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Abstract
The accuracy of ultra-wideband (UWB) ranging is severely
affected when the direct path between devices is partly or
fully occluded, i.e., in non-line-of-sight (NLOS) conditions.
To detect and correct erroneous ranging measurements,
many solutions based on machine learning models have been
proposed, but they are usually deployed on edge devices
rather than on the UWB device itself. In fact, existing works
often focus on maximizing the NLOS classification accu-
racy and error correction performance, which results in large
and computationally-complex models that cannot be run
on UWB tags with limited processing power and memory.
Whilst convenient, off-loading NLOS classification and er-
ror correction tasks to an edge device severely affects, among
others, the scalability, privacy, and responsiveness of UWB-
based localization systems, as tags need to actively exchange
data with a third party and wait for its response, which may
be delayed due to heavy load or unreliable communication.
In this paper, we present InSight: a framework that enables
the deployment of NLOS classification and error correction
models directly on resource-constrained UWB devices.
InSight allows to train and generate such models according
to specific requirements (e.g., on memory usage and on
runtime), and to shed light on how to reduce the model size
and runtime without degrading the classification accuracy
and error correction performance. The selected models are
then seamlessly integrated into a NLOS engine running on
the device alongside existing applications and supporting
any localization service. With InSight, we can perform
NLOS classification and error correction directly on an
UWB tag in 0.6 ms, and with as little as 8 B of RAM and
19 kB of flash memory – while retaining a classification

accuracy of up to 86% and reducing the 90th-percentile
ranging error by more than 1 m. We further show how a
localization service can leverage InSight to select only an-
chors in direct line-of-sight and to correct erroneous NLOS
ranging measurements, which improves the 90th-percentile
localization error by up to 1.6 m on our 120 m2 testbed.
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1 Introduction
Ultra-wideband (UWB) has recently become the technology
of choice to create centimetre-accurate ranging and indoor
positioning applications [20]. Its market is growing at a fast
pace and is expected to hit 2.7 billion USD by 2025 [22], fu-
eled by the introduction of UWB radios into high-end smart-
phones [10] and modern vehicles [33], as well as by the in-
creasing adoption of the technology in asset tracking [17],
robot navigation [18], and assisted-living [5] applications.
UWB achieves its high ranging accuracy by using a high
bandwidth (≥500 MHz), which allows for the transmission
of very short signal pulses (≈2 ns long). This enables UWB
receivers to differentiate between the first pulse (correspond-
ing to the direct path between two devices) and its reflections
(originating from walls and other objects), enabling the pre-
cise calculation of the time-of-arrival (ToA) of a signal and,
consequently, of the distance between two devices.
Under optimal conditions, i.e., when no obstacles block the
direct line-of-sight (LOS) between two devices, UWB radios
typically achieve centimetre-level accuracy [20]. However,
in non-line-of-sight (NLOS) conditions, the direct path be-
tween two UWB devices is either attenuated by partially-
blocking obstacles, causing ranging errors of a few decime-
tres, or entirely blocked, causing ranging errors up to a few
metres [21, 29]. NLOS conditions hence strongly affect the
performance of UWB ranging in real-world settings.



To address this issue, a large body of research has inves-
tigated how to classify NLOS conditions and consequently
how to correct NLOS-induced ranging errors. Existing solu-
tions range from simple methods analyzing the distribution
of ranging measurements (where a higher variance is likely
to indicate NLOS conditions) [3, 26], to more complex meth-
ods analyzing the radio’s channel impulse response (CIR)
and extracting parameters that can be used for threshold-
based NLOS classification [26] or for performing likelihood-
ratio tests from which to derive NLOS conditions [14].
Maranò et al. [21] go a step further and propose to use ma-
chine learning (ML) models trained on features extracted
from the CIR for NLOS classification as well as error cor-
rection. Later works [1, 4, 25, 29, 34] build upon this semi-
nal work and evaluate the performance of several ML meth-
ods, such as multilayer perceptrons (MPLs) [1, 25, 4], sup-
port vector machines (SVMs) [1, 4, 21, 34], and ensemble
methods based on decision trees [19, 24, 25]. Recently, there
has also been an increasing interest in using convolutional
neural networks (CNNs) [1, 4, 32], as they do not rely on
manually-extracted channel statistics as features, but instead
autonomously extract features from the channel estimate.
Limitations of existing work. Unfortunately, most of the
existing works focus on achieving the highest NLOS classi-
fication and error correction performance, and do not provide
details about the memory requirements or the runtime of the
proposed solution. Many of the proposed ML models, espe-
cially the CNNs, are computationally expensive: as a con-
sequence, several authors propose to run them on dedicated
edge devices such as Raspberry Pis with powerful CPUs/G-
PUs and hundreds of MBs of memory available [1, 4, 11].
Disadvantages of edge-based solutions. Running NLOS
classification and error correction on edge devices, however,
has negative implications on the scalability, reliability, time-
liness, as well as privacy of UWB ranging and localiza-
tion systems. In fact, a tag needs to reveal itself and ac-
tively transmit packets to the edge device for processing,
which would be deleterious for privacy-preserving local-
ization systems such as those based on time-difference-of-
arrival [8, 13]. Moreover, communication to/from the edge
device may be unreliable (e.g., due to the presence of radio
interference causing re-transmissions [6]) and the edge de-
vice itself may be overloaded with requests from multiple
tags, resulting in non-deterministic delays affecting the fre-
quency at which a tag can update its position. For these rea-
sons, NLOS classification and error correction should ideally
be performed directly on the UWB device itself.
Limited support for on-device solutions. Unfortunately,
UWB tags often have limited processing power and memory,
and little research has focused on the creation of lightweight
models as well as on their seamless integration alongside ex-
isting applications. Angarano et al. [1] have proposed a CNN
whose size varies between 615 kB and 32 kB depending on
the applied optimizations, but left the integration of the deep
learning architecture on an embedded UWB device as future
work. Jonas et al. [16] have been the first to run NLOS clas-
sification and error correction on an embedded UWB device
(Qorvo’s DWM1001), but their solution is not generic and

there are no details about its memory footprint or runtime.
Hence, to date, there is no work tackling the flexible integra-
tion of NLOS classification and error correction techniques
on embedded UWB devices, while shedding light on how
to reduce the model size and runtime to satisfy user-specific
requirements without degrading performance.
Contributions. We fill this gap and present InSight, a
framework enabling the deployment of state-of-the-art ML-
based NLOS classification and error correction models on
resource-constrained UWB devices. InSight allows to cre-
ate and train models that satisfy specific requirements on run-
time and memory usage, and to seamlessly integrate these
models into a NLOS engine running on the UWB device
alongside existing applications. InSight also allows to
study the interplay between a model size/runtime and its per-
formance: this enables us to carry out NLOS classification
and error correction on an UWB tag in 0.7 ms and with as
little as 8 B / 19 kB of RAM and flash memory – while re-
taining a classification accuracy of up to 88% and reducing
the 90th-percentile ranging error by more than 1.4 m. We
study InSight’s performance experimentally, showing also
how a localization service can select only LOS anchors and
correct erroneous NLOS ranging measurements, improving
the 90th-percentile localization error by up to 1.6 m.
With InSight, we make the following contributions:

• We present an open-source framework that allows to
generate ML models based on user-specific require-
ments, and to deploy them into a NLOS engine running
on resource-constrained UWB devices (§ 3).

