hardware. DIPS
[15] is a debugger specifically designed for intermittent systems,
providing energy emulation and verification of memory states be-
tween power failures. Ekho [27] is an energy recorder/emulator
device used to replicate energy harvesting environments in the
laboratory setting. Shepherd [21] extends this idea and embeds
energy recording/emulation capabilities in a testbed, which allows
to account for the differences in energy harvesting performance of
spatially-separated sensor nodes. While these tools are extremely
valuable, they require access to real hardware and are limited to
certain architectures and components. We thus consider Simba a
complementary work that can be used in early development stages
to rapidly explore the design space of battery-free systems.
Simulators for battery-free systems. Most existing sensor node
simulators assume a constant power supply [17, 19] or do not ac-
count for the harvester’s IV dependency [26, 32], and are thus infea-
sible to capture the energy-driven interactions between components
and to examine the overall performance of battery-free systems.
In contrast, Siren [20] extends the MSPSim simulator [17] with a
capacitor model and the capability to replay IV surfaces recorded by
Ekho. Siren is MSP430-specific and targets only converter-less sys-
tems. Fused [51] implements a closed-loop, MCU-centric simulation
of battery-free devices that are either powered by a voltage-limited
current source or a solar panel [57]. As it is implemented in Sys-
temC, it offers high accuracy but the addition of new components
is complex. Fused thus provides only a small number of hardware
options and has restrictions w.r.t. long-term evaluations.

8 CONCLUSION
In this paper, we present Simba, a framework that allows to unify
various component models within a single simulation core to inves-
tigate and simplify the design of battery-free systems.We use Simba
to explore design trade-offs of existing state-of-the-art devices and
provide experimental data to support our findings.We show that the
dependencies between device components must not be neglected
in system design, as small changes in single components can have
a large impact on overall device performance. We demonstrate
how Simba can support developers by providing means to trade off
application-specific design parameters and to perform long-term
simulations using real-world energy harvesting traces.

REFERENCES
[1] M. Afanasov et al. 2020. Battery-less Zero-maintenance Embedded Sensing at the

Mithræum of Circus Maximus. Proc. of the Conference on Embedded Networked
Sensor Systems (SenSys ’20).

[2] S. Ahmed et al. 2020. Demystifying Energy ConsumptionDynamics in Transiently
Powered Computers. Trans. on Embedded Computing Systems (2020).

[3] J. Ahn et al. 2022. State-of-Charge Estimation of Supercapacitors in Transiently-
Powered Sensor Nodes. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2022).

[4] Alberto Arreola et al. 2015. Approaches to Transient Computing for Energy Har-
vesting Systems: A Quantitative Evaluation. Proc. of the International Workshop
on Energy Harvesting and Energy Neutral Sensing Systems (ENSsys ’15).

[5] AVX. 2016. Low Leakage Current Aspect of Des. with Tantalum and Niobium
Oxide Cap. [Online] https://tinyurl.com/4au4up35 – Last access: 2023-06-27.

[6] Abu Bakar et al. 2022. Protean: An Energy-Efficient and Heterogeneous Platform
for Adaptive and Hardware-Accelerated Battery-Free Computing. In Proceedings
of the 20th ACM Conference on Embedded Networked Sensor Systems (SenSys ’22).

[7] Hannah Brunner et al. 2022. Leakage-Aware Lifetime Estimation of Battery-
Free Sensor Nodes Powered by Supercapacitors. In Proceedings of the 20th ACM
Conference on Embedded Networked Sensor Systems (ENSsys ’22).

[8] Hannah Brunner et al. 2024. Simba simulation framework: documentation page.
https://lens-tugraz.github.io/simba/.

[9] Ruizhi Chai and Ying Zhang. 2015. A Practical Supercapacitor Model for Power
Management in Wireless Sensor Nodes. Transactions on Power Electronics (2015).

[10] Nessie Circuits. 2023. Riotee: An open-source platform for the battery-free IoT.
[Online] https://tinyurl.com/38m5nhw6 – Last access: 2023-10-02.

[11] Alexei Colin et al. 2018. A Reconfigurable Energy Storage Architecture for Energy-
Harvesting Devices. In Proc. of the Int. Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’18).

[12] Alexei Colin, Graham Harvey, Alanson P. Sample, and Brandon Lucia. 2017. An
Energy-Aware Debugger for Intermittently Powered Systems. IEEE Micro (2017).

[13] Jasper de Winkel et al. 2020. Battery-Free Game Boy. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT ’20).

[14] Jasper de Winkel et al. 2020. Reliable timekeeping for intermittent computing.
Proc. of the 25th Int. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’20).

[15] Jasper de Winkel et al. 2022. DIPS: Debug Intermittently-Powered Systems Like
Any Embedded System. In Proceedings of the 20th ACM Conference on Embedded
Networked Sensor Systems (SenSys ’22).

