
Impact of Feature Selection and CIR Window
Length on NLoS Classification for UWB Systems

Elisei Ember∗†, Jesus Pestana∗, Michael Krisper∗†, Michael Stocker†, Kay Römer†,
Carlo Alberto Boano†, and Pablo Corbalán Pelegrín‡

∗Pro2Future GmbH, Graz, Austria †Institute of Technical Informatics, Graz University of Technology, Graz, Austria
‡NXP Semiconductors Austria GmbH & Co KG, Gratkorn, Austria

Email: {name.surname}@pro2future.at ; {michael.stocker, roemer, cboano}@tugraz.at ; pablo.corbalanpelegrin@nxp.com

Abstract—Indoor localization systems based on Ultra-
WideBand (UWB) technology can typically achieve cm-level
accuracy, but their performance degrades in Non-Line-of-Sight
(NLoS) conditions. To cope with this problem, Machine Learning
(ML) techniques have been applied to detect such NLoS condi-
tions and adapt the localization algorithm accordingly. However,
such ML techniques are typically optimized for accuracy, result-
ing in computationally-complex models that cannot be run on
resource-constrained UWB devices. In this paper, we study and
propose methods to reduce the computational complexity of NLoS
classification models by applying ML-based feature selection and
by reducing the window length of the channel impulse response
for feature extraction. Specifically, we consider 29 features and
study the effect of feature selection across five different datasets to
obtain generalizable results. We show that we can extract two sets
of only 3 and 8 features, which result in tiny ML models (smaller
than 1 kB), and low computation times (3.6 ms and 27.7 ms on
a 80 MHz ESP8266 microcontroller, respectively). This allows a
reduction of the runtime by more than 90% compared to the
state of the art, while still maintaining an average classification
accuracy above 85% across all five datasets.

Index Terms—Channel impulse response, NLoS classification,
Machine learning, Feature selection, Embedded systems, Ranging.

I. INTRODUCTION

The popularity of UWB systems is soaring, thanks to their
increasing adoption in industrial applications [1], as well as
the introduction of UWB radios into modern smartphones [2]
and vehicles [3]. UWB systems enable cm-accurate localiza-
tion in indoor settings by means of multi-node ranging and
triangulation. In order to achieve such high-accuracy localiza-
tion, UWB systems employ a large bandwidth (≥ 500 MHz)
and transmit short signal pulses (≈ 2 ns). This allows UWB
receivers to accurately estimate the time-of-arrival of a signal
and, consequently, the distance between two UWB devices
performing peer-to-peer ranging, by inferring the so-called
Direct Path (DP) from the estimated Channel Impulse Re-
sponse (CIR). In simple terms, for Line-of-Sight (LoS) condi-
tions, the DP is identifiable by the First Peak (FP) in the CIR,
which represents the first path that arrived to the receiver.
The focus of our work is the classification of LoS and Non-
Line-of-Sight (NLoS) conditions during peer-to-peer UWB
communication. Under normal LoS conditions, i.e., when no
obstacles block the DP between two devices, the FP is clearly
distiguishable from other Multi-Path Components (MPCs)

500

0

500

1000

1500

2000

2500

A
m

p
lit

u
d

e

First Peak &
Direct Path

Channel Impulse Response (CIR)

LoS Maximum Peak

Noise Threshold

MED

RMS-DS
CIR Window Length

0 20 40 60 80 100

Tim e [ns]

0

500

1000

1500

2000

A
m

p
lit

u
d

e

First Peak

NLoS Maximum Peak

Noise Threshold

MED

RMS-DS
CIR Window Length

Direct Path

CIR

First Peak

Maximum Peak

Direct Path

Noise Threshold

Fig. 1. Channel Impulse Response (CIR) estimated by an UWB radio in a
Line of Sight (LoS) condition (top) and a Non-Line of Sight (NLoS) condition
(bottom), where an obstacle blocks the Direct Path (DP) of the UWB signal.
Some characteristics are highlighted, e.g., the CIR Window Length (CIR-WL)
and the noise threshold, which are used to extract the features for the
NLoS/LoS scenario classification (see Table I, §II). The CIR-WL used for
extracting features, here 90 ns, starts 10 ns before the estimated DP, which is
the First Peak (FP) in the CIR. Often, to take into account the undersampling
of the CIR, the position and amplitude of the FP are further refined, e.g., by
means of interpolation. In the shown NLoS case, the peak corresponding to the
DP is completely attenuated. In both plots, the features of Mean Excess Delay
(MED), RMS Delay Spread (RMS-DS), First Peak (FP) and Max. Peak (MP)
are shown. The plots showcase common differences on the feature values for
LoS and NLoS cases. In LoS cases, the MED is commonly close to the FP, and
the RMS-DS is usually narrower than in NLoS cases. The configuration and
the device determine the units of measurement of the CIR signal amplitude.

originating from reflections by walls and other objects (Fig. 1,
top). However, in NLoS conditions, the direct path between
transmitter and receiver may be blocked or attenuated, result-
ing in a decreased amplitude of the FP compared to the MPCs,
or it can even drop under the noise threshold (Fig. 1, bottom).
As a result, an MPC may be erroneously identified as FP,
causing ranging errors up to a few meters [4], [5].
NLoS detection. To tackle this problem, the research com-
munity has developed many solutions to differentiate between
NLoS and LoS scenarios [6], [7]. This information can
be used to mitigate ranging errors [5], or to improve the
localization accuracy by means of a refined anchor selec-
tion [8], [9]. Several methods leverage the CIR for NLoS

classification, and either follow statistical approaches [10],
[11] or make use of Machine Learning (ML). A notable ML-
based approach is the one proposed by Maranó et al. [4],
who extract six features1 from the CIR and use them to
train a Least-Squares Support-Vector Machine (LS-SVM) to
classify NLoS and mitigate ranging errors. Building upon
this seminal work, Stocker et al. [5] introduce additional
features, benchmark their performance for NLoS classification,
and apply their results to improve the correction of ranging
errors. Nguyen et al. [13] compare LS-SVMs against Rele-
vant Vector Machines (RVMs), showing better performance.
Ferreira et al. [14] use 14 features provided by the popular
Qorvo DW1000 radio [15], perform ML feature selection
using correlation matrix-based analysis, and utilize several ML
models for NLoS classification as well as regression algo-
rithms for ranging error mitigation. Recently, there has been
an increasing interest in Deep Neural Networks (DNNs) [16],
[17], as these do not rely on manually-crafted features, but
instead learn features autonomously during training.
Limitations of existing solutions. Existing works on NLoS
classification mainly focus on achieving high accuracy and rely
on computationally-expensive ML classifiers or a high number
of features [5], [12], [17], which do not fit the constraints of
the low-power UWB tags used to build location-aware IoT
applications (e.g., the off-the-shelf Qorvo MDEK1001 device
runs at 64 MHz and embeds only 256/32 kB of flash/RAM).
Existing solutions are typically meant to run on powerful
edge devices [17]–[19], e.g., Raspberry Pis featuring fast
CPUs/GPUs and Gigabytes of memory. This, however, re-
quires the transmission of the CIR to an edge device and of the
classification result back to the UWB tag, which increases the
requirements on network bandwidth and results in poor scala-
bility and reliability (e.g., radio interference from nearby Wi-Fi
devices can destroy or corrupt the transmitted packets [20]).
For these reasons, NLoS classification should ideally be
performed directly on the UWB tag itself [9], [21]. This,
however, requires ML models that are not only tiny
(i.e., with a small memory footprint), but also lightweight
(i.e., computationally simple). In fact, a short runtime of the
ML model is essential to be able to update the tag’s position
at a high frequency. Unfortunately, the state-of-the-art (SoA)
has only devoted limited attention to the creation of small and
lightweight models [9]. In particular, we identify an important
gap to fill: none of the existing studies in the literature reports
the feature extraction times, which is crucial information when
designing localization solutions sustaining high update rates
on embedded micro-controllers. Moreover, existing literature
typically relies on algorithms learning the relevant features
for classification automatically (e.g., DNNs [16]–[18]) or on
a relatively small numbers of features [14], [22], [23], which
does not shed light on a small set of features enabling a high
classification accuracy. Existing works also typically focus on

