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Abstract
In this demo, we measure Bluetooth Low Energy link-

layer statistics on portable off-the-shelf devices. These
statistics can be used to debug ongoing connections and im-
plement custom channel blacklisting strategies.
1 Introduction

Link-layer metadata of Bluetooth Low Energy (BLE)
connections contains important performance and debugging
information. In connection-based BLE, a slave device is con-
nected to a master and these two devices periodically ex-
change link-layer packets. Each of these link-layer pack-
ets carries important information, such as the used BLE data
channel, signal strength, and link quality, that can be used
to debug the BLE connection or monitor its performance.
BLE radio chips may use these information to adapt link-
layer parameters to increase the overall connection reliabil-
ity, but off-the-shelf radios hide these link-layer information
and do not forward any information to the BLE host.

While some BLE chips, such as the popular Nordic Semi-
conductor nRF52 platform, allow access to link-layer infor-
mation, BLE chips of smartphones do not provide any link-
layer insights. Therefore, experimentation with BLE on off-
the-shelf smartphones is cumbersome, as all link-layer infor-
mation is hidden in the smartphone’s BLE radio chip.

In this demo, we fill this gap by providing link-layer
statistics of ongoing BLE connections on Broadcom radio
chips that are widely used in off-the-shelf devices, such as
the Samsung Galaxy S series, iPhones and MacBooks, older
Google Nexus smartphones, and the Raspberry Pi series. To-
wards this goal, we use InternalBlue to apply firmware bi-
nary patches to Broadcom chips [3]. With our firmware

patches, we are able to monitor multiple link-layer met-
rics including the used BLE data channel, Received Sig-
nal Strength Indicator (RSSI), packet acknowledgment, and
clock of every BLE connection event. Measuring lower-
layer statistics on those devices enables experiments with re-
alistic Internet of Things (IoT) scenarios, where the app is
running on an Android or iOS smartphone.

We have successfully used this information to improve
the blacklisting of bad BLE channels significantly [4]. Addi-
tionally, these statistics can be used in other applications that
require a root cause analysis of connection quality. Upon
acceptance of this demo, the code to get these lower-layer
statistics will be available online 1. During the demo, we will
provide an installation with various IoT gadgets and smart-
phones to show our BLE statistics patches.

This demo paper is structured as follows. Sect. 2 details
how we patched the Broadcom firmware to extract lower-
layer BLE information. In Sect. 3, we explain how to apply
a custom channel blacklisting. Sect. 4 lists the hardware and
software requirements to reproduce our demo.

2 Bluetooth Firmware Patching
If a Bluetooth chip has performance or security issues,

new firmware can be compiled by the vendor and rolled
out with the next operating system update. With Internal-
Blue, we can modify the existing firmware of Broadcom and
Cypress chips. When Cypress acquired the IoT division of
Broadcom in 2016 [2], they released various data sheets con-
taining important information about the chips, as well as the
development platform WICED Studio. This platform con-
tains symbols for global variables, hardware registers, and
function names of Cypress evaluation boards. Symbols en-
able us to locate relevant functions despite missing source
code and documentation. We can search for similar func-
tions in other firmware—binary code and hardware register
accesses within a function stay similar.

Broadcom firmware pulls wireless data in synch with
the Bluetooth clock. Depending on the current connec-
tion state, different task callbacks are executed. Once a

1https://github.com/seemoo-lab/internalblue/tree/master
/examples

https://github.com/seemoo-lab/internalblue/tree/master/examples
https://github.com/seemoo-lab/internalblue/tree/master/examples


internalblue$ python examples/s8 rxdn.py
[*] Loaded firmware information for BCM4347B0. Installing BLE patches...
[*] ----------------------------------------------------------------------------------
[*] LE event 0, map fffffffff8 , RSSI -42: *
[*] ˆ----------------------------- ERROR --------------------------------
[*] LE event 1, map fffffffff8 , RSSI -44: *
[*] LE event 2, map fffffffff8 , RSSI -43: *
...
[*] LE event 5537, map fffd0ffff8 , RSSI -44: *

Listing 1. BLE receive statistics visualized by InternalBlue. The channel of the current event is plotted as x-axis offset.

BLE connection is established, the data reception callback
is _connTaskRxDone. This callback executes internal logic,
including RSSI measurements and checking of missed pack-
ets with the Sequence Number (SN) and Next Expected
Sequence Number (NESN). For this purpose, a global
struct stores the current connection state. We patch the _c
onnTaskRxDone function to pass this connection struct to the
host with a custom Host Controller Interface (HCI) packet.
HCI packets are logged by common operating systems and
can be interpreted during runtime with InternalBlue. Our
patch puts a packet into the HCI queue, which is sent to the
host by a different thread; thus, only a minimal time delay is
introduced in the time-critical _connTaskRxDone function.
3 Channel Blacklisting Caveats

Changes to the channel map are not time-critical. A con-
nection’s master can send a link-layer control frame to up-
date the channel map, but the earliest possible time slot to
apply it will be six events in the future. Thus, custom black-
listing can be implemented on the host and applied to the
chip using HCI.

According to the Bluetooth specification [1, p. 1351], a
BLE channel map can be set manually with the HCI_LE_Se
t_Host_Channel_Classification command on the mas-
ter of a connection. In practice, Broadcom chips will apply
further blacklisting and whitelisting mechanisms:

• The minimum number of whitelisted channels accord-
ing to the Bluetooth specification is two [1, p. 2785],
and a Broadcom chip will ignore a channel map with
only one whitelisted channel,

• if the chip is a Wi-Fi combo chip and Wi-Fi is connected
to a 2.4 GHz Wi-Fi channel, the corresponding 20 MHz
within the Bluetooth channel map are blacklisted imme-
diately by a proprietary Broadcom coexistence mecha-
nism, and

• the Broadcom chip runs additional internal statistics
that blacklist high interference channels.

Broadcom Bluetooth chips regularly and autonomously
update the used BLE channel map. Listing 1 shows an exem-
plary mature BLE connection between a Samsung Galaxy S8
smartphone and a smartwatch. Most likely, the channels of
a nearby interfering 2.4 GHz Wi-Fi access point were black-
listed, even though Wi-Fi was disabled on the smartphone.
4 Hardware and Software Requirements

InternalBlue requires running on a Broadcom or Cypress
chip. In principle, any of these chips can be supported. How-
ever, each chip has an individual firmware, and patches need
to be ported to those. As of December 2019, the under-
lying operating systems supported by InternalBlue are An-

Table 1. BLE link-layer statistic patch support on off-
the-shelf devices with InternalBlue.

Device Chip Operating system
Raspberry Pi 3 BCM43430A1 Raspbian 07/2019
Raspberry
Pi 3+/4

BCM4345C0 Raspbian 07/2019

Eval Board CYW20735B1 Debian testing 07/2019
Nexus 5 BCM4335C0 Android 7.1.2 12/2018
Samsung
Galaxy S8

BCM4347B0 Android 9 05-09/2019

droid, iOS, Linux, and macOS. Thus, the number of poten-
tially supported systems and chips is high. Tab. 1 lists device
and system combinations for that we ported and tested the
BLE patch.

The BLE patch itself requires to locate four functions
within the firmware binary. Overall, the patch is almost sim-
ilar for all firmware versions, and only these function loca-
tions need to be replaced.
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