[16] Jasper de Winkel et al. 2022. Intermittently-Powered Bluetooth that Works. The
20th Int. Conf. on Mobile Systems, Applications and Services (MobiSys ’22).

[17] Joakim Eriksson et al. 2007. Poster Abstract: MSPsim–an Extensible Simulator
for MSP430-equipped Sensor Boards. (2007).

[18] F. Fraternali et al. 2018. Pible: Battery-Free Mote for Perpetual Indoor BLE
Applications. In Proc. of the 5th Conf. on Systems for Built Env. (BuildSys ’18).

[19] Fredrik Österlind. 2006. A Sensor Network Simulator for the Contiki OS. https:
//api.semanticscholar.org/CorpusID:33079530

[20] Matthew Furlong et al. 2016. Realistic Simulation for Tiny Batteryless Sensors. In
Proc. Workshop on Energy Harvesting and Energy-Neutral Sens. Sys. (ENSsys’16).

[21] Kai Geissdoerfer et al. 2019. Shepherd: A portable testbed for the batteryless IoT.
Proc. of the 17th Con. on Emb. Networked Sensor Systems (Sensys ’19).

[22] Kai Geissdoerfer and Marco Zimmerling. 2021. Bootstrapping Battery-free Wire-
less Networks: Efficient Neighbor Discovery and Synchronization in the Face of
Intermittency. In USENIX Symp. on Net. Sys. Design and Impl. (NSDI ’21).

[23] Marco Giordano et al. 2020. A Battery-Free Long-Range Wireless Smart Camera
for Face Detection. Proc. Int. Workshop on Energy Harvesting and Energy-Neutral
Sensing Sys. (ENSsys ’20) (2020).

[24] Andres Gomez et al. 2016. Dynamic energy burst scaling for transiently powered
systems. In Design, Auto. & Test in Europe Conf. & Exhibition (DATE ’16).

https://tinyurl.com/4au4up35
https://lens-tugraz.github.io/simba/
https://tinyurl.com/38m5nhw6
https://api.semanticscholar.org/CorpusID:33079530
https://api.semanticscholar.org/CorpusID:33079530

A Unified Framework For Battery-Free Systems IPSN ’24, May 13–16, 2024, Hong Kong, China

[25] M. Gorlatova et al. 2011. Networking Low-Power Energy Harvesting Devices:
Measurements and Algorithms. In Proc. Conf. on Comp. Comm. (INFOCOM ’11).

[26] Yizi Gu et al. 2016. NVPsim: A simulator for architecture explorations of non-
volatile processors. In Asia and South Pacific Design Auto. Conf. (ASP-DAC ’16).

[27] Josiah Hester et al. 2014. Ekho: Realistic and Repeatable Experimentation for
Tiny Energy-Harvesting Sensors. In Conf. on Emb. Net. Sensor Sys. (SenSys ’14).

[28] Josiah Hester et al. 2015. Tragedy of the Coulombs: Federating Energy Storage for
Tiny, Intermittently-Powered Sensors. In Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems (SenSys ’15).

[29] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Battery-
less Internet-of-Things. In Proc. Conf. on Emb. Net. Sensor Sys. (SenSys ’17).

[30] Texas Instruments. 2014. User’s Guide for bq25570 Battery Charger Evaluation
Module for Energy Harvesting.

[31] Texas Instruments. 2019. BQ25570: Ultra Low power Harvester power Manage-
ment IC with boost charger, and Nanopower Buck Converter.

[32] Neal Jackson et al. 2019. Capacity over Capacitance for Reliable Energy Harvest-
ing Sensors. In Proc. Conf. on Inf. Proc. in Sensor Networks (IPSN ’19).

[33] Kang Eun Jeon et al. 2019. luXbeacon: A Batteryless Beacon for Green IoT:
Design, Modeling, and Field Tests. IEEE Internet of Things Journal (2019).

[34] Dong Ji et al. 2022. Memory Layout Optimization for Task-Based Intermittent
Computing Systems. In Int. Conf. on Intelligent Technology and Embedded Systems
(ICITES ’22).

[35] Tom J. Kamierski and Steve Beeby. 2010. Energy Harvesting Systems: Principles,
Modeling and Applications. Springer.

[36] Shashi Kiran et al. 2015. Modeling, simulation and analysis of piezoelectric energy
harvester for wireless sensors. In Int. Conf. on Control, Electronics, Renewable
Energy and Communications (ICCEREC ’15).

[37] Koninklijke Philips N.V. 2021. Hue Smart Light Bulb White Ambiance E27.
[Online] https://tinyurl.com/b4426jum– Last access: 2021-08-19.

[38] Vito Kortbeek et al. 2020. BFree: Enabling Battery-Free Sensor Prototyping with
Python. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 4 (2020).

[39] Carla Lança et al. 2019. The Effects of Different Outdoor Environments, Sun-
glasses and Hats on Light Levels: Implications for Myopia Prevention. Transla-
tional Vision Science & Technology (2019).