1Examples of features include the calculations of statistics from sequences
of Received Signal Strength (RSS) samples [12] or the calculation of certain
characteristics of the CIR estimate [4], [5], [12] such as the Signal-to-Noise
Ratio (SNR), i.e., the ratio of the signal power to the noise power.

only one dataset, which prevents a generalization of findings.
In fact, as we show in this paper – in which we systematically
benchmark a large number of ML classifiers over 5 different
datasets – the performance of a feature may vastly vary across
datasets due to the presence/absence of specific corner cases.
Contributions. We hence focus on NLoS classification for
resource-constrained UWB devices, aiming to derive tiny ML
models and techniques to reduce their computational complex-
ity (e.g., feature selection and shorter feature extraction time).
We start from a set of 29 features (29 Fs), which is – to the best
of our knowledge – larger than the most comprehensive study
in the literature [12], and identify a suitable method to reduce
the number of features while delivering a high classification
accuracy. Feature selection2 is a broad topic in ML [24].
In our investigation, we have found particularly interesting
the application of Decision Trees (DTs) in other fields of
research [25], [26], due to their capacity to deal with higher
numbers of features and relatively lower training times. We
perform our feature selection procedure (described in §II),
and compare the resulting feature importance rankings with
the SoA in §III-A. Based on the feature rankings, we propose
small sets of only 3 and 8 features to build NLoS classification
models that consistently achieve a high accuracy across several
datasets. This small sets of features yield dramatic reductions
of the feature extraction time (FE-Time): from 90 ms (for
29 Fs) to 45.8 ms (for 8 Fs) and 6.21 ms (for 3 Fs).
We further analyze how to reduce the FE-Time by shortening
the CIR Window Length (CIR-WL) considered for feature ex-
traction, an aspect that was investigated by related work only to
a limited extent [9], [18], [27]. Specifically, we first design an
ML Pipeline (described in §II) to automatically select features
with a single CIR-WL, from a range of possible CIR-WL val-
ues, by means of hyperparameter tuning. Additionally, we
propose a method to select features sets with features extracted
using different CIR-WLs. To this end, we add a step to our
feature selection process and select the best CIR-WLs using
the Kolmogorov-Smirnov statistic (showcased in §III-B), a
method already applied in other fields of research [28]. This
way, we achieve even faster FE-Times of 27.7 ms (for 8 Fs) and
3.61 ms (for 3 Fs) – which represents a reduction by more than
90% compared to the SoA – while maintaining a classification
accuracy (between 76.6% and 91.5%) that is in line with or
even superior than the SoA, as shown in §III-C.
Therefore, our findings enable the creation of NLOS classifi-
cation schemes that are accurate, tiny, and offer fast FE-Times,
which are a good fit for resource-constrained Micro-Controller
Units (MCUs) such as the 80 MHz ESP8266. Note that our
findings are evaluated across four publicly-available datasets
and our own INDUSTRIAL dataset, which shows the generality
of the proposed approach and provides a basis for comparison
with previous SoA methods.

2Several feature selection methods have been used for NLoS classification,
such as (i) adding features incrementally in different combinations [4], [5],
(ii) using correlation matrices estimating the amount of information provided
by the features [14], and (iii) applying genetic algorithms [12].

Data
Preparation

Hyperparameter Tuning

Hyperparameters:
HP0: CIR Window Length (CIR-WL)
HP1: Number of selected features
HP2: Correlation factor threshold
HP3: Regularization of ML model

Model
Assessment

Criteria:
Option 1: (unsupervised) Computation time
Option 2: (supervised) Ranking by feature importance
Option 3: (supervised) Single feature classification
efficacy, calculated using the KS Statistic

Train Data, k=5 Test Data, k=5

Fold 1 Fold 2 Fold 3 Fold 10…

Train Data, k=1Test Data, k=1
5-fold …

10-fold

P1:
Prepare Data

ML Model
Testing

HP0*, HP1*,
HP2*, HP3*

HP0

P3: Feature
Selection by
Importance

P4: Select Feature
by Pairwise
Correlation

P2: ML Model
Training/Testing

(All Features)

HP1, HP2, HP3

P2: ML Model
Training/Testing

(Selected Features)

10-fold Cross Validation (CV)
Train data: 9 folds
Test data: 1 fold

Data

Fig. 2. ML pipeline proposed in this work, which incorporates best ML
practices, hyperparameter tuning, and assessment via nested cross-validation.

II. METHODOLOGY

We propose an automated ML pipeline for the training
of ML models for the classification of UWB NLoS/LoS
conditions. Our method follows two main approaches to
reduce the computational complexity: (1) feature selection,
where we identify and use only the most relevant features for
classification, and (2) reduction of the feature extraction time,
achieved by shortening the CIR Window Length (CIR-WL)
for feature extraction. For a fair comparison with the SoA, we
use a wide set of features, implement our models using several
ML classifiers, and evaluate them across 5 datasets.
ML pipeline. Our proposed ML pipeline (Fig. 2) implements
Nested Cross-Validation (Nested CV) [29]–[32], so that we
can perform hyperparameter (HP) tuning and obtain unbiased
performance estimates for our ML models. The HP tuning uses
the NLoS/LoS classification accuracy as optimization objec-
tive to select the HPs, namely, a single CIR-WL (HP0) for the
feature extraction, the feature selection HPs (HP1, HP2), and
the ML model regularization parameters (HP3). As shown in
Fig. 2, Nested CV allows us to achieve the HP tuning in the
inner CV loop (kinner = 10 folds). After re-training with the
tuned HPs, the outer CV loop assesses the performance of the
ML model in a hold-out fold (kouter = 5 folds). These kouter
assessments provide an unbiased estimate of the performance
of the final ML model during deployment [30]–[32].
Data preparation. Our CIR-WLs start 10 ns before the es-
timated DP, which is the FP in the CIR. The feature ex-
traction and a (per-feature) min-max normalization per each
CIR-WL (HP0) are part of the data preparation (Fig. 2).
To tackle the issue of dataset imbalance, we perform strat-
ified splits according to certain parameters provided by the
dataset, utilizing the StratifiedGroupKFold class from
the Python scikit-learn library. The group split is per-
formed to obtain train and test sets that are distinct from each
other at that level and setting, e.g., room type and frequency
channel setting, in order to replicate real-world outcomes.
Generally, the stratified group k-fold split might yield a lower
accuracy compared to a randomized k-fold split.

TABLE I
CATALOGUE OF FEATURES EXTRACTED FROM THE CIR.

Feature Name Calculation and comments

[F1] RMS Delay Spread
(RMS-DS)

τRDS =
(∑N

0 (tk − τMED)2|c(tk)|2/ECIR ∆tk

)1/2

τMED : Mean Excess Delay (MED). ECIR: Energy.
c(t) denotes the CIR signal.
t[] or tk denote timestamps. ∆tk: time interval.

[F2] Signal to Noise
Ratio (SNR)

SNR = µPsignal/µPnoise

µPsignal and µPnoise are the average power of signal
and noise respectively.

[F3, F9, F11
(3 features)]
Mean Excess Delay
(MED)

[F11] τMED =
∑N

0 tk · |c(tk)|2/ECIR ∆tk
Extra Fs taking tL (Low threshold) or tFP (First Peak)
as initial time: (1) [F3] τMED_L = τMED − tL and (2)
[F9] τMED_FP = τMED − tFP .

