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ABSTRACT
Voice is a convenient and popular way to interact with our dig-
ital world. Besides translating speech to text, it is also possible
to identify speakers based on their voice profile. To date, speaker
identification has predominantly been limited to high-performance
computational platforms owing to the intricate nature of the under-
lying algorithms. In this work, we demonstrate that it is possible to
reduce model complexity by the required factor of ∼10, such that
speaker identification can be made feasible for embedded devices
with limited resources. We further describe and discuss novel use
cases, such as voice-based presence detection and authentication,
that become feasible when making speaker identification viable on
this class of devices.
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1 INTRODUCTION
Voice is now a common interface through which users interact
with digital infrastructure. The ease of using natural language as an
interface has fueled its widespread adoption. A voice interface can
be a standalone device such as a smart speaker (e.g., Amazon Echo,
Google Home, and Apple HomePod) or integrated within devices
such as smartphones or televisions. Typically, the architecture of a
voice processing system is divided into a front-end, situated on the
device, which is equipped with a microphone, speaker, and limited
computing capabilities, and a back-end, located remotely in the
cloud, responsible for voice processing.
In addition to the well-known automatic speech recognition task,
Deep Learning (DL) can be employed to extract features from a voice
signal for performing other tasks, such as Speaker Identification (SI),
which is the process of distinguishing and recognizing speakers
based on the unique characteristic of their voice. Many methods
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have been proposed for SI, with Deep Neural Network (DNN) being
the most popular and successful approach [5]. Current research
on SI has focused on classification accuracy. Model complexity
and the resulting processing and storage requirements have been
treated as secondary. So far, this has not been an issue, as analysis
of speech signals has been carried out on powerful cloud back-
ends. However, it has been recognized that complexity should be
addressed due to several drivers. First, SI should ideally be processed
on a front-end (i.e., a small embedded device) to avoid the processing
of personal biometric information on a remote back-end. Second,
SI should reduce complexity to conserve resources, either energy
consumption in a back-end or materials to construct a front-end.
In our work, we follow the aforementioned argumentation and
describe how it is possible to reduce SI algorithms in their com-
plexity such that processing on small embedded devices becomes
viable without losing the required accuracy. We start our work with
AM-MobileNet1D, a state-of-the-art model that has a flash memory
footprint of 10.5MB, and show that it is possible to reduce its size
to 433 kB for the same number of speakers without significantly
losing accuracy. Thus, it becomes possible to locate the SI task
on small embedded devices with less than 1MB of flash memory,
which opens a new set of application scenarios. For example, small
embedded devices equipped with a simple microphone can be used
to overhear conversations in a space and can identify present indi-
viduals. It may also be desirable that small embedded devices that
do not provide classical user interfaces, such as a keyboard/screen,
implement access control for device configuration.
The specific contributions of our work are twofold:

• SI use cases. We describe and discuss novel use cases for SI in
the context of embedded systems. From these use cases, we
derive SI performance (e.g., accuracy) and complexity (e.g.,
storage, computation) requirements. We show that existing
solutions do not meet those requirements.

• Embedded SI implementation. We show how a model (i.e.,
AM-MobileNet1D) for SI can be tuned to fulfill the aforemen-
tioned requirements. We provide a performance analysis of
this solution and describe it in the context of our SI use cases.

2 THE SPECTRUM OF EMBEDDED USE CASES
FOR SPEAKER IDENTIFICATION

Speaker Verification (SV) and SI both utilize analogous techniques
in voice analysis, yet they serve distinct purposes. Specifically, SI
is predominantly performed in a supervised manner, utilizing la-
beled data where the identity of each speaker is known beforehand.
This approach allows the system to classify an unknown voice
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Table 1: Selected SI models and their details, with size values
in Megabytes (MB) and million params. (M), and their per-
formance values in accuracy (Acc.) or equal error rate (EER).