• We show the performance of state-of-the-art ML-based
NLOS classification and error correction methods as a
function of the model size/runtime, highlighting how
one can reduce the input and model size by up to 80%
and 98% while retaining a high performance (§ 4).

• We seamlessly integrate InSight’s NLOS engine in
Contiki-NG, such that it runs alongside existing appli-
cations (§ 5) and evaluate its performance experimen-
tally on off-the-shelf Qorvo MDEK1001 UWB tags (§ 6).

• We carry out testbed experiments to show the benefits
of on-device NLOS classification and error correction
compared to the use of an edge device (§ 6), and fur-
ther show how a localization service can easily leverage
InSight to select only LOS anchors and correct erro-
neous NLOS ranging measurements (§ 7).

2 Related Work
Since the availability of the first IEEE 802.15.4-compliant
UWB transceivers, a large body of work has explored various
techniques for UWB NLOS classification and error correc-
tion. Existing work can be coarsely classified into position-
based, ranging-based, and channel-based solutions.
Position-based solutions such as [15] estimate the presence
of LOS/NLOS conditions between two nodes based on floor
maps and by leveraging a ray tracing algorithm. While this
approach can yield excellent classification results, it is lim-
ited to static environments and is unable to cope with any
substantial change in the environment.



Ranging-based solutions such as [3] and [35] measure the
variability between several consecutive ranging estimates for
NLOS classification. The rationale is that the ranging esti-
mates change frequently in NLOS conditions, due to the high
variability of multi-path components. Whilst effective, this
approach requires repeated distance estimations to the same
anchor, which is undesirable due to the resulting message
overhead, higher delays, and energy expenditure.
Channel-based approaches, which are the most common, ex-
tract various parameters from the CIR estimate, as the latter
follows specific patterns under LOS and NLOS conditions.
For example, Schröder et al. [26] use the amplitude and de-
lay statistics of the CIR for threshold-based classification.
Vu et al. [23] evaluate features provided directly by the radio
transceiver to classify occlusions caused by the human body.
Güvenç et al. [14] utilize a likelihood-ratio test using three
parameters extracted from the CIR, namely the root mean
square delay spread, the mean excess delay, and Kurtosis.

ML-based channel-based solutions. However, as pointed out
by Maranò et al. [21], deriving sufficient statistical mod-
els can be an error-prone process: for this reason, the au-
thors propose instead the use of non-parametric ML with
manually-extracted features for NLOS classification and er-
ror correction. Stocker et al. [29] follow this line of research
and evaluate the approach from Maranò et al. [21] on off-
the-shelf devices, showing that the NLOS error correction is
not perfect and negatively affects LOS measurements. Ra-
madan et al. [24] train a random forest algorithm, based on
multiple decision trees, on manually extracted features and
show its viability in classifying NLOS conditions. More re-
cently, the focus of related work has shifted to various ML
approaches using self-learned instead of manually-extracted
features [4, 16, 1, 27, 28]. This development is driven by
the assumption that self-learned features are able to capture
complex patterns and relationships that are overlooked by
humans. Bregar et al. [4] are among the first to use MLPs and
CNNs to extract features directly from the CIR to perform
NLOS classification and error correction on edge devices.
Angarano et al. [1] propose a CNN for error correction, us-
ing state-of-the-art neural network architectures such as fea-
ture attention mechanism at its core. Stahlke et al. [27] pro-
pose and test several neural network architectures for NLOS
classification in an industrial environment. The authors also
use variational autoencoders for estimating the reliability of
UWB range estimates, and further use this information in
a Kalman filter [28]. Sung et al. [31] propose a deep neu-
ral network to estimate range measurement uncertainties and
update the weights of a Kalman filter accordingly.

Addressing the ML gap. Most of the aforementioned works
concentrate on achieving a high performance, and do not
provide details about the memory requirements or the run-
time of the solution. As a consequence, many authors pro-
pose to run the ML models on edge devices [4, 1], and there
has been little to no focus on the integration of NLOS clas-
sification and error correction capabilities into an embed-
ded device [4, 21, 28, 29], as well as on how to decrease
the model size and runtime without sacrificing performance.
Angarano et al. [1] did investigate how to reduce the model

Table 1: Examples of user-specific requirements.

Configuration Memory footprint Runtime
max (RAM) max (Flash) max

On-device Small 77 kB 154 kB 10 ms

On-device Tiny 10 kB 77 kB 0.5 ms

size and runtime of the proposed neural network model using
various mode complexity reduction techniques (such as inte-
ger quantization), resulting in a model requiring only 32 kB
of flash memory and RAM, but left the integration on an em-
bedded device as future work. Jonas et al. [16] showed the
feasibility of running ML models on a UWB device, but with
a very specific implementation, and did not provide an anal-
ysis of the model size or runtime. In order to enable the
deployment of ML methods on embedded UWB devices, it
is needed to (i) have a clear understanding of the interplay
between accuracy and size/runtime for different ML mod-
els; (ii) find configurations that satisfy different requirements
(e.g., very short runtime to support fast update rates or tiny
memory footprint to support devices whose limited memory
is already largely used by the application or operating sys-
tem), ideally in an automated way; (iii) work on the seamless
integration alongside the operating system and application to
support a variety of ranging and localization services. These
three points represent a still open research gap, which we
address with the design of the InSight framework.
3 InSight: Overview
Fig. 1 shows a high-level overview of the InSight frame-
work’s architecture and its inputs. Two key modules are at
the core of InSight: an offline model generator that allows
to easily train and analyse ML models on different datasets
based on user-specific memory and runtime requirements
(detailed in § 4), and an embedded NLOS engine running on
the UWB device that provides on-device NLOS classifica-
tion and error correction to any ranging/localization service
providing a CIR as input (detailed in § 5). We keep the de-
sign of InSight modular to easily adapt the NLOS detection
and error correction models to new requirements, and we
make it available open-source1 to make NLOS-aware UWB
ranging/localization widely available.
Framework inputs. InSight is designed to be generic, and
can be configured by specifying different user-specific re-
quirements, ML methods, and datasets as input.
User-specific requirements. InSight allows tailoring of the
models to the requirements of the platform/application at
hand. To this end, the user can specify the maximum mem-
ory (RAM and flash) and runtime (in ms) that the selected
classification/error correction model should satisfy. Tab. 1
lists exemplary requirements for a Small UWB device (built
with an nRF52840-DK with 256 kB of RAM and 512 kB of
flash memory), as well as a Tiny UWB device such as the
MDEK1001 (with 32 kB of RAM and 256 kB of flash mem-
ory). We set the max memory footprint per model to 1/3 of
the available RAM and flash memory on the device in order
to leave sufficient space for the operating system (OS) and

1http://iti.tugraz.at/uwb-nlos

http://iti.tugraz.at/uwb-nlos
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Figure 1: InSight module overview, including the offline model generator (§ 4), which outputs the best suitable model ac-
cording to the framework inputs, and the on-device embedded NLOS engine (§ 5), which performs classification and/or error
correction based on the CIR supplied by a localization or ranging service/application.