[F4] Energy of the
CIR Signal

ECIR =
∑N

1 |c(tk)|2 ∆tk
Its value depends on the CIR window length.

[F5] Form Factor kF = RMSCIR/µCIR

RMS: Root Mean Square value. µ: mean.
[F6] Standard Deviation σCIR: (statistics) standard deviation of the whole CIR.
[F7] Rise Time [4] ∆trise = tH − tL

Elapsed time between 2 threshold values, High (H) and
Low (L), of the CIR [4].

[F8] Energy difference
total minus FP [5]

∆ECIR_FP = ECIR − EFP

EFP =
∑

c(tk)
2 ∆tk for tk around tFP .

[F10] Skewness skew = m3/m
3/2
2 = m3/σ3

CIR
Same definitions as in statistics for the kurtosis, skewness
and the jth central moments mj .

[F12, F22 (2 features)]
Rician K Factor
[33], [34]

kRK = PLoS/PNLoS = PFP /
∑NMPCs

1 PMPC k

[F12] Dominant path to remaining paths power ratio.
[F22] Extra feature with PMP (Max. Peak), rather than
with PFP . MPCs: Multipath Components.

[F13] Kurtosis kurt = κ = m4/m2
2 = E

[
(c(t)− µCIR)4

]
/σ4

CIR

[F14] First Peak (FP),
or first path, amplitude

CFP = c(tFP)
CIR value at the First Peak (FP)
C[] values extracted from CIR.

[F15] FP to total
Energy Ratio

ERFP :CIR = EFP /ECIR

ER: Energy Ratio
[F16, F19 (2 features)]
Mc
(by Decawave [23])

Mc = CFPP /CMP

With FPP = max (FPP1, FPP2, FPP3) with FPPj

being the peaks after tMP ordered by occurrence, or
around tMP ordered by amplitude.

[F17] FP to MP
Energy Ratio

ERFP :MP = EFP /EMP

[F18] Maximum Peak
(MP), or max. amplitude

CMP = c(tMP) = maxt |c(t)|
MP: Maximum Peak or value.

[F20] Noise Power be-
fore the FP

PNBFP = 1
N

∑tL
tL−N c(tk)

2 ∆tk
Summation using only values before tL. [5]

[F21] Elapsed time
between FP and MP [23]

∆tMP _FP = tMP − tFP

FP: First Peak or, in some cases, named first path.
[F23, F27 (2 features)]
Likelihood of
Undetected Early
Paths (LUEP)
(by Decawave [23])

LUEP = peak count/max peaks count
peak count: number of peaks above noise threshold before
tMP , with max being its theoretical maximum value.
Extra feature calculated using the range from [F27] tL or
[F23] tFP up to tMP .

[F24] Energy difference
between MP and FP

∆EMP _FP = EMP − EFP

[F25] Rise time
to FP [23]

trise_FP = tFP − tL

[F26] Peak to RMS
Power Ratio

PRMP :RMS = k2crest
PR: Power Ratio

[F28] Crest Factor kcrest = c(tMP)/CRMS

[F29] NLOS Probability
(by Decawave [23])

prNLoS = function(∆tMP _FP , tMP)
Formula provided by Decawave in [23] empirically based
on laboratory and real-world tests.

Feature catalogue. We implement 29 features computed
from the CIR, which are listed in Table I. The assigned
identifiers (F1, F2, . . .) already correspond to the ranked
order of importance presented in §III-A and shown in
Fig. 3. Most of the features are taken from literature
on UWB [4], [5], [12], [14], [23]. We added a few fea-
tures, which are modified versions from some features made
relative to other related features by means of subtraction,
F3: τMED_L, F8:∆ECIR_FP , F9: τMED_FP , F25: trise_FP ,
or division, F15:ERFP :CIR, F17:ERFP :MP , and adapted the
Rician K Factor, F12 & F22: kRK , from RSSI-based Wi-Fi sys-

tems [33], [34]. All five datasets contain CIR values, but some
do not provide all the necessary per-measurement acquisition
parameters (e.g., the noise power) to compute certain features
(e.g., the SNR). Therefore, we use the CIR values to estimate
the missing parameters.
Feature selection. The supervised feature selection (Fig. 2)
is performed inside the HP tuning CV loop, in accordance
with Section 7.10.2 of [35], i.e., only unsupervised screening
steps can be performed outside of the CV loop. To select
the best features, we divided this process into two pipelines:
P3 and P4 (Fig. 2). In P3, we employ a Decision Tree
(DT) model from the Python scikit-learn library to
compute feature importance using the Gini impurity metric
and create a ranking for feature selection [25], [26]. Only the
best HP1 features according to this ranking are selected. High
correlation between features can be disadvantageous for ML
models such as SVM [14]. Therefore, in P4, features with an
absolute pairwise correlation coefficient exceeding a threshold
(HP2) are grouped together. One feature per group is selected
based on a certain criteria (e.g., max. feature importance).
Reduction of the feature extraction time. Two methods for
the reduction of the FE-Time by means of CIR-WL reduction
and feature selection have been implemented: (i) through the
HP tuning inside the ML Pipeline, and (ii) cross-datasets
CIR-WL selection, by means of the KS statistic.
The ML pipeline HP tuning achieves the feature selection by
choosing a single CIR-WL for feature extraction (HP0) along
with the number of features (HP1). Although the FE-Time is
not part of the HP tuning optimization objective, by selecting
features and reducing the number of features and the CIR-WL,
this method already provides lower FE-Times.
The second method, cross-datasets CIR-WL selection, allows
the reduction of the FE-Time further, by choosing different
CIR-WLs for each feature of the selected feature set. In a
subsequent step to our feature selection process, the best
per-feature CIR-WL is chosen based on the KS statistic.
We present experimental results for this method in §III-B,
performing feature selection without the ML Pipeline.
We use the KS statistic for feature selection as follows.
Per feature, the KS statistic is a measure of the difference
between the two Probability Density Functions (PDFs) of
the feature for the two class labels (LoS and NLoS), and
is calculated as the maximum absolute difference of their
Cumulative Distribution Functions (CDFs). For balanced data,
a single feature binary classifier theoretically achieves an ac-
curacy of 50% +KS · 50%. Therefore, a higher KS statistic
implies a higher predictive power of the feature. Then, to
select a common set of features with differing CIR-WLs and
achieve a very competitive accuracy on all datasets in our
evaluation, our method proceeds as follows. For each feature,
separately, the per-dataset KS statistics is maximized by fine-
tuning the CIR-WL. We calculate, per CIR-WL, the mean of
the feature’s KS statistic across datasets. Then, the optimal
smallest CIR-WL is chosen, which approximately achieves the
max of the mean KS across datasets.

TABLE II
CHARACTERISTICS OF THE FIVE UTILIZED DATASETS.