[40] Victor Ariel Leal Sobral et al. 2021. Thermal Energy Harvesting Profiles in
Residential Settings. In Proc. Conf. on Emb. Netw. Sensor Sys. (SenSys ’21).

[41] Gael Loubet, Alexandru Takacs, and Daniela Dragomirescu. 2019. Implementation
of a Battery-Free Wireless Sensor for Cyber-Physical Systems Dedicated to
Structural Health Monitoring Applications. IEEE Access (2019).

[42] Mojtaba Masoudinejad et al. 2018. Average Modelling of State-of-the-Art Ultra-
low Power Energy Harvesting Converter IC. In Int. Symposium on Power Elec-
tronics, Electrical Drives, Automation and Motion (SPEEDAM’18).

[43] Joshua San Miguel et al. 2018. The EH Model: Early design space exploration
of intermittent processor architectures. Proceedings of the Annual International
Symposium on Microarchitecture (MICRO ’18).

[44] Saleae Inc. 2021. Logic Pro 8 USB Logic Analyzer. [Online] https://tinyurl.com/
yc29rbpz – Last access: 2020-06-12.

[45] Alanson P. Sample et al. 2008. Design of an RFID-Based Battery-Free Pro-
grammable Sensing Platform. IEEE Trans. on Instrumentation and Meas. (2008).

[46] Nurani Saoda and Bradford Campbell. 2019. No batteries needed: Providing phys-
ical context with Energy-harvesting beacons. Proceedings of the 7th International
Workshop on Energy Harvesting and Energy-Neutral Sensing Systems (Enssys’ 19).

[47] M. Sengupta et al. 2018. The National Solar Radiation Data Base (NSRDB).
Renewable and Sustainable Energy Reviews (2018).

[48] U. Senkans et al. 2017. Applications of Energy-Driven Computing: A Transiently-
Powered Wireless Cycle Computer. Proceedings of the 5th International Workshop
on Energy Harvesting and Energy-Neutral Sensing Systems (ENSsys ’17).

[49] Ryo Shigeta et al. 2013. Ambient RF Energy Harvesting Sensor Device With
Capacitor-Leakage-Aware Duty Cycle Control. IEEE Sensors Journal (2013).

[50] Sivert T. Sliper et al. 2019. Energy-driven computing. Philosophical Transactions
of the Royal Society A (2019).

[51] Sivert T. Sliper et al. 2020. Fused: Closed-Loop Performance and Energy Simu-
lation of Embedded Systems. In IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS ’20).

[52] Statista. 2022. Number of Internet of Things connected devices worldwide from
2019 to 2021. [Online] https://tinyurl.com/msza2dtr – Last access: 2023-05-16.

[53] Tapashi Thakuria et al. 2017. Modelling and simulation of low cost RF energy
harvesting system. In Conf. Innovations in Elec., Signal Proc. & Comm. (IESC ’17).

[54] Toshiba. 2022. Basics of Low-Dropout (LDO) Regulators.
[55] Silvano Vergura. 2016. A Complete and Simplified Datasheet-Based Model of PV

Cells in Variable Env. Conditions for Circuit Simulation. Energies (2016).
[56] Chung-Hsiang Wang et al. 2023. Enh. charge circuitry for indoor PV energy

harvesting with fast activation and high efficiency. IET Power Electronics (2023).
[57] Samuel C.B.Wong et al. 2020. Energy-Aware HW/SWCo-Modeling of Batteryless

Wireless Sensor Nodes (ENSsys ’20).
[58] Fan Wu et al. 2018. WE-Safe: A Self-Powered Wearable IoT Sensor Network for

Safety Applications Based on LoRa. IEEE Access (2018).
[59] Jie Zhan et al. 2022. Exploring the Effect of Energy Storage Sizing on Intermittent

Computing System Performance. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (2022).

[60] T. Zhu et al. 2009. Leakage-Aware Energy Synchronization for Wireless Sensor
Networks. Proc. Conf. on Mobile Systems, Appl., and Services (MobiSys ’09).

https://tinyurl.com/b4426jum
https://tinyurl.com/yc29rbpz
https://tinyurl.com/yc29rbpz
https://tinyurl.com/msza2dtr

	Abstract
	1 Introduction
	2 Components of a battery-free sensor node and their dependencies
	3 The Simba Framework
	3.1 Architecture and Design Rationale
	3.2 Simulation Principle
	3.3 Implementation Details: Simulator
	3.4 Implementation Details: Modules

	4 Case Study 1: Using Simba for design space exploration
	4.1 Used Platform and Experimental Setup
	4.2 Modelling Botoks
	4.3 Design Space Exploration and Evaluation

	5 Case Study 2: Using Simba to facilitate design choices
	5.1 Used Platform and Experimental Setup
	5.2 Modelling the Battery-Free Game Boy
	5.3 Using Simba to Simplify Design Decisions

	6 Discussion and future work
	7 Related work
	8 Conclusion
	References