user application. We further limit the Tiny device to a max
runtime of 0.5 ms per model so to allow for a fast update rate,
whilst the Small device allows for a longer runtime (10 ms)
to emulate a system that prioritizes classification accuracy
and error correction performance over a high update rate.
ML methods. In principle, any ML method can be provided
to the Model Generator if a compatible interface is present.
Currently, the Model Generator provides implementations
for SVMs, XGBoost trees, and neural networks. These rep-
resent non-parametric ML models with manually-extracted
features from the CIR (SVMs), non-parametric ML mod-
els with automatic feature extraction by directly inputting
the CIR (XGBoost trees), and parametric ML models with
automatic feature extraction by directly inputting the CIR
(CNNs). The SVM is based on the library libsvm2 by Chang
et al. [7]. The XGBoost models are based on the dmlc/xg-
boost3 library. Both the libsvm and dmlc libraries can also
be used through the popular scikit-learn library. The
REMNet, a CNN for error correction based on the structure
proposed by Angarano et al. [1], is implemented in Tensor-
Flow. For REMNet-based classification, we modify the pro-
posed structure to use a sigmoid activation function as output
layer instead of a linear activation function. We also com-
bine both error correction and classification models into a
single one, calling it REMNet multi-output (REMNet MO)
model [12], where we use two output neurons, one with a
sigmoid activation function for classification and one linear
activation function for error correction.
Datasets. InSight is designed to take single or multiple
datasets as training and/or testing sets. This allows the easy
comparison of ML methods in diverse settings (from self-
recorded to publicly-available traces). Multiple datasets can
also be combined to generate larger training/test sets. When
no test dataset is provided, a k-fold cross validation is per-
formed, i.e., we divide data into k chunks and average the test
results from each chunk, while training on the other chunks.
Model generator. Using the aforementioned user require-
ments, ML methods and datasets, the model generator mod-
ule entails the execution of four components, namely the
dataset pre-processing, the hyper-parameter exploration, the
model selection, and the model converter. The dataset pre-

2https://www.csie.ntu.edu.tw/˜cjlin/libsvm/, version 3.23.0.4
3https://xgboost.readthedocs.io/en/stable/, version 1.6.1.

processing component takes care of bringing several datasets
into a common format, as well as performing feature extrac-
tion and scaling. The pre-processed datasets are then sup-
plied to the parameter exploration component to find optimal
hyper-parameter combinations. Essentially, this component
tries various combinations of input sizes and model hyper-
parameters within a pre-defined parameter search space. The
model selection component evaluates the results of the pa-
rameter exploration module and selects the best fitting mod-
els based on the user-specific requirements, such as those
shown in Tab. 1. The model converter converts the models to
be usable by the target platform and generates configuration
files needed to pre-process the CIR. The models and config-
uration files are the input of the embedded NLOS engine.
Embedded NLOS engine. This module performs on-device
classification and/or error correction and is easy to integrate
into a variety of applications (e.g., from simple ranging to
complex localization systems). We have a prototypical im-
plementation for Contiki-NG, where the embedded NLOS
engine is added seamlessly, i.e., it does not affect any ex-
isting functionality and has a simple API that can be called
by any ranging/localization service. The embedded NLOS
engine module comprises the handler, CIR pre-processing,
classification, and error correction components. The han-
dler is the common interface between a user application and
the embedded NLOS engine, and handles CIR classification
as well as error correction requests. Similar to the dataset
pre-processing component in the model generator, the CIR
pre-processing component of the embedded NLOS engine is
responsible for CIR pre-processing, feature extraction, and
feature scaling. The classification and error correction com-
ponents are the models that have been generated and config-
ured via the model generator. The embedded NLOS engine
and its components are OS-agnostic.

4 Model Generator
This section provides details on the various model genera-
tor’s components. We first outline the dataset pre-processing
steps (§ 4.1). We then discuss the hyper-parameter explo-
ration and show how different hyper-parameter combinations
affect the model size and performance (§ 4.2). We finally
show how a suitable model is matched to the user require-
ments (§ 4.3), and explain how models are converted to be
suitable as an input for the embedded NLOS engine (§ 4.4).

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://xgboost.readthedocs.io/en/stable/


This section ultimately answers the following questions:
• To what extent can the model size (complexity) be re-

duced without resulting in a significant loss in clas-
sification accuracy and error correction performance?
Which hyper-parameters are crucial in doing so? (§ 4.2)

• Can the CIR input size be reduced? If so, where is the
most valuable info within the CIR? Is there a difference
for NLOS classification and error correction? (§ 4.2)

• Can we automatically select models that satisfy user re-
quirements, e.g., those listed in Tab. 1 demanding as lit-
tle as 0.5 ms runtime and 10 kB of RAM? (§ 4.3)

4.1 Dataset Pre-processing
This component ensures that training and testing data follow
a standard structure and are well prepared for the individ-
ual models. Dataset pre-processing can be coarsely grouped
into three steps: loading, filtering, and transforming, each of
which is represented by re-configurable pipelines.
The loading pipeline is specific to each dataset and takes care
of loading various datasets and bringing them into a standard
format. This encapsulates simple steps such as providing a
common naming scheme across datasets, as well as correctly
scaling the CIR and aligning the first path to a unified posi-
tion in the CIR. Firstly, scaling is necessary since CIRs are
often recorded with different numbers of preamble symbols
and the number of preamble symbols affects the amplitudes
in the CIR. Furthermore, alignment of the first path (FP) is
necessary, as UWB radios do not always place the detected
FP at the same index within the CIR, and the FP index may
hence be dissimilar across datasets [30].
The filtering pipeline is common to all loaded datasets and
removes extreme outliers that can occur due to random
hardware- or environment-related effects. This is achieved
by calculating the median range value of measurements
taken in the same placement and removing range measure-
ments that exceed 2.5 times the standard deviation. With
this step, the natural fluctuation of NLOS measurements is
preserved while avoiding incorporating extreme outliers that
can negatively impact the scaling of features.
The transformer pipeline is specific to each model and pre-
pares the data to be fed to the model. This pipeline firstly
selects a CIR window, i.e., a subset of the CIR samples that
is configurable via two parameters: CIR start index and CIR
end index. For feature-based methods such as the SVM,
channel statistics are extracted from the selected CIR sam-
ples and scaled with a min-max scaler. For raw CIR methods
such as XGBoost and REMNet, the selected CIR samples are
scaled and forwarded to the ML model. Note that the trans-
former pipeline is executed every time the CIR window is
altered before running the hyper-parameter exploration.
4.2 Hyper-Parameter Exploration
The hyper-parameter exploration component creates an ex-
tensive mapping between the user-requirements (model size
and runtime), the model performance (classification accu-
racy and R2-score for error correction), as well as different
sets of hyper-parameters and CIR input sizes. A simple grid
search approach is used to show the impact of various hyper-
parameters on the performance, as well as to gain insights on

Table 2: Overview of hyper-parameters which have signifi-
cant impact on memory footprint, latency, and performance.

