
X-Burst: Enabling Multi-Platform Cross-Technology
Communication between Constrained IoT Devices

Rainer Hofmann, Carlo Alberto Boano, and Kay Römer

Paper published at the 16th IEEE International Conference on Sensing, Communication and Networking (SECON) in June 2019

Institute of Technical Informatics, Graz University of Technology, Austria
E-mail: rainer.hofmann@tugraz.at; cboano@tugraz.at; roemer@tugraz.at

Abstract—Cross-technology communication (CTC) allows de-
vices employing incompatible wireless technologies to directly
exchange information without the need of expensive gateways.
Existing work on CTC has showcased the ability of exchanging
data between diverse wireless standards, but has not analysed
the challenges nor tackled the problem of enabling CTC between
multiple constrained IoT platforms with different characteristics.
Indeed, CTC schemes are often hacked on very specific hardware
platforms, which results in a lack of a general, portable solution.
Furthermore, CTC has always been tested as a standalone piece
of functionality, and its seamless integration with the classical
operations of a constrained IoT device remains an open challenge.
In this paper, we present X-Burst, a portable framework that
allows multiple constrained IoT platforms with diverse char-
acteristics to seamlessly interact using CTC. X-Burst allows to
customize the CTC working principle (e.g., how information is
encoded, or the alphabet used to encode a symbol) and enables
the combination of different encoding and decoding strategies
independently of the employed hardware platform. Thanks to
its high modularity, X-Burst also simplifies the development of
alternative CTC implementations and makes it easy to compare
different approaches. As a proof of concept, we integrate X-Burst
into the Contiki operating system without changing Contiki’s core
functions and allow an IoT device to seamlessly support CTC in
parallel to its normal operations. We then showcase the function-
ality of X-Burst by enabling a bidirectional CTC between off-
the-shelf heterogeneous IoT platforms based on IEEE 802.15.4
and Bluetooth Low Energy (BLE). An experimental evaluation
further shows X-Burst’s small memory footprint and analyses
the robustness and throughput of different encoding schemes.

Index Terms—Bluetooth Low Energy; IEEE 802.15.4; Contiki;
Cross-technology communication; Internet of Things; X-Burst.

I. INTRODUCTION

The massive proliferation of wireless systems and the grow-
ing density of Internet of Things (IoT) applications increases
the need for a direct interaction between heterogeneous de-
vices and platforms. The ability to directly share information
allows, for example, co-located wireless devices and networks
operating in the same frequencies to develop coexistence
strategies minimizing the impact of cross-technology interfer-
ence [1], [2]. Furthermore, it enables a seamless data collection
in smart homes and industrial IoT systems composed of
diverse wireless devices from different vendors [3].

Unfortunately, although most wireless technologies operate
in the same unlicensed ISM bands, they typically have incom-
patible physical layers (PHY), which does not allow heteroge-
neous devices to directly exchange packets. Because of this,
one often resorts to the use of multi-radio gateways in order
to relay data packets and synchronize the operations between
wireless devices making use of different technologies [4], [5].

The use of gateways, however, introduces extra costs, in-
creases traffic, and leads to higher end-to-end delays. Further-
more, gateways constitute a bottleneck as well as a single
point of failure, and their management is often complex and
time-consuming, which limits their use on a large scale [6].

Recently, cross-technology communication (CTC) is emerging
as a viable alternative to the use of multi-radio gateways
and is becoming an increasingly hot research topic. CTC
enables a direct data exchange across heterogeneous wireless
devices by making use of a side channel that is mutually
available [7], which allows channel coordination [2] as well as
more advanced services such as sensor (re-)configuration [8].

Early CTC works have shown how to exchange data be-
tween various wireless technologies and decode information
through energy detection, e.g., based on frame length [9],
beacon interval [10], gap duration [11], and energy level [12].
Recent approaches have also shown how to carry out CTC by
means of physical layer emulation [13], [14], [15], [16], which
allows to transmit data at a very high throughput.