Dataset Characteristics
ANGARANO
[18], [37]
Data size: 55k
NLoS: 76,6%

- No device parameters
- Short CIR-WL (157 Sam-
ples)
- Only ranging error, with no
ranging Ground Truth (GT)

! No Channel setting information
- No CIR scale normalization
+ Variation of obstacles and rooms
sizes
! Consideration of a plastic
obstacle as LoS case

BREGAR #1
[16], [38]
Data size: 42k
NLoS: 50%

! Using Channel 2
! Focus NLoS/LoS classes
+ Device parameters
- No ranging GT

+ Many indoor locations
- Randomized with respect to the
indoor location

BREGAR #2
[17], [39]
Data size: 15.5k
NLoS: 68.5%

! Using all 5 channels
! Focus: ranging error mitiga-
tion
+ Device parameters
+ Ranging GT

+ Many indoor locations
- Distance ranges per case:
· LoS: 10 (1m to 4.5m);
· NLoS: 25 (2m to 8m)

STOCKER CPS
[5], [36]
Data size: 36,7k
NLoS: 33.6%

! Using Channel 5
+ Device parameters
+ Ranging GT, with 230 dis-
tances per scenario and ranges
of up to 12m

+ Many indoor locations
+ Three scenarios: LoS, NLoS,
WLoS (32%)

(own) INDUSTRIAL
Data size: 95,7k
NLoS: 50,3%

! Using Channel 9
! Industrial scenario with focus
on MPCs
+ Device parameters

+ Ranging GT
+ 2 devices and 2 receivers
+ 96 distances per scenario

Legend + Good, - Negative, ! Important characteristics

ML classifiers. We explore multiple ML models, divided
according to their usual memory size being greater or smaller
than 2 kB, respectively, into (i) large models such as Sup-
port Vector Machine (SVM) with RBF kernel (RBFSVC),
DTs, k-Nearest Neighbors (kNN), and single-Layer Perceptron
Classifier (MLPC), and (ii) small ones such as Logistic Regres-
sion (LogReg), Linear SVM (LinSVC), linear model Ridge
classifier (Ridge), and Gaussian Naïve Bayes (GaussianNB).
This split separates small models, which are embeddable in
small MCUs with only several kilobytes (kBs) of memory,
from large models which often require MBs of memory.
Datasets. To analyze the best features and CIR-WLs, we
exploit five UWB datasets, whose main characteristics are
listed in Table II. The first four rows refer to publicly-available
datasets. These datasets vary in size, proportion of NLoS/LoS
measurements, scenarios, environments, availability of param-
eters important for the processing of the CIR, and implicit
biases. The choice of UWB channel potentially affects the sig-
nal transmission, e.g., through obstacles. It is noteworthy that
the channels differ between datasets, except for ANGARANO,
which does not provide this information, but is stated to be
using settings based on those from BREGAR #1.
When not specified, the CIR-WL in the dataset is 300 samples.
We remark that the STOCKER CPS dataset [36] introduced a
third scenario, named Weak-LoS (WLoS). However, similar
to Stocker et al. [5], we decided to ignore the WLoS mea-
surements and focus on NLoS/LoS classification to make our
evaluation comparable across the five datasets.
The last row in Table II describes our own INDUSTRIAL
dataset, which we acquired in an industrial warehouse setting
using a robot. This dataset represents typical indoor industrial
environments with metallic obstacles, NLoS conditions, and
rich MPCs. Different from the 4 publicly-available datasets,
which only use Decawave radios, INDUSTRIAL includes mea-
surements with the MobileKnowledge platforms [40] featuring

RM
S

Del
ay

 S
pr

ea
d
SN

R

Diff
. (

po
s)

 th
L
to

 ta
u

M
ED

En
er

gy

Fo
rm

 fa
ct

or

St
an

da
rd

 d
ev

ia
tio

n

Rise
 T
im

e

Diff
. (

en
er

gy
) T

ot
al
 to

 F
P

Diff
. (

po
s)

 F
P

to
 ta

u
M
ED

Sk
ew

ne
ss

M
ea

n
Ex

ce
ss

 D
el
ay

Ric
ia
n

K
Fa

ct
or

 F
P

Ku
rto

sis

FP
 A

m
pl

itu
de

Rat
io
 (e

ne
rg

y)
 F
P

to
 To

ta
l

M
Cv1

Ra
tio

 (e
ne

rg
y)

 F
P

to
 M

P

M
ax

 A
m

pl
itu

de

M
Cv2

Noi
se

 b
ef

or
e

FP

Diff
. (

po
s)

 F
P

to
 M

P

Ric
ia
n

K
Fa

ct
or

 M
P

Lu
ep

 to
 F
P

Diff
. (

en
er

gy
) M

P
to

 F
P

Rise
 T
im

e
FP

Po
wer

 o
f M

P/
RM

S

Lu
ep

 to
 th

L

Cre
st

 Fa
ct

or

Pr
NLO

S

Angarano

Bregar 1

Bregar 2

Stocker CPS

Industrial

0

7

14

21

28

Fe
a
tu

re
R

a
n
k

Fig. 3. Across-datasets feature importance ranking. The color coding shows
the feature ranking per dataset, with features (x-axis) ordered by the overall
rank computed across the five datasets (y-axis). The 12 best features are
highlighted using a red frame.

-

-
-

-
-

-
-

-
-

-
-

-

Fig. 4. Correlation matrix of the 12 best features by DT-based ranking. The
color coding emphasizes highly correlated features. The 8 selected features
(having a correlation threshold ≥ 0.85) are underlined in red.

NXP SR150 chipsets with two chip and three patch antennas.
INDUSTRIAL provides 95k samples from 96 robot positions
and with an NLoS/LoS ratio of ≈50%. The distance Ground
Truth was acquired using the robot and an OptiTrack motion
capture system [41].

III. EXPERIMENTAL RESULTS

We present the outcome of our methods for feature selection
(§III-A) and reduction of the FE-Time (§III-B), as well as a
performance evaluation across the five datasets of our small
ML models and those trained using the ML pipeline (§III-C).

A. Feature Selection

We demonstrate the application of our feature selection
method across the five datasets in Fig. 3 and 4. We apply the
feature selection with the mean optimal values of HP1 and
HP2 estimated by the Nested CV procedure and compute the
feature importance ranking per dataset using a DT with depth 8
(see §II), which achieves good accuracy without overfitting.
Interestingly, the best 12 (HP1) features are related to shape
(i.e., the energy distribution over the CIR), energy, and timing
characteristics of the CIR.
We observe that INDUSTRIAL, STOCKER CPS, and BREGAR
#1 result in similar feature rankings, while ANGARANO and
BREGAR #2 do not follow the same trend consistently (Fig. 3).
We conjecture that is because in ANGARANO, there is (i) a

lack of CIR normalization factors, (ii) a high percentage of
NLoS cases, and (iii) different types of obstacles to create
NLoS conditions, which results in the best ranked features
to be timing- and shape- related, with the ranking of energy-
related features being lower. In BREGAR #2, we achieve near
perfect classification accuracy, 99.18% (kNN, §III-C), which
hints the lack of certain corner cases present in other datasets.
Fig. 4 shows the correlation matrix of our top 12 features (Fs),
which allows us to further reduce the number of features
(#features) to 8, with an FE-Time of 45.8 ms, by using a
correlation coefficient threshold of 0.85 (HP2). Features are
selected from left to right, according to their average impor-
tance ranking across-datasets (Fig. 3), and rejecting features
that present correlations ≥ 0.85 with the already selected set
of features. Furthermore, using a 10-fold evaluation, we have
estimated the accuracy per dataset of ML-models with increas-
ing #features (Fig. 5), following our ranking and applying
the correlation coefficient threshold. Competitive results across
datasets can be achieved with only 3 Fs (over 84% accuracy
and upwards, except in Angarano), and somewhat better results
with 7 to 9 Fs (around 0.1-4% better accuracy in comparison
to with 3 Fs, depending on the dataset and ML model),
and only minor increases in accuracy with more Fs (<1%).
Considering the pairwise-correlations (Fig. 4), we select our
overall best 3 Fs with RMS-DS (F1), SNR (F2) and ECIR

(F4), which yields a FE-Time of 6.21 ms. τMED_L (F3) is not
included, since it is correlated with RMS-DS.