ML method Name Values

Common to all methods CIR Start Index [0,5,10,15,18]
CIR End Index [172,132,72,38,25]

REMNet #Filters (F) [16, 8, 4]
#Residual blocks (N) [3, 2, 1]

SVM Regularization term (C) [1, 100, 1000]
Penalization tolerance (ε) [0.1, 0.2, 0.3]

XGBoost Maximum tree depth (D) [10, 6, 3, 1]
Maximum number of Trees (T) [100, 60, 30, 10]

the model complexity and CIR input size reduction4.
Dataset. To exemplify the hyper-parameter exploration, we
use the publicly-available dataset by Stocker et al. [29], con-
taining 37450 measurements recorded in a hallway and sev-
eral office/lecture rooms. In this dataset, it is distinguished
between LOS, weak-LOS (i.e., small obstacles such as mon-
itors), and NLOS (i.e., large obstacles such as walls). How-
ever, since most related work treats the NLOS problem as
a binary classification, we combine weak-LOS and NLOS
under a unified NLOS label. We refer to this dataset as ST.
Hyper-parameters. Each of the investigated ML methods has
a multitude of hyper-parameters to tune, resulting in an ex-
plosion of possible combinations. Thus, we limit our analy-
sis to the hyper-parameters presented in Tab. 2, as we expect
these parameters to impact the model size and performance
the most. Common to all methods is the CIR window, which
is defined by the index of the first and last sample of the
CIR5. For the REMNet [1], we identify the number of filters
(F) used in each convolution step and the number of residual
reduction modules (N), i.e., the number of feature attention
and layer size reduction blocks, to have great effects on size
and accuracy. For the SVM, the regularization parameters C
and ε determine how lenient the model is to misclassification
and wrong error correction values during training. Depend-
ing on the data distribution, both parameters can affect the
model complexity and size. The size and performance of the
XGBoost tree largely depend on the maximum depth (D) of a
single tree estimator, i.e., how many nodes a single tree can
have, and on the maximum number of tree estimators (T),
i.e., how many individual decision trees are allowed.
Reduction of model complexity. Figs. 2 to 5 show the results
of the hyper-parameter exploration for different ML models
and shed light on to which extent the model size can be re-
duced and on which hyper-parameter has the biggest impact.
Each point in the plots represents one hyper-parameter com-
bination selected from the values in Tab. 2. To find the best
hyper-parameter combinations, we search for Pareto-optimal

4Note that the grid search approach is computationally expensive. For
example, finding a suitable model for XGBoost on an AMD Ryzen 7 PRO
5850U CPU with the hyper-parameters listed in Tab. 2 takes around one day.
However, one can easily replace the grid search with other hyper-parameter
optimization approaches, such as halving grid search, randomized search,
and FLAML (a fast library for automated ML and tuning), which can de-
liver similar optimal hyper-parameters in much shorter time. For the pur-
pose of this paper, we stick to the grid search, as faster approaches do not
show the impact and boundaries of individual hyper-parameters and their
combinations with the same granularity as the grid search approach.

5The data-loading pipeline moves the detected FP of each measurement
to index 20.
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Figure 2: Performance of XGBoost (in terms of classifica-
tion accuracy and R2 score for error correction) as a function
of the model size (flash memory). The impact of the max
depth of each tree D is depicted as shaded data points.

points, which assert that increasing one objective function’s
performance is impossible without reducing the performance
of another objective function. The red dots represent the in-
dividual Pareto-optimal points, which are connected with a
red line to form a Pareto front. The grid search exploration
has shown that we can extract one hyper-parameter for each
ML method that contributes vastly to the model size, but does
not lead to a drop in the classification and error correction
performance. Fig. 2 shows the XGBoost performance as a
function of the model size (flash memory). Reducing the
max depth of each individual tree can decrease the model
size by one or two orders of magnitude, while still achieving
a high accuracy and R2-score. We focus on flash memory
usage, as the XGBoost model requires only 4 bytes of RAM
(it uses a single floating point variable), whilst the rest of
the code is stored in flash. Fig. 3 shows the REMNet per-
formance as a function of the model size (RAM). We can
see that the number of residual blocks (N) reduces the model
size by a third, but keeps a high accuracy and error correc-
tion performance. The same is true for the multi-output layer
REMNet, whose performance is shown in Fig. 4, which has
the advantage of providing a single model for classification
and error correction (i.e., half the model size and runtime
than the two individual REMNets). Note that for the REM-
Net models the constraining factor is the RAM usage, which
is why we depict the model size in RAM. Fig. 5 shows the
performance of the SVM: we can notice a decrease in model
size with higher C values for classification, and with higher ε

for error correction. However, the hyper-parameter ε defines
which error is penalized by the SVM. In our context, this
corresponds to the ranging error, and should hence be kept
to a value of 0.1 (i.e., a 10 cm error) if we do not want to
degrade the system’s performance. Note that we depict the
model size in RAM also for the SVM, as this is the limiting
factor in the SVM implementation.
We conclude that, for XGBoost and REMNet, we can reduce
the model size for UWB datasets by 66-98%, while only suf-
fering up to 5% performance penalty. The SVM size depends
on the number of support vectors and is also affected by the
dataset distribution, which makes it harder to shrink.
CIR input size reduction. Using the Pareto-optimal hyper-
parameter combinations, we study where the most important
information lies within a CIR for our models, and by how
much the CIR length can be reduced. A reduced CIR win-
dow is beneficial to our embedded NLOS engine, as we can
read and process the shortened CIR faster. Furthermore, the
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Figure 3: Performance of REMNet (in terms of classification
accuracy and R2 score for error correction) as a function of
the model size (RAM). The impact of the number of residual
reduction modules N is depicted as shaded data points.
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Figure 4: Performance of the multi-output REMNet (in
terms of classification accuracy and R2 score for error cor-
rection) as a function of the model size (RAM). The impact
of N is depicted as shaded data points.
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Figure 5: Performance of the SVM (in terms of classification
accuracy and R2 score for error correction) as a function of
the model size (RAM). The impact of C and ε is depicted as
shaded data points.

CIR window size determines the input size of the REMNet
and directly affects the time needed for the feature extraction
of the SVM input. Fig. 6 shows the impact of the CIR end
index on the Pareto-optimal hyper-parameter combinations
(i.e., the Pareto-optimal points are ordered based on the CIR
end index). It can be seen that for XGBoost and REMNet we
can reduce the number of CIR samples to 5 or 10 samples af-
ter the first path, before noticing a performance degradation,
while the SVM requires a larger CIR window.
We conclude that for the XGBoost and REMNet models, all
the necessary information required for classification and er-
ror correction lies within 20 samples before the FP and 10
samples after the FP. The SVM, using manually extracted
features, requires a larger CIR window. As the size of the
SVM models are very large (see Fig. 5) and do not meet the
target memory requirements in Tab. 1, we focus only on the
REMNet and XGBoost models in the rest of this paper.