Lack of multi-platform CTC solutions. Despite the large
body of work that has been produced in the last years, research
on CTC is still at an early stage. So far, the community
has mostly focused on building prototypes showcasing the
ability of carrying out CTC between diverse wireless standards
and on highlighting potential applications [2], [8], [17]. Such
proof-of-concepts are typically implemented using powerful
software-defined radios [11], [12], [18] or hacked on specific
hardware (HW) platforms [13], [19] and hardly describe any
implementation detail. As the interest in CTC grows, there
is a need to move away from feasibility studies in favour of
general CTC solutions supporting multiple HW platforms by
design. Furthermore, the availability of generic and portable
CTC solutions as open-source implementations can empower
novel CTC research in the years to come.

Supporting HW platforms with diverse characteristics. The
creation of portable CTC solutions is, however, very complex,
due to the diversity of commercially-available HW platforms.
Indeed, depending on the PCB design and on the employed
components, each HW platform exhibits unique characteris-
tics, e.g., how to access the radio, the CPU clock rate, as
well as the speed at which radio instructions can be loaded
and executed. These aspects drastically affect the design of
CTC schemes and practically force developers to tailor and
heavily optimize their implementations to the devices at hand.
For example, when carrying out CTC by encoding information

into the duration of a message and by using energy sensing
(i.e., by measuring the radio’s received signal strength) for
decoding [9], one needs to make sure that the operations
of transmitter and receiver are precisely timed. To this end,
aspects such as how fast one can send commands to the
radio, how quickly one can sample/process the received signal
strength (RSS), or the time granularity of the device, play
a crucial role and affect the implementation of the CTC
scheme – making it hard to build a portable solution across
multiple HW platforms with different characteristics.
Supporting constrained IoT devices. Building a portable CTC
solution becomes even more complex when dealing with
constrained IoT devices such as environmental sensors and
actuators (e.g., BLE- or IEEE 802.15.4-based smart objects).
These devices are typically equipped with single-core CPUs
and embed only a few kB of memory. This results in severe
processing, memory, and storage constraints, which limits the
complexity of the encoding and decoding schemes that can be
used to carry out CTC, as well as the achievable throughput.
Furthermore, these devices employ primitive radios supporting
only limited features and focusing on low-power operation. In
these radios, even simple functionality such as RSS sampling
may be implemented differently, which has important impli-
cations on the design of portable decoding schemes based on
energy sensing, as we show in Sect. II.
Lack of integration into existing systems. CTC has mostly
been implemented as a standalone piece of functionality,
leaving aside its integration with the classical operations
of a device. Integrating CTC with existing functionality is
particularly complex for constrained IoT devices, due to their
severe resource limitations and the strong focus on energy-
efficiency. Smart objects based on BLE or IEEE 802.15.4, for
example, employ duty-cycled MAC protocols to minimize the
time in which the radio is turned on. A seamless integration
of CTC functionality with these protocols should make sure
that the transmission and reception of CTC messages does
not interfere with the regular duty-cycled communications,
which requires a smart scheduling of the radio access. This is,
however, hard to achieve, as constrained IoT devices typically
make use of stripped-down operating systems that are not
designed to handle multiple network stacks concurrently [20].
Our contribution: X-Burst. In this paper, we present X-Burst,
a portable framework that allows multiple constrained IoT
platforms with diverse characteristics to seamlessly interact
using CTC. X-Burst is based on energy sensing [9], i.e., it
makes only use of features available on standard-compliant
off-the-shelf radios to send precisely-timed energy bursts and
to decode information by means of RSS sampling. This
keeps X-Burst’s design generic and allows to broadcast CTC
messages to multiple heterogeneous devices simultaneously1.

1In this paper, we explicitly target constrained IoT devices embedding
transceivers compliant to the BLE [21] or the IEEE 802.15.4 PHY/MAC
standard [22], as these are the two most widespread wireless technologies
used to build smart objects. However, note that X-Burst’s design is generic,
and can also be used, for example, in more powerful devices embedding Wi-Fi
radios, as they also support CTC by means of energy sensing [9], [10], [23].