Comparison to SoA. We compare our findings with the
features selected by existing works, when provided in the
literature, their relative ranking (we use as notation {F1, F2,
F3, . . . }, where F1 is the highest-ranked feature). We denote
the distance estimated by Two-Way Ranging (TWR) as feature
F100, as this is used by several related works [5], [12], [14] –
yet, we refrain from using it because distance estimates are not
available in all datasets nor localization systems using TDoA,
i.e., this feature can hardly be used in practical settings.
The genetic algorithm by Zeng et al. [12] provides very
different feature selections and rankings compared to the set
of 12 top Fs we have identified, namely: {F100, F4, F18,
F7, F6, F24}, {F4, F18, F7, F17}, and {F4, F18, F7, F6,
F24, F17}. Interestingly, the three best features that we have
identified (i.e., F1, F2, F3, see Figs. 3 and 4) have not been
considered in their feature selection sets. Unfortunately, due
to the unavailability of their dataset, we are unable to estimate
the relative ranking of F1, F2, and F3 in their settings.
Bregar et al. [17] use F1, F4, F10, F11, F13 and F15·F4,
which is a combination by means of multiplication of our
features F15 and F4. Stocker et al. [5] use F8 and {F100,
F13, F7, F11, F4, F1, F18, F20, F8}. Ferreira et al. [14] use
F2, F4, F7+F25, F8, F14, F15 and F100. Notably, these three
works did not include some of our best features, i.e., the SNR
(F2), τMED_L (F3), kF (F5), and σCIR (F6). Moreover, these
works make all use of τMED (F11), and we show that F3 –
which is a slight variation of F11 that is also strongly related
to τMED_L – performs better.

Fig. 5. Effect of the per-dataset feature selection, with 2 curves of the same
color per dataset (S: Small, L: Large models), showing mean accuracy vs.
number of features and best classifier (markers), 10-fold evaluation.

Fig. 6. Effect of CIR-WL, with 2 curves of 1 color per dataset (S: Small, L:
Large models), showing mean accuracy vs. CIR-WL (feature extraction) and
best classifiers (markers) from the Nested CV assessment.

This analysis highlights how existing works use largely differ-
ent feature sets, and emphasizes the importance of our work,
which is the first shedding light on which features perform
best across several datasets. Moreover, when considering only
a small numbers of features, the feature importance order we
have derived yields better accuracy than the one proposed by
the SoA (e.g., [5] consider F1 and F4 of lower importance in
STOCKER CPS, which results in lower performance).

B. Feature Extraction Time Reduction

Feature selection provides the most relevant features sets
to achieve competitive classification accuracy, while reducing
the #features to extract and therefore the FE-Time. From the
Nested CV assessment, we obtain the average accuracy per
dataset of the ML-models using (mean values across folds) 5.8
to 12.4 features (see §III-C), all extracted by processing only a
certain CIR-WL (Fig. 6). For all datasets except INDUSTRIAL,
the accuracy does not depend strongly on the CIR-WL, and
50 ns yields competitive results.
In INDUSTRIAL, the classifiers perform better using features
in the 120–150 ns CIR-WL range. Upon inspection of the
affected samples, these features deliver new information for
samples rich in MPCs. Our results indicate that using shorter
CIR-WLs can impact both the computational efficiency and
the accuracy. To showcase this effect, we estimate the efficacy

Fig. 7. Per-dataset efficacy for NLoS classification of the 3 best features,
calculated using the KS statistic vs. the processed CIR-WL for each dataset.

of the features for the NLoS classification by means of the
Kolmogorov-Smirnov (KS) statistic against the processed
CIR-WL (Fig. 7) for our overall three best features: F1, F2
and F4. A single feature classifier would theoretically achieve
an accuracy of 50% + KS · 50% for NLoS/LoS balanced
data. The best classification efficacy is often obtained for long
CIR-WLs, but, as shown in Fig. 7, there are exceptions where
shorter CIR-WLs work better (e.g., in the 120–150 ns range
for INDUSTRIAL).
By applying the cross-datasets CIR-WL selection (discussed
in §II), using all datasets except ANGARANO due to its shorter
CIR-WL (Table II), to our best 8/3 Fs sets, we obtain the
“CIR-WL-Opt” overall best 8/3 Fs sets. Following this proce-
dure, we select the 3 Fs set: RMS-DS, SNR and energy, with
“near-optimal” CIR-WLs of 140 ns, 60 ns and 40 ns respec-
tively, which we denote F1(140), F2(60) and F4(40). We select
the 8 Fs set with optimal CIR-WLs: F1(130), F2(30), F3(130),
F4(30), F5(130), F7(120), F10(130) and F12(130). From the
common CIR-WL (220 ns) to these varying CIR-WLs, we
reduce the FE-Times for the 8 Fs and 3 Fs sets from 45.8
and 6.21 ms to 27.7 and 3.61 ms.
Comparison to SoA. Our “CIR-WL-Opt” 3 Fs set (FE-Time:
3.61 ms) achieves a reduction in the FE-Time of up to 95%
(see Table IV) when compared to the SoA [5], [17].

C. NLoS Classification Results

In this section, we discuss our NLoS classification results
and compare our achieved accuracies with the SoA. We present
the performance characteristics of our ML models in Table III.
The accuracy is used as the main performance metric for the
NLoS/LoS classification models. Each main row of Table III
corresponds to a different performance evaluation, described
in the first column, using different sets of features and/or
CIR-WLs. The FE-Time for the corresponding feature set is
provided in the first column, except for the ML Pipeline,
where this and other performance parameters of the resulting

TABLE III
MAIN PERFORMANCE METRICS ATTAINED ACROSS FIVE DIFFERENT DATASETS BY OUR BEST NLOS CLASSIFICATION ML MODELSb .

Dataset ANGARANO c BREGAR #1 BREGAR #2 STOCKER CPS INDUSTRIAL
Best-L Best-S Best-L Best-S Best-L Best-S Best-L Best-S Best-L Best-S

All 29 Fs
CIR-WL: 220 nsc

FE-T: 90 ms

ML-Model DT LinSVC RBFSVC LogReg kNN LinSVC MLPC LinSVC RBFSVC LinSVC
Accuracy 77.41% 76.70% 87.10% 86.52% 98.73% 93.73% 88.95% 87.99% 91.87% 90.82%

Mem-Size 28.52 kB 1.01 kB 2.77 MB 1.08 kB 3.21 MB 1.01 kB 9.12 kB 1.01 kB 3.93 MB 1.01 kB
MP-Time 389 ns 412 ns 703 us 447 ns 203 us 1.15 us 1.15 us 924 ns 1.21 ms 336 ns

ML Pipelinea
Nested CV

5-fold model
assessment

ML-Model kNN LogReg RBFSVC LogReg RBFSVC LinSVC RBFSVC LogReg kNN LogReg
Accuracy 78.27% 76.70% 87.70% 86.44% 99.18% 93.51% 89.00% 88.32% 92.86% 92.80%

Mem-Size 15.53 MB 0.89 kB 0.89 MB 0.9 kB 51.57 kB 0.88 kB 0.25 MB 0.92 kB 25.44 MB 0.92 kB
MP-Time 1.57 ms 308 ns 1.2 ms 1.51 us 45.3 us 748 ns 127 us 920 ns 379 us 882 ns
FE-Time 3.29 ms 6.64 ms 3.42 ms 39.3 ms 5.8 ms 2.74 ms 22.3 ms 1.42 ms 5.16 ms 8.33 ms
CIR-WL 60 ns 150 ns 60 ns 220 ns 100 ns 50 ns 220 ns 20 ns 130 ns 140 ns

Features 10.6 5.8 9.8 9 11.6 12.4 8.8 11.3 6.4 11.6

Overall best 8 Fs
CIR-WL: 220 nsc

FE-T: 45.8 ms

ML-Model kNN LogReg RBFSVC LogReg kNN LogReg RBFSVC LogReg RBFSVC LogReg
Accuracy 77.74% 76.58% 87.37% 86.10% 98.67% 90.71% 88.49% 85.96% 91.39% 89.65%