4.3 Model Selection
Using the results from the hyper-parameter exploration com-
ponent, the model selection component selects the best-
performing model out of all ML methods that satisfy the
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Figure 6: Impact of the CIR end index based on the Pareto-
optimal points. The performance of XGBoost and REMNet
does not decrease even when reducing the CIR end index
to 10 samples after the FP. The SVM, instead, needs more
samples for the feature extraction to perform well.

user’s memory and runtime requirements. To exemplify this,
we use the requirements from Tab. 1 and follow three es-
sential steps. First, we confine our hyper-parameter explo-
ration results to all combinations that satisfy our user re-
quirements, i.e., feasible domain. Second, we calculate the
Pareto-optimal points of the feasible domain based on our
objective functions (i.e., accuracy, R2-score, or both for the
multi-output REMNet). Third, with a single objective func-
tion, the Pareto-optimal point is always the hyper-parameter
combination that maximizes the objective function and is
our best suitable model that satisfies all user requirements.
With two or more objective functions, it is not guaranteed
to find a single Pareto-Optimal point: therefore, a trade-off
between the objective functions is made. In this case, we
use an achievement scalarization function from the pymoo
library [2], i.e., a decomposition method to reduce the multi-
objective problem into a single-objective problem, and find
the best Pareto-optimal point.
Size and run-time estimation. To satisfy the user require-
ments, we estimate the RAM size of the REMNet, as well as
the flash memory size of the XGBoost models, as these are
the limiting memory constraints. The RAM of the REMNet
model depends on the memory needed for inputs, outputs
and intermediate results, i.e., the tensor arena size. This can
be estimated, for example, using a divide and conquer al-
gorithm6. The XGBoost model resides entirely in program
memory, and is represented by a sequence of if/else compar-
isons. The flash memory size is calculated using the byte size
of the code file. To estimate the runtime of each model, we
first calculate the number of expected floating point opera-
tions (FLOPs) per model and hyper-parameter configuration.
We then approximate the relationship between FLOPs and
runtime by measuring the runtime of several reference mod-
els on the target device. Estimating the FLOPs for the REM-
Net is already supported by the TensorFlow library. For XG-
Boost, the worst case number of FLOPs is (D+1) ·T, where D
is the maximum tree depth, and T is the number of trees. This
is a worst-case estimate, as the individual trees are subject to
pruning and must not be of the full depth D.
Meeting the user-specific requirements. Tab. 3 shows the
four best suitable models for the user requirements listed in
Tab. 1. The REMNet provides the best suitable model for
the on-device Small requirements. Both the classification

6https://github.com/edgeimpulse/tflite-find-arena-size

Table 3: Selected classification and error correction models
that meet the user-specific requirements in Tab. 1.

Requirement ML method Memory footprint Classification Error correction Runtime
RAM Flash Accuracy R2-score Estimate

On-device Small REMNet
11.9 kB 11.6 kB 0.76 - 5.3 ms
11.4 kB 11.1 kB - 0.58 7.4 ms

On-device Tiny XGBoost
4 B 21.4 kB 0.78 - 0.29 ms
4 B 18.2 kB - 0.49 0.29 ms

and error correction models use N=1 and F=16. The clas-
sification model uses a CIR start/end index of 15 and 30,
whereas the error correction model uses a CIR start/end in-
dex of 0 and 25, respectively. Note that as the user require-
ments are assessed on a per-model basis, the size advantages
of multi-output models are not considered. XGBoost pro-
vides the best suitable models for the on-device Tiny user
requirements. Both classification and error correction mod-
els use a max depth D=3 and T=30 tree estimators. The CIR
start/end index are 0/30 for classification and 5/25 for error
correction, respectively.

4.4 Model Conversion
The model conversion component takes care of converting
the trained models into a suitable representation to be used
in the embedded NLOS engine, and of providing a config-
uration file. The individual conversion steps are custom to
each model and involve the extraction of the model parame-
ters from the trained model and the conversion of these pa-
rameters to a configuration file used at compile time. The
REMNet-based models are implemented using the Tensor-
Flow library, and we use the conversion functionality to ex-
port a full integer quantized version of the trained models.
The model parameters are then written into a C file with a
single uint8 t array containing all model parameters. The
TensorFlow Lite Micro library then uses the latter and is
loaded at initialization time. The model converter for XG-
Boost follows a different approach: instead of exporting only
the model parameters, the whole tree-like structure of the
XGBoost model is replicated in C with if/else blocks. This
allows for the code to be stored in flash memory, while only
requiring a single floating point variable in RAM.

5 Embedded NLOS Engine
We detail next the embedded NLOS engine internals (§ 5.1)
and then discuss its integration within Contiki-NG (§ 5.2).

5.1 Engine Internals
To make the embedded NLOS engine model-agnostic, we
define four interfaces resembling the components, as shown
in Fig. 1: the handler, CIR pre-processing, classification, and
error correction interfaces. In addition, there is also a model-
specific initialization interface, which takes care, for exam-
ple, of loading the REMNet model parameters into RAM.
Except for the handler, all other interfaces are custom to the
ML model and need to be implemented when adding a new
ML method to InSight. In the case of XGBoost, the NLOS
engine adds only 348 B of program memory and 992 bytes of
data segment due to the pre-processing component, on top of
which the actual model has to be added.
The handler component is the entry point for new classifi-
cation or error correction requests to the NLOS engine. It
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Figure 7: Integration of InSight’s NLOS engine into
Contiki-NG (a) and exemplary use of the engine to improve
the performance of a localization application (b). A user ap-
plication initiates a ranging estimate via the ranging API;
the ranging process handles any subsequent TWR message
exchange. Minor modifications (highlighted in blue) to the
ranging process allow the application to retrieve the CIR es-
timate. The application then issues a request to the engine
process to perform classification and/or error correction.

can be operated on one of four operational modes: classi-
fication only, error correction only, classification and error
correction, as well as error correction if NLOS. The latter
provides an error correction only if NLOS is detected, and
hence saves inference time. The handler component takes as
input the CIR, the preamble accumulation counter (PACC)
required for CIR normalization, the estimated range, and the
operational mode. After execution, the handler returns a re-
sult object containing the classification and error correction.
The CIR pre-processing component is executed by the han-
dler and is model specific. Its purpose is to prepare the sup-
plied CIR to be fed into to the deployed ML model. This in-
volves the correct selection of the CIR window, as well as the
extraction of features and their scaling (if required). The in-
dividual steps and parameters are configured at compile time
and mimic the steps performed in the data pre-processing
block of the model generator.
Classification and error correction. The classification and
error correction components are executed by the handler.
These components start the inference of the underlying ML
models, and convert/scale the output if necessary. For exam-
ple, our ML models for error correction are trained to output
a value between [0,1], and must be scaled to values in metres.

5.2 Integration into Contiki-NG
We seamlessly integrate InSight’s embedded NLOS engine
into the popular Contiki-NG operating system, showing that
it allows user applications to request both NLOS classifica-
tion and error correction functionality with only minor mod-
ifications to existing code. Fig. 7(a) gives an overview of the
engine’s integration into Contiki-NG, showing in blue the
additions compared to Contiki’s baseline implementation7.
These additions result in an increase of only ≈ 200 B in pro-
gram memory, 20 B in RAM, and 228 B in the data segment.
The radio driver interfaces directly with the transceiver and

7We have used the Contiki UWB stack available at https://
github.com/d3s-trento/contiki-uwb as a starting point, ported it to
Contiki-NG, and enriched it with the embedded NLOS engine.