Model Size # Speakers Performance
MB M

SincNet [4] 91.2 22.8 462 Acc.=98.85%
AM-MobileNet1D [4] 11.6 2.8 462 Acc.=99.50%
VGG-M [2] – 67 1251 Acc.=80.9%
ResNet18 [2] – 12 1251 Acc.=89.5%
ResNet34 [2] – 22 1251 Acc.=93.8%
FCN [3] 14.52 – 300 EER=1.235%
LCN [3] 14.39 – 300 EER=1.228%
CNN [3] 14.58 – 300 EER=1.838%
MaxOut [3] 14.56 – 300 EER=1.239%
DSC [3] 14.51 – 300 EER=1.274%
UtterIdNet [1] 268 – 1250 EER=6.63%

sample into one of the known categories based on training data.
On the other hand, SV operates in a binary decision-making con-
text, determining whether a given voice sample matches a claimed
identity. Contrary to SI, the training for SV often leans towards
an unsupervised paradigm, where the system primarily focuses
on understanding the distribution of genuine voices. By learning
this distribution, it becomes adept at identifying out-of-distribution
samples, which often correspond to impostor voice claims.
For our use cases, we are considering small embedded devices
equipped with microphones deployed in a given space. We aim to
analyze overheard speech to identify the speaker(s). Classical SV,
as seen in banking applications where the caller is identified, is
not a suitable option. The claim of identity is inherently unknown
because the embedded device typically lacks the means to obtain
this information (e.g., caller ID, face recognition, a keyboard to
prompt for a username, etc.). Therefore, we are focusing on SI.
In our context, SI enables a variety of application scenarios, each
with distinct performance requirements. On one end of the spec-
trum, SI might be used to overhear speakers in space and provide
an estimate of who is present at a given point in time. For such
a task, a lower speaker classification accuracy may be acceptable.
Conversely, SI might be employed for authentication to ease access
control for device configuration. In this scenario, high accuracy is
crucial, as insufficient accuracy would compromise access control.
Given that state-of-the-art SI models are too complex for resource-
constrained embedded devices, they must be adapted. Reducing
model complexity typically impacts accuracy; some SI use cases
may not be feasible, while others can be supported.

3 PRELIMINARY RESULTS
We target the nRF5340 System-on-Chip (SoC) integrated into the
Thingy:53 prototyping platform. This platform includes a pulse
density modulation (PDM) microphone and offers 512 kB of RAM
and 1MB of flash memory. None of the models listed in Tab. 1
can fit onto our target device. The AM-MobileNet1D is the small-
est among them, with a file size of 11.6MB, which corresponds to
approximately 10.5MB in flash memory. We opted to shrink the
AM-MobileNet1D by reducing its depth in terms of the number of
inverted residuals, and its width through the width multiplier argu-
ment in the AM-MobileNet1D. The model achieves an accuracy of

Table 2: Number of speakers, accuracy, and memory usage
of the AM-MobileNet1D with full-integer quantization.

ML method # Speakers Accuracy Memory
RAM Flash

Original
AM-MobileNet1D

462 99.5% 567 kB 3.1MB

Reduced
AM-MobileNet1D

462 98.9% 481 kB 433 kB

98.9%—a mere 0.6% decrease—using the same TIMIT dataset as the
original model for SI. Moreover, the model’s file size is reduced to
1.44MB, a reduction of 87.6%. The memory footprint of the model
can be further reduced by up to a factor of 4 using full-integer quan-
tization, which converts the weight and activation variables from
floats to integers. The flash memory stores the model’s architecture
information and weights. In contrast, the peak RAM consumption
is determined by the tensor arena size, which is defined by the
number of weights and the activation’s inputs and outputs of two
layers needed to compute intermediate results. We use TensorFlow
Lite for micro-controllers to convert the model into a C flat buffer
array and to calculate the RAM and flash memory usage. The origi-
nal model requires 567 kB of RAM and 3.1MB of flash memory. In
contrast, as shown in Tab.2, the reduced model only needs 481 kB
of RAM and 433 kB of flash memory, thus enabling embedded SI.

4 DISCUSSION AND OUTLOOK
Our preliminary results demonstrate that embedded SI is feasible.
This allows us to further test various models, evaluate out-of-set
accuracy for SV applications, and create a running prototype on the
Thingy:53. A further aspect to evaluate is the energy consumption
and runtime of the shrunk model. The nRF5340 has the same cur-
rent draw when recording audio data as it does during inference,
averaging 6.8mA. Thus, a brief audio recording is just as crucial as
a short inference time. The TIMIT dataset contains audio samples
with an average length of ≈ 2.7 seconds, which makes the recording
relatively expensive. We employ a window size of 200ms that slides
over an audio sample with a step size of 190ms, further increasing
the number of inferences needed per audio sample. Therefore, we
also aim to evaluate the model’s inference time, and how different
sample lengths and window sizes affect the accuracy to create a
system that uses the CPU as efficiently as possible.
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