Mem-Size 7.41 MB 0.91 kB 0.89 MB 0.89 kB 2.18 MB 0.89 kB 0.4 MB 0.89 kB 1.31 MB 0.89 kB
MP-Time 109 us 256 ns 598 us 407 ns 45 us 913 ns 259 us 642 ns 789 us 183 ns

Overall best 8 Fs
CIR-WL-Opt

FE-T: 27.7 ms

ML-Model kNN LogReg RBFSVC LogReg kNN LinSVC RBFSVC LinSVC RBFSVC LogReg
Accuracy 77.28% 76.57% 87.07% 84.65% 98.14% 89.18% 87.73% 84.30% 93.56% 91.48%

Mem-Size 8.01 MB 0.91 kB 0.91 MB 0.87 kB 2.15 MB 0.81 kB 0.34 MB 0.84 kB 0.95 MB 0.89 kB
MP-Time 163 us 414 ns 605 us 455 ns 74.2 us 1.76 us 211 us 640 ns 638 us 306 ns

Overall best 3 Fs
CIR-WL: 140 ns
FE-T: 4.17 ms

ML-Model RBFSVC Ridge DT LogReg kNN LinSVC MLPC LogReg RBFSVC LogReg
Accuracy 76.61% 76.61% 86.21% 84.80% 95.89% 88.23% 84.67% 84.49% 92.69% 91.32%

Mem-Size 1.03 MB 0.88 kB 29.19 kB 0.84 kB 0.89 MB 0.78 kB 6.6 kB 0.87 kB 0.63 MB 0.87 kB
MP-Time 1.21 ms 210 ns 273 ns 306 ns 22.7 us 598 ns 504 ns 459 ns 719 us 128 ns

Overall best 3 Fs
CIR-WL-Opt
FE-T: 3.61 ms

ML-Model RBFSVC Ridge RBFSVC LogReg kNN LinSVC MLPC LogReg RBFSVC LogReg
Accuracy 76.61% 76.57% 86.13% 84.53% 95.79% 87.99% 83.99% 84.00% 92.32% 90.96%

Mem-Size 1.02 MB 0.88 kB 0.49 MB 0.84 kB 0.89 MB 0.78 kB 6.7 kB 0.87 kB 0.66 MB 0.87 kB
MP-Time 1.21 ms 209 ns 589 us 747 ns 24.57 us 719 ns 462 ns 378 ns 818 us 314 ns

aML Pipeline: of the parameters shown, {ML-model, and CIR-WL} are fixed by the HP tuning, whereas {Accuracy, Mem-size, MP-Time, FE-Time, #Fs}
are averages over the 5 model assessment folds. bPer column, the best accuracy is indicated in bold, and the models with the fastest FE-Times are
underlined. In terms of the MP-Time and the ML-Models that we tested, the reader can assume that all small models and the DT (depending on the tree
depth) have similar MP-Times in a small MCU, whereas for the large models a measurement of the MP-Time in the MCU is required. cThe longest CIR-WL
contained in ANGARANO is 157 ns, which results in FE-Times of 64.5 ms (for all 29 Fs, row 1) and 30.6 ms (for overall best 8 Fs, row 3).

TABLE IV
COMPARISON OF THE ACHIEVED ML-MODEL ACCURACY AND EXTRACTION TIME USING PROPOSED AND SOA FEATURE SETS.

State of the Art (SoA)d StrGrSplit Proposed Approache Diff. SoA to Proposed
Dataset Paper ML-Model # Fs FE-Tf Accuracyg Accuracyh ML-Model # Features FE-Tf Accuracy ∆Accuracy ∆FE-T

BREGAR #1
[38] [17]

CNN - - 87.40% - RBFSVC (Nested CV) 9 3.42 87.70% 0.3% -
LinSVC 6 76.60 82.50% 85.87% LinSVC (CIR-WL-Opt) 3 3.61 84.33% -1.54% -95.29%

DT 6 76.60 - 86.43% DT (WL 140 Best) 3 4.17 86.21% -0.22% -94.56%

STOCKER CPS
[36] [5]

RBFSVC 3 32.50 63.00% 76.10% LogReg (CIR-WL-Opt) 3 3.61 84.00% 7.90% -88.89%
RBFSVC 7 41.60 84.00% 86.66% LogReg (Nested CV) 11 1.42 88.32% 1.66% -96.59%
RBFSVC 8 41.67 90.00% 87.46% LogReg (Nested CV) 11 1.42 88.32% 0.86% -96.59%
RBFSVC 9 42.30 92.00% 88.36% LogReg (Nested CV) 11 1.42 88.32% -0.04% -96.64%
LogReg 3 32.50 - 72.79% LogReg (CIR-WL-Opt) 3 3.61 84.00% 11.21% -88.89%
LogReg 9 42.30 - 82.58% LogReg (CIR-WL-Opt) 3 3.61 84.00% 1.42% -91.46%

DT 9 42.30 - 84.09% DT (CIR-WL-Opt) 3 3.61 82.45% -1.64% -91.46%
dFE-Time estimated using the full CIR-WL of 210 ns and our benchmark on the 80 MHz ESP8266 MCU. eWe do not include the distance estimated by Two-Way
Ranging (TWR) as a feature (F100). fFE-T is provided in ms. gStocker et al. [5] used the F1 score as accuracy metric. hA re-evaluation via 10-fold CV, using our
data preparation (§II) is provided for the feature sets of the SoA [5], [17]: (i) to provide other researchers with a solid basis for the comparison of NLoS classification
results, and (ii) to better analyze the performance of our feature selection method. For (ii), we compare different feature sets, keeping all other factors that affect
classifier accuracy the same. When re-evaluating the feature sets of Stocker et al. [5], following their methodology, we hyper-tuned the RBFSVC model parameters.

ML models are calculated using average values over the
5 model assessment folds (for more details, see footnote ‘a’
of Table III). The rest of the columns, starting from the third
column, provide per-dataset performance results, where each
column is splitted in two, corresponding to the best large and
small models (respectively Best-L and Best-S).
Table III contains the following performance parameters, as
specified in its second column: the ML classifier type (ML-
Model), the average accuracy in the test sets across the CV
folds, the memory size, the prediction time of the model (MP-
Time), the FE-Time (or FE-T), the CIR-WL, and the number of
features (mean across model assessment folds). The FE-Time
per ML-Model is calculated by adding up the FE-Times of
its features. Per column, the best accuracy is indicated in

bold, and the models with the fastest FE-Times are underlined.
All performance evaluations have been done via 10-fold CV,
except for the Nested CV 5-fold model assessment (§II).
Per CIR-WL feature extraction time. We measure the per-
feature extraction time per CIR-WL using an 80MHz ESP8266
MCU as a reference system, which allows us to estimate
corresponding FE-Times in other embedded systems. Fig. 8
shows that, for most features, the computational complexity
increases with the CIR-WL. PNBFP (F20), which is not
shown in the figure, is the only exception, with a constant
computation time of ≈ 70µs independently of the CIR-WL.
We analyze next how to further reduce the FE-Time by
shortening the processed CIR-WL for feature extraction. We
measure the prediction times per ML-Model on a computing

Fig. 8. Impact of the CIR-WL reduction on the feature extraction time (FE-
time). The FE-time scale is shown in logarithmic form. The legend is arranged
from slowest to fastest, top to bottom. This data highlights the high FE-Times
required for some features and the need for making a judicious selection of
features and their corresponding CIR-WLs.