offers a rich API for tuning the message reception and
transmission. We create a preliminary implementation for
Qorvo’s MDEK1001 platform, which embeds the DW1000 ra-
dio; hence, the radio driver interfaces with the DW1000 via
SPI. The radio driver also provides access to radio diagnos-
tic values, including the CIR estimate, the position of the
estimated FP, as well as the PACC value. When reading the
CIR, we ensure that only samples of interest are read, accord-
ing to the CIR window specified by the model generator.
The ranging process is part of Contiki’s original ranging
stack and handles the exchange of UWB messages during
the two-way ranging (TWR) process. Two to four mes-
sages are exchanged (depending on whether single-sided
or double-sided TWR is executed), and their transmission
and reception timestamps are recorded to calculate the ToF
and distance between two UWB radios. Due to imperfec-
tions of crystal quartz clocks, which tend to accumulate er-
rors over time, the TWR process should be completed as
quickly as possible to minimize errors. Therefore, any time-
consuming operation, such as reading the CIR via the SPI
interface, should be avoided. To this end, while integrating
InSight into Contiki-NG, we ensure that the user applica-
tion only retrieves the CIR of the last message in the TWR
sequence. The last CIR is hence returned together with the
PACC counter to the user application, where it can be for-
warded to the engine process in order to leverage InSight’s
classification and error correction functionality.
The engine process waits for requests from the user appli-
cation and passes them on to the NLOS engine. Once the
NLOS classification or error correction results are available,
they are returned to the application through the same process.
Fig. 7(b) shows how an exemplary user application can use
the NLOS engine to improve its localization accuracy. While
estimating the range to several anchor nodes, the application
provides each individual ranging measurement along with its
CIR estimate to the NLOS engine. The engine’s results can
be used to discard or correct ranging measurements taken
in NLOS conditions. In § 7, we will show experimentally
how this indeed allows an improved anchor selection and an
increased localization accuracy by up to 1.6 m.
6 Evaluation
We evaluate next the performance of InSight experimen-
tally. After describing our testbed setup and the datasets em-
ployed to train the models (§ 6.1), we investigate the classi-
fication accuracy, error correction performance, and runtime
of the lightweight models produced by InSight, providing
also a comparison with the performance of state-of-the-art
solutions (§ 6.2). We further show the benefits of performing
on-device NLOS classification and error correction by com-
paring the delay with that of an edge-based solution (§ 6.3).

6.1 Testbed and Datasets
We test InSight’s performance experimentally on an UWB
testbed installed at our University, which consists of 36
Qorvo MDEK1001 devices mounted on walls across an area of
120 m2 encompassing an office, an entrance, and a hallway.
We let InSight generate models matching the user-specific
requirements listed in Tab. 1. We train the classification mod-
els using two publicly-available datasets: the ST dataset de-

https://github.com/d3s-trento/contiki-uwb
https://github.com/d3s-trento/contiki-uwb
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Figure 8: Overview of our testbed setup. Left: testbed topol-
ogy, with 36 anchor nodes (orange squares) and 3 mobile
tags (blue circles). Top-right: wall-mounted anchor nodes.
Bottom-right: obstacles used to create NLOS conditions.

scribed in § 4.2, and the dataset published by Bregar et al. [4],
which we refer to as the BR dataset. For training the error
correction models, we use the ST dataset supplemented with
20606 measurements gathered from our testbed, which we
refer to as the anchor-to-anchor (ATA) dataset. To create the
ATA dataset, we let pairs of nodes mounted on walls (i.e., the
anchor nodes marked as orange squares in Fig. 8) perform
double-sided TWR (DS-TWR) among each other8 in both
LOS and NLOS conditions. To introduce additional NLOS
conditions than those caused by the building’s geometry, we
artificially place a metal sheet and a foam absorber at various
locations throughout the testbed9. We further create an addi-
tional tag-to-anchor (TTA) dataset with 54175 measurements
that we use exclusively for testing. The TTA dataset is created
by placing a mobile tag at three locations within the testbed
(marked as blue circles in Fig. 8), and by letting them range
to nearby anchors10. All measurements in the two datasets
are taken using channel 5, 128 preamble symbol repetitions,
and a pulse repetition frequency of 64 MHz.

6.2 Models’ Correctness and Performance
We study the correctness as well as the classification and error
correction performance of the models generated by InSight.
Models’ correctness. When providing InSight’s model
generator with the user requirements listed in Tab. 1 and with
the training sets detailed in § 6.1, we obtain two sets of models.
The best suitable classification and error correction models
for the on-device Small requirements are based on a REM-
Net, and have one residual reduction model (N=1). The clas-
sification model uses a CIR start/end index of 5/25 and F=8,
whereas the error correction model uses a CIR start/end in-
dex of 0/25 and F=16, respectively. Tab. 4 shows the mem-
ory footprint of the two REMNet models, i.e., 8.4/9.3 kB
of RAM and 8.8/11.1 kB of flash memory for the classifi-
cation/error correction models, respectively.
The best suitable classification and error correction models
for the on-device Tiny requirements are based on XGBoost.
The classification/error correction models use a max depth
D=3/1, a max number of tree estimators T=10/100, a CIR
start index of 18/10, and a CIR end index of 38/38, respec-
tively. Tab. 4 shows the memory footprint of the two XG-

8We perform DS-TWR between pairs of anchors that are up to 10 m apart.
9Metal sheet and foam absorber have a size of 50x50 cm and a thickness

of 2 mm and 19 cm, respectively. Obstacles are at 0.4 m from the anchors.
10The tag performs DS-TWR to 13 surrounding anchors (8–10 of which

in LOS, and 3–5 in NLOS) at different orientations (which we vary at 45◦

steps). Obstacles (i.e., the aforementioned metal sheet and absorber) are
placed at 0.2, 0.5, and 0.8 m from the tag.

Table 4: Memory footprint, runtime, and performance of the
on-device models used by InSight to satisfy the user re-
quirements listed in Tab. 1, and of a baseline model [1].

Model name ML method Memory footprint Classification Error correction Runtime
RAM Flash Accuracy R2-score Measured

Baseline REMNet
42.1 kB 37.5 kB 0.81 - 1.03 ms
41.9 kB 37.3 kB - 0.25 0.99 ms

On-device Small REMNet
8.4 kB 8.8 kB 0.90 - 2.8 ms
9.3 kB 11.1 kB - 0.58 8.7 ms

On-device Tiny XGBoost
4 B 6.7 kB 0.86 - 0.08 ms
4 B 11.7 kB - 0.35 0.46 ms

Boost models, i.e., 4/4 B of RAM and 6.7/11.7 kB of flash
for the classification/error correction models, respectively.
As expected, all models returned by InSight’s model gen-
erator satisfy the memory requirements listed in Tab. 1.
Models’ performance. We evaluate next the classifica-
tion accuracy and R2 score of the aforementioned models
by running them on an MDEK1001 UWB device. We also
compute the accuracy and R2 score obtained by the offline-
generated models (i.e., those returned by the model gener-
ator before the conversion step discussed in § 4.4). We use
the TTA dataset (see § 6.1) as a test set for all models. The
REMNet models (Small) achieve an R2-score of 0.58/0.61
and an accuracy of 0.91/0.9 for the on-device/offline mod-
els, respectively. The XGBoost models (Tiny) achieve an
R2-score of 0.35/0.37 and an accuracy of 0.86/0.84 for the
on-device/offline models, respectively. The slight mismatch
among the on-device/offline models is due to full integer
quantization (when converting the REMNet model) and to
reduced floating point decimals (for the XGBoost models).
Comparison with other models. Tab. 4 summarizes the
classification accuracy and error correction performance
(R2-score) obtained by the on-device Small and Tiny mod-
els. It further lists the performance obtained by the original
REMNet by Angarano et al. [1] with the configuration rec-
ommended by the authors run without quantization on a lap-
top with an AMD Ryzen 7 PRO 5850U CPU (Baseline).
Looking at Tab. 4, we can observe that Baseline is outper-
formed by the on-device Small and Tiny models in terms of
both classification accuracy and error correction. 11 More-
over, we can observe that the on-device Small REMNet
models have a 5% higher classification rate and a higher
R2-score (+ 0.32) than the on-device Tiny XGBoost model.
However, the Small’s runtime is 19/34 times longer than that
of Tiny for error correction and classification, respectively.
6.3 On-Device vs. Edge Performance
We now show the benefits of performing on-device NLOS
classification and error correction by comparing the delay in
running the ML models on the embedded device, and in off-
loading the computation to an edge device.
On-device delays. We use Contiki-NG’s rtimer to measure
the processing time of the embedded NLOS engine’s pre-
processing, classification, and error correction components.

11Throughout our study, we have observed that larger models tend to
overfit, resulting in worse classification and error correction performance in
new environments. Smaller models, e.g., on-device Small and Tiny, seem
more robust. When using TTA as a test set, we have indeed observed using
InSight’s model generator that the returned on-device Small model is the
best performing regardless of any memory/runtime requirements. In future
work, we will investigate if this observation holds true in the general case.
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Figure 9: Delays in running the classification and error cor-
rection task on the embedded device, and in off-loading a
similar tasks to an edge device with a given CIR length.

We exemplify this by running the Tiny / Small models de-
rived in § 6.2. Fig. 9 illustrates the results: about 8% / 0.4%
of the total processing time is due to CIR scaling (≈ 48 µs for
Tiny and Small). The NLOS classification and error cor-
rection take 80 µs / 2.8 ms and 464 µs / 8.7 ms, respectively.
These values remain rather constant: the standard deviation
is below the resolution of the rtimer of ≈ 16µs.
Edge delays. We use a laptop with an AMD Ryzen 7 PRO
5850U CPU acting as an edge device, and measure the ex-
ecution time of the same pre-processing, classification, and
error correction components implemented in Python. To ex-
emplify, we run the Small REMNet models derived in § 6.2
before the conversion step discussed in § 4.4 in Python. The
pre-processing takes only 14 µs, executing the classifier takes
760 µs, whereas running the error correction model takes
740 µs. As off-loading the NLOS classification and error cor-
rection task to an edge device encompasses the transmission
of the CIR (uplink) as well as the reception of the results
(downlink), we also measure the time it takes an MDEK1001
device to send 30 and 157 CIR samples and to wait for the
edge device’s response. We do so using a Bluetooth Low
Energy (BLE) connection with the fastest settings available
(i.e., 2 Mbps PHY, MTU size of 244 bytes, and connection
interval set to 7.5 ms), as well as using the DW1000 UWB
module for communication (with a data rate of 6.8 Mbps and
a preamble length of 128). Fig. 9 illustrates the results: send-
ing 30 CIR samples using BLE (BLE 30) takes 8.66 ms, out
of which 3 ms uplink and 4.15 ms downlink (note that the
use of a connection interval of 7.5 ms introduces some delays
and unpredictability in the BLE transmissions). When send-
ing 157 CIR samples using BLE (BLE 157), which would
be the typical amount used before introducing the optimiza-
tions shown in § 4.2, the total time increases to 16.21 ms,
with 7.8 ms for the uplink and 6.9 ms for the downlink trans-
missions. When using the UWB radio for communication,
we have observed that the uplink takes 1.31 ms and 5.71 ms
when sending 30 and 157 CIR samples, respectively. While
faster than the use of BLE connection, off-loading the NLOS
classification and error correction tasks using the UWB mod-
ule still takes 3.47 ms (UWB 30) and 7.87 ms (UWB 157). This
is ≈ 6 times longer than the processing time we measured on
the device when running the Tiny XGBoost models. Note
that the on-device Small REMNet models have a runtime of
11.5 ms for pre-processing, classification, and error correc-
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Figure 10: Radio interference can affect the RTT in sending
the CIR to the edge device and receiving a response.

tion, which places them in between BLE 30 and BLE 157.
Determinism of the on-device delays. The aforementioned
delays in off-loading the computations to the edge device
have been computed in ideal conditions (i.e., without packet
loss). In real-world environments, however, the communica-
tion to/from an edge device may be unreliable (e.g., due to
the presence of radio interference causing re-transmissions),
which results in non-deterministic delays affecting the fre-
quency at which a tag can update its position. Fig. 10 shows
the round-trip time (RTT), i.e., the delay between sending the
CIR to the edge device and receiving a response, using BLE
in the presence of radio interference. In absence of inter-
ference (noint), the response time remains stable at around
16 ms and 9 ms when sending 157 and 30 CIR symbols.
When adding three nearby Raspberry Pi 3 devices generat-
ing traffic on Wi-Fi channel 1, 6, and 11 with a channel occu-
pancy of roughly 30, 60, and 100%, the delay increases by up
to 442%, i.e., from 9 ms to 40 ms for a CIR of 30 symbols12.
More importantly, the standard deviation of this delay in-
creases from 0.78 ms (no interference) to 26.5 ms (strong in-
terference). In contrast, the on-device processing delay is
rather deterministic (with a standard deviation of only ≈ 4 µs
for XGBoost and ≈ 0.5 ms for REMNet), which makes them
suitable for location-aware applications that need to update
the position of a device within given time bounds.

7 InSight in Action
We finally evaluate the performance of InSight by quan-
tifying the NLOS classification and error correction perfor-
mance while running the embedded NLOS engine on mobile
tags moving across our testbed area (§ 7.1). We then demon-
strate how InSight can be leveraged by a localization appli-
cation to reduce the errors in the position estimates taken in
NLOS conditions by means of an improved anchor selection
and ranging error correction strategy (§ 7.2).

7.1 Real-World Performance
We conduct several experiments in the testbed facility de-
scribed in § 6.1 to evaluate the performance of the proposed
on-device NLOS classification and error mitigation in real-
world settings. Specifically, we place a mobile tag within
two different areas (ENTRANCE and HALLWAY, as displayed
in Fig. 8). In both areas, we place the tag in 9 and 5 positions,
and let it range to anchors in the ENTRANCE, HALLWAY, and
OFFICE for 45 times on average in each position. For each
ranging measurement, we record the actual and the estimated
distance, as well as the NLOS classification and error correc-

12Note that Wi-Fi channels 1, 6, and 11 do not overlap entirely with the
37 BLE data channels; for this reason, even with a channel occupancy close
to 100%, BLE transmissions eventually succeed after some retransmissions.
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tion returned by InSight’s NLOS engine13.
Performance. Overall, an accuracy of 83 % is achieved for
classification and an R2-score of 0.54 for error correction.
Fig. 11(a) shows the cumulative distribution function (CDF)
of the absolute error for LOS and NLOS measurements.
When measuring in LOS conditions, the median and 90th

percentile error is 6.2 cm and 20.3 cm. Measurements taken
under NLOS conditions are less accurate and have a me-
dian error of 53 cm and a 90th percentile error of 271.8 cm.
When applying error correction, the median error for NLOS
measurements is reduced to 39.7 cm and the 90th percentile
to 137.6 cm. The error of LOS measurements slightly in-
creases, resulting in a median and 90th percentile error of
19.30 cm and 53.5 cm. In § 7.2.3, we will show how these
results translate in an overall increase of the localization ac-
curacy when leveraging InSight in a practical application.
False negative errors. We further investigate if the NLOS
classifier can reliably detect NLOS measurements in the
presence of large errors. Fig. 11(b) shows the classifier’s out-
put for each sample as a function of the range error. We can
observe that no measurement with an error above 0.5 m was
wrongly classified as LOS, which means that false negatives
have a small impact on localization systems.