cluster, and derive the ML classifier model size as the size of
the model saved locally on a 64-bit system.
ML pipeline. The Nested CV procedure allows us to automat-
ically select the best performing combinations of #features and
CIR-WL per-dataset and per-ML-method. This is supported by
the fact that the models derived with the ML pipeline often
achieve the best performance in Table III. In many cases,
thanks to strong reductions of the CIR-WL, the derived models
require lower FE-Times than those proposed by existing work.
Results across five datasets. Table III shows that the
performance of the models derived by the ML pipeline and
of those using only the overall best 3/8 Fs are rather similar
throughout all studied datasets. Moreover, our 3/8 Fs models
using “CIR-WL-Opt” achieve an accuracy comparable to their
full CIR-WL counterparts and to the ML pipeline models at
much faster FE-Times, which shows the effectiveness of our
solution. In the INDUSTRIAL dataset, our small models benefit
from the use of a CIR-WL of 140 ns and achieve an accuracy
above 90%. In fact, as shown in Fig. 6, this CIR-WL allows
to deal with the presence of MPCs in some corner cases.
Unsurprisingly, also the models derived using Nested CV tend
to select features in the 120–150 ns CIR-WL range.
Comparison to SoA. By comparing the performance of the
models shown in Table III with those of existing work, we can
further appreciate the effectiveness of our proposed approach.
For example, in the STOCKER CPS dataset, Stocker et al. [5]
achieve 63% F1 score when using 3 Fs only (see Table IV,
footnote ‘g’), whereas we achieve an accuracy of 84% with
3 Fs, and of 88.32% with the fastest small model. Stocker
et al. [5] achieve 92% F1 score when using 9 Fs, but those
include F100, which – as discussed in §III-A – is omitted
in our models due to its limited practicality, and they do not
use the stratified group k-fold split method. For BREGAR #1,
we outperform [17] (which proposed a CNN achieving 87.4%
accuracy and a 6 Fs LinSVC model achieving 82.5% accuracy)
with a faster RBFSVC model with 10 Fs and 60 ns CIR-WL
(87.70% accuracy). Compared to the 6 Fs LinSVC model
in [17], we could also achieve a higher accuracy (86.21%)
with a very fast 3 Fs DT. In Table IV, we explicitly compare
our results to the SoA, based on our feature sets with reduced
FE-Times discussed in §III-B. The SoA accuracy column
shows results reported in the papers [5], [17], whereas the

StrGrSplit accuracy column shows our re-evaluations of the
feature sets from the SoA (see Table IV, footnote ‘h’) The re-
evaluations with matching ML-Models allow us to compare
the performance of the feature sets of the SoA against our
feature sets, by keeping all other factors that affect classifier
accuracy the same. Therefore, they enable us to analyze the
performance of our feature selection. Our re-evaluations show
that our feature sets and feature selection methods achieve
accuracy almost on par with the SoA, while achieving 90%
faster FE-Times. Specifically, our methods result in Fs sets
with 3–11 Fs that offer competitive accuracy compared to the
SoA (from 1.64% worse up to 11.21% better), even with small
ML-Models, while reducing FE-Times by 89–97%.

Results with small ML models. Compared to the Model
Assessment (Table III), we achieve competitive results across
datasets, and therefore retain great classification accuracy,
using the “CIR-WL-Opt” common sets of 3 and 8 features.
This demonstrates the robustness of both feature sets to
classify competitively corner cases on all datasets. These tiny
models, or NLoS classifiers, feature a size of ≈1 kB and very
low computation times (≈3.6 and 27.7 ms on the 80 MHz
ESP8266 MCU), and are hence competitive candidates for
implementations on resource-constrained UWB devices (such
as the Qorvo MDEK1001) that require a high update rate.

Key takeaways. We want to highlight the following takeaways
from this work: (i) for ML models implementing manually-
crafted features, performing feature selection while taking
FE-Times into consideration is crucial to achieve competitive
runtimes; (ii) our feature selection method implementing the
tree-based Gini impurity metric for feature importance and the
subsequent reduction of the selected features by means of the
pairwise feature correlations results in competitive accuracy
in all datasets (§III-C); (iii) while features in our catalogue
(Table I) are related to shape, energy, and timing characteristics
of the CIR, for NLoS classification shape and energy related
features have made the top of our feature inclusion ordering
for most datasets based on our feature selection method;
(iv) the best features are very dataset-dependent and our best
3 features in average are not the best 3 features for any dataset
alone (as shown in Fig. 3); (v) owing to our comprehensive
benchmarking across five datasets, our “CIR-WL-Opt” sets of
3 and 8 features should provide competitive results in new
datasets; (vi) there might be corner cases which benefit from
using features with specific CIR-WLs, such as ≈140 ns for
INDUSTRIAL (Fig. 6), which can be studied extracting the KS
statistics on the new dataset; (vii) although the FE-Time is not
part of the HP tuning optimization objective, the ML Pipeline
already provides lower FE-Times (Table IV); and (viii) our
results in Table III show that large models (except MLPC)
require 30 to 25000 times more memory than small models
and (ix) for MP-Time, kNN and RBFSVC require 15 to 12000
times longer as DTs, MLPCs, and smaller models.

Recommendations. Owing to our comprehensive benchmark-
ing across five datasets, our results can be applied to new
datasets as follows: (i) our “CIR-WL-Opt” sets of 3 and 8

features should provide competitive results; (ii) our extensive
feature catalogue with its ranking or feature inclusion ordering
(Table II and Fig. 3) enables competitive feature selection
by performing a parameter sweep on the number of features
during the ML model HP Tuning (similarly to Fig. 5); (iii) a
measurement of the FE-Time in the target hardware allows to
skip high FE-Time features (e.g, F10, F13, see Fig. 8); and
(iv) the calculation of the features’ pairwise correlations (e.g.,
Fig. 4) and KS statistics (e.g., Fig. 7) on the new dataset
enable reduced FE-Times while usually maintaining accuracy
by, respectively, reducing the selected number of features and
by choosing optimal values for the features’ CIR-WLs.

IV. CONCLUSIONS

Our unbiased model assessments on four publicly available
datasets, obtained through Nested CV using the ML pipeline,
achieve very competitive results in comparison to the SoA and
provide other researchers with a solid basis for the comparison
of NLoS classification results. Our tiny 3-feature NLoS classi-
fiers outperform classifiers with similar #features from the SoA
and showcase very low computation and FE-Times of ≈3.6 ms
in a resource-constrained MCU with a memory size of ≈1 kB,
while achieving competitive accuracies between 76.61% and
90.96% depending on the dataset and achieving a reduction of
the runtime of more than 90% compared to the SoA. These
tiny models are promising candidates for the implementation
of NLoS classification in low-power UWB tags.
As future work, we will extend this study by also covering
NLoS error mitigation in addition to classification. We further
plan to improve our feature selection method by incorporating
the feature extraction time as a part of the HP tuning within
the ML Pipeline. Furthermore, we intend to merge datasets
to obtain models that generalize better and narrow the gap
between datasets and the real-world implementation.

ACKNOWLEDGMENTS

This work has been supported by the FFG-COMET-K1 Center
“Pro²Future” (Products and Production Systems of the Future),
Contract No. 881844, within the ENHANCE-UWB project.

REFERENCES

[1] A. Ledergerber et al., “A Robot Self-Localization System using One-
Way UWB Communication,” in Proc. of the IROS Conference, 2015.

[2] T. Brovko et al., “Complex Kalman Filter Algorithm for Smartphone-
based Indoor UWB/INS Navigation Systems,” in Proc. of the IEEE
USBEREIT Symposium, 2021.

[3] EETimes, “VW and NXP Show First Car Using UWB
To Combat Relay Theft,” 2019. https://www.eetimes.com/
volkswagen-and-nxp-show-first-car-using-uwb-to-combat-relay-theft/
– Last access: 2023-08-01.