7.2 Increasing the Localization Performance
We show next how the NLOS classification and error cor-
rection returned by InSight can be leveraged by an UWB-
based localization system to reduce the errors in the posi-
tion estimates. To this end, we introduce three strategies that
leverage InSight’s NLOS classification (§ 7.2.1) and/or er-
ror correction results (§ 7.2.2), and perform a measurement
campaign in our testbed to show the performance of each
strategy in terms of localization accuracy (§ 7.2.3).
7.2.1 Refining the Anchor Selection
For 2D localization, a mobile tag measures the distance to at
least three nearby anchors nodes. The position of the mobile
tag is at the intersection of three (or more) circles, with the
radius being the distance between the tag and the anchors
and the circle’s center being the anchor’s position. Select-
ing a good set of anchors from all available options is cru-
cial and impacts localization accuracy, as spatial distribution
matters and also NLOS conditions affect the system’s accu-
racy. We hence let a localization application use two strate-
gies: a BASELINE approach that only considers the anchors’

13For this evaluation, we opt to relax the runtime requirement of the error
correction model and increase it to 600 µs, as we observe a 17% increase in
R2-score and hence a better LOS error correction performance.

spatial distribution (i.e., without knowledge of whether they
are in LOS/NLOS), and a NEAREST LOS approach that also
leverages InSight’s NLOS classification results.
BASELINE. When using this strategy, the anchors are se-
lected in two steps. First, based on an initial position esti-
mate, each nearby anchor is assigned to one of four quad-
rants. Second, the nearest anchor within each quadrant list
is selected and used to perform localization. This strategy is
used in Qorvo’s localization system and detailed in [9].
NEAREST LOS. This strategy extends BASELINE by remov-
ing anchors classified as NLOS from the quadrants’ list, such
that the nearest LOS anchor is chosen (if any). If no LOS an-
chor is available in one quadrant, the latter is not considered
when performing localization. This is an iterative process: a
tag first estimates its distance to the nearest anchor in each
quadrant, and then performs NLOS classification on the per-
formed ranging measurement. If NLOS is returned, the tag
selects the next anchor from the same quadrant list.

7.2.2 Correcting the Ranging Error
The NEAREST LOS strategy fails when all anchors in at
least two quadrants are not in LOS with the tag. We hence
also let the application investigate two strategies leveraging
InSight’s error correction functionality.
CORRECTION. This strategy uses the BASELINE anchor se-
lection strategy and always applies error correction regard-
less of LOS or NLOS conditions.
DETECTION & CORRECTION. This strategy extends the
aforementioned CORRECTION strategy by only applying er-
ror correction if the measurement is classified as NLOS.

7.2.3 Results
We evaluate the localization accuracy of the NEAREST LOS,
CORRECTION, as well as DETECTION & CORRECTION strat-
egy, and compare it to the BASELINE anchor selection in our
testbed. To give a detailed analysis, we divided the testbed
into six areas (Area I – Area VI) containing different exper-
imental setups for LOS and NLOS, as shown in Fig. 12. To
increase the number of NLOS conditions in some areas, we
deactivate or place some obstacles in front of some anchors.
Localization in harsh NLOS conditions. Area I, III, and V
show large localization errors (90th percentile error up to
1.77 m) in Fig. 12(b), (d), and (f), respectively, due to mea-
surements through concrete walls and around corners14. To
enforce a NLOS condition around the corner, we deacti-
vate anchors 7 and 10 when measuring in Areas III and V.
Consequently, the BASELINE strategy selects anchor 6 from
Area III and anchor 11 from Area V, while selecting an-
chors 27-29 in the OFFICE from Area I. Compared to BASE-
LINE, the NEAREST LOS, CORRECTION, and DETECTION &
CORRECTION strategies significantly reduce the localization
errors, i.e., by up to 1.6, 1.04, and 1.1 m, respectively.
We conclude that, under harsh NLOS conditions, all strate-
gies are viable options to improve the localization accuracy.
Localization in mild NLOS conditions. Area II and IV show
small localization errors (90th percentile error up to 0.26 m)

14In fact, some of the BASELINE measurements (blue upside down trian-
gles) taken in Area V appear in Area IV due to the large localization error.
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Figure 12: Black squares are the anchors, magenta rectangles mark the ground truth position, upside down blue triangles are the
mean position of the BASELINE method, green triangles are the mean position of the NEAREST LOS strategy, red dots are the
mean position of the CORRECTION strategy, and black X are the mean position of the DETECTION & CORRECTION strategy.

in Fig. 12(c) and (e), respectively, and are caused by obsta-
cles. Specifically, in Area II, anchor 25 is partly blocked
by a metal rail, and causes similar errors as the obstacles in
Area IV. In Area IV, all strategies improve the localization er-
ror (up to the 80th percentile), before the CORRECTION strat-
egy introduces errors. In Area II, all strategies improve or
have a similar localization error (up to the 80th percentile),
before the CORRECTION and the DETECTION & CORREC-
TION strategy introduce errors.

We conclude that, under mild NLOS conditions, the NEAR-
EST LOS always improves or maintains the localization accu-
racy, and that CORRECTION as well as DETECTION & COR-
RECTION can introduce errors above the 80th percentile (but
otherwise also improve or keep the localization accuracy).

Localization in LOS conditions. Area VI shows minor
localization errors (90th percentile error up to 0.16 m) in
Fig. 12(g) and is recorded in LOS without any obstacles or
walls. Surprisingly, rangings to anchor 12 introduce a small
error and lead to a better performance of the NEAREST LOS
strategy, which avoids this anchor, compared to the BASE-
LINE strategy (4.3 cm at 90th percentile). The CORRECTION
and DETECTION & CORRECTION strategies worsen the lo-
calization error by up to 9.5 cm at the 90th percentile.

We conclude that, under LOS, the CORRECTION and DE-
TECTION & CORRECTION strategies decrease performance,
whereas the NEAREST LOS strategy can improve the local-
ization error even in erroneous LOS conditions.

Takeaway. Our experimental results summarized in Fig. 12
show that, in average, the accuracy of the location estimates
across all areas is improved by 59% (i.e., from 0.26 cm to
0.11 cm), with improvements of the 90th-percentile localiza-
tion error by up to 1.6 m – confirming the effectiveness of
InSight in tackling real-world NLOS conditions.

8 Conclusions and Future Work
We have presented InSight, a framework that enables
the deployment of NLOS classification and error correc-
tion models directly on resource-constrained UWB devices,
showing its effectiveness through comprehensive testbed ex-
periments. We integrated InSight into Contiki-NG on top
of the popular Qorvo MDEK1001 platform and made it avail-
able open-source, hoping that this will foster the creation of
location-aware UWB applications sustaining a high perfor-
mance despite harsh environmental conditions. We plan to
leverage InSight to study and benchmark the performance
of different anchor selection techniques, and to evaluate the
performance of the developed lightweight ML models in dif-
ferent environments and with different UWB platforms.
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