[4] S. Maranò et al., “NLOS Identification and Mitigation for Localization
based on UWB Experimental Data,” IEEE JSAC, vol. 28, no. 7, 2010.

[5] M. Stocker et al., “Performance of Support Vector Regression in Cor-
recting UWB Ranging Measurements under LOS/NLOS Conditions,” in
Proc. of the 4th CPS-IoTBench Workshop, 2021.

[6] J. Borras et al., “Decision Theoretic Framework for NLOS Identifica-
tion,” in Proc. of the 48th IEEE VTC Conference, 1998.

[7] V. Minh Le et al., “Human Occlusion in UWB Ranging: What Can the
Radio Do for You?,” in Proc. of the 18th MSN Conference, 2022.

[8] I. Guvenc et al., “NLOS Identification and Mitigation for UWB Local-
ization Systems,” in Proc. of the IEEE WCNC Conference, 2007.

[9] M. Gallacher et al., “InSight: Enabling NLOS Classification and Error
Correction on Resource-Constrained Ultra-Wideband Devices,” in Proc.
of the 20th EWSN Conference, 2023.

[10] S. Venkatesh et al., “Non-line-of-sight Identification in Ultra-wideband
Systems based on Received Signal Statistics,” IET MAP, 2007.

[11] K. Yu et al., “Statistical NLOS Identification based on AOA, TOA, and
Signal Strength,” IEEE Trans. on Vehicular Technology, vol. 58, 2008.

[12] Z. Zeng et al., “UWB NLOS Identification with Feature Combination Se-
lection based on Genetic Algorithm,” in IEEE ICCE Conf., 2019.

[13] T. Van Nguyen et al., “Machine Learning for Wideband Localization,”
IEEE Journal on Selected Areas in Communications, 2015.

[14] A. Ferreira et al., “Feature Selection for Real-Time NLOS Identification
and Mitigation for Body-mounted UWB Transceivers,” IEEE Trans. on
Instrumentation and Measurement, vol. 70, 2021.

[15] Decawave, “DW1000 User Manual, Version 2.11,” 2017.
[16] K. Bregar et al., “NLOS Channel Detection with Multilayer Perceptron

in Low-Rate Personal Area Networks for Indoor Localization Accuracy
Improvement,” in Proc. of the 8th IPSSC Conference, 2016.

[17] K. Bregar and M. Mohorčič, “Improving Indoor Localization Using Con-
volutional Neural Networks on Computationally Restricted Devices,”
IEEE Access, 2018.

[18] S. Angarano et al., “Robust Ultra-wideband Range Error Mitigation with
Deep Learning at the Edge,” Elsevier EAAI, 2021.

[19] J. Fontaine et al., “Edge Inference for UWB Ranging Error Correction
Using Autoencoders,” IEEE Access, 2020.

[20] H. Brunner et al., “Understanding and mitigating the impact of wi-
fi 6e interference on ultra-wideband communications and ranging,” in
ACM/IEEE IPSN’2022, 2022.

[21] B. Jones et al., “Tiny but Mighty: Embedded Machine Learning for
Indoor Wireless Localization,” in Proc. of the 20th CCNC Conf., 2023.

[22] V. Savic et al., “Measurement Analysis and Channel Modeling for TOA-
based Ranging in Tunnels,” IEEE TWC, 2014.

[23] Decawave, “Application Note APS006 (Part 2): Non Line of Sight
Operation and Optimizations to Improve Performance in DW1000 based
Systems, Version 1.5,” 2014.

[24] V. Kumar and S. Minz, “Feature Selection: A Literature Review,” Smart
Computing Review, vol. 4, no. 3, 2014.

[25] M. R. Al Iqbal et al., “Knowledge Based Decision Tree Construction
with Feature Importance Domain Knowledge,” in IEEE ICECE, 2012.

[26] K. Topouzelis and A. Psyllos, “Oil Spill Feature Selection and Classifi-
cation using Decision Tree Forest on SAR Image Data,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 68, 2012.

[27] M. Stocker et al., “Applying NLOS Classification and Error Correction
Techniques to UWB Systems: Lessons Learned and Recommendations,”
in Proc. of the 6th CPS-IoTBench Workshop, 2023.

[28] C. Kar and A. Mohanty, “Application of KS Test in Ball Bearing Fault
Diagnosis,” Journal of Sound and Vibration, vol. 269, 2004.

[29] M. Lewis et al., “Nested Cross-Validation,” 2023. [Online] https://cran.
r-project.org/web/packages/nestedcv/vignettes/nestedcv.html.

[30] A. Vabalas et al., “Machine Learning Algorithm Validation with a
Limited Sample Size,” PLOS ONE, vol. 14, no. 11, 2019.

[31] D. Krstajic et al., “Cross-Validation Pitfalls when Selecting and As-
sessing Regression and Classification Models,” Springer Journal of
Cheminformatics, vol. 6, 2014.

[32] S. Varma and R. Simon, “Bias in Error Estimation when using Cross-
Validation for Model Selection,” BMC Bioinformatics, 2006.

[33] Z. Xiao et al., “Non-line-of-sight Identification and Mitigation us-
ing Received Signal Strength,” IEEE Trans. on Wireless Comm., 2014.

[34] S. Cotton and W. Scanlon, “A Statistical Analysis of Indoor Multipath
Fading for a Narrowband Wireless Body Area Network,” in Proc. of the
17th IEEE PIMRC Symposium, 2006.

[35] T. Hastie et al., The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2nd ed., 2009.

[36] M. Stocker et al., “STOCKER CPS UWB NLOS Dataset,” 2021. [Online]
http://iti.tugraz.at/uwb-nlos – Last access: 2023-08-01.

[37] S. Angarano et al., “DeepUWB Dataset,” Nov. 2020. [Online] https:
//doi.org/10.5281/zenodo.6611037 – Last access: 2023-08-01.

[38] K. Bregar et al., “BREGAR #1 nlos/los dataset,” 2016. https://github.
com/ewine-project/UWB-LOS-NLOS-Data-Set – Last access: 2023-08.

[39] K. Bregar et al., “BREGAR #2 Loc. dataset,” 2018. https://github.com/
ewine-project/UWB-localization/tree/master/data/ – Last Acc.: 2023-08.

[40] MobileKnowledge, “MK UWB Kit SR150/SR040,” 2023.
[Online] https://www.themobileknowledge.com/product/
mk-uwb-kit-sr150-sr040/ – Last access: 2023-08-01.

[41] OptiTrack, “OptiTrack – Motion Capture (MoCap) Systems,” 2023.
[Online] https://optitrack.com – Last access: 2023-08-01.

https://www.eetimes.com/volkswagen-and-nxp-show-first-car-using-uwb-to-combat-relay-theft/
https://www.eetimes.com/volkswagen-and-nxp-show-first-car-using-uwb-to-combat-relay-theft/
https://cran.r-project.org/web/packages/nestedcv/vignettes/nestedcv.html
https://cran.r-project.org/web/packages/nestedcv/vignettes/nestedcv.html
http://iti.tugraz.at/uwb-nlos
https://doi.org/10.5281/zenodo.6611037
https://doi.org/10.5281/zenodo.6611037
https://github.com/ewine-project/UWB-LOS-NLOS-Data-Set
https://github.com/ewine-project/UWB-LOS-NLOS-Data-Set
https://github.com/ewine-project/UWB-localization/tree/master/data/
https://github.com/ewine-project/UWB-localization/tree/master/data/
https://www.themobileknowledge.com/product/mk-uwb-kit-sr150-sr040/
https://www.themobileknowledge.com/product/mk-uwb-kit-sr150-sr040/
https://optitrack.com

	Introduction
	Methodology
	Experimental Results
	Feature Selection
	Feature Extraction Time Reduction
	NLoS Classification Results

	Conclusions
	References