X-Burst allows to separate the CTC working principle (e.g.,
how information is encoded and decoded, or the alphabet used
to encode a symbol) from low-level hardware details. To this
end, X-Burst is built as a set of thin HW-agnostic modules that
sit on top of a hardware abstraction layer, which simplifies the
development of alternative CTC implementations and makes
it easy to combine different encoding and decoding strategies.

X-Burst’s modular design also allows to automatically com-
pute the alphabet (i.e., the set of properties of an energy burst)
that should be used to encode CTC symbols. Such an alphabet
is derived according to the characteristics of the devices
involved in the communication (e.g., the time granularity, the
time necessary to measure, process, and store an RSS value,
as well as the response time of the radio to a command).

As a proof of concept, we integrate X-Burst into the popular
Contiki operating system [24] and allow to carry out CTC
in parallel to classical operations. In particular, we let a
scheduler learn the existing duty-cycling strategy and trigger
the transmission and reception of CTC messages only when
the radio would otherwise be unused. We achieve this without
modifying the existing network stack and without affecting
Contiki’s normal communication flow.

We showcase the functionality of X-Burst by enabling a
bidirectional CTC between several off-the-shelf IoT platforms
embedding an IEEE 802.15.4 or BLE radio, such as the
TI CC2650 LaunchPad, the Zolertia Firefly, and the TelosB
mote. To the best of our knowledge, we are the first to
show a bidirectional CTC between multiple heterogeneous
off-the-shelf BLE and IEEE 802.15.4 devices. We further
illustrate how X-Burst’s modularity allows to easily compare
the performance of different encoding and decoding schemes.
We finally analyse X-Burst’s memory footprint and evaluate
experimentally the throughput and robustness of different CTC
configurations.
After discussing the rationale behind X-Burst’s design and

highlighting the challenges in devising a generic CTC frame-
work in Sect. II, this paper makes the following contributions:

• We present X-Burst, a framework allowing diverse IoT
platforms to seamlessly interact using CTC (Sect. III);

• We describe X-Burst’s modular design and highlight how
it keeps CTC implementations HW-agnostic and simpli-
fies the development of new functionality (Sect. IV);

• We seamlessly integrate X-Burst into Contiki and allow to
carry out CTC in parallel to classical operations (Sect. V);

• We showcase how X-Burst enables a bidirectional CTC
between several diverse BLE and IEEE 802.15.4 devices,
analyse its memory footprint, as well as evaluate the
robustness of various encoding schemes (Sect. VI).

After describing related work in Sect. VII, we conclude our
paper in Sect. VIII, along with a discussion on future work.

II. X-BURST: DESIGN RATIONALE

In this section, we describe the rationale behind X-Burst’s
design and the challenges in devising a generic CTC frame-
work for multiple heterogeneous and constrained IoT devices.

0 50 100 150 200 250 300 350 400
Time [µs]

100

90

80

70

60

50

40
RS

S
[d

Bm
]

t

t = 65 = t

t = 90 = t

Actual CTC burst
Measured RSS

(a) Instantaneous RSS measurement

0 100 200 300 400 500 600
Time [µs]

100

90

80

70

60

50

40

RS
S

[d
Bm

]

t

t = 55

t = 65 = t

t = 90

Actual CTC burst
Measured RSS

(b) Non-instantaneous RSS measurement

-90 -85 -80 -75 -70 -65 -60 -55
Threshold [dBm]

80
60
40
20

0
20
40
60
80

100
120
140
160

Es
tim

at
io

n
er

ro
r

 [
s]

(c) Accuracy of the estimated durations
Fig. 1: RSS sampled with a BLE (a) and an IEEE 802.15.4 device (b). Whilst the former returns an instantaneous value, the
latter returns the average over the last 128µs, which affects the effectiveness of decoding strategies based on static thresholds (c).

Supporting a generic CTC scheme. Existing CTC ap-
proaches make use of either physical-layer emulation [14],
[13], [15] or packet-level modulation [9], [10], [11], [12], [23],
[25]. The former consists in adjusting the payload of a frame
such that a portion of it can be recognized by a device using
another technology as a legitimate frame. Such an approach
allows to perform CTC at very high data rates, but it typi-
cally only supports one direction2 and is technology-specific,
i.e., one cannot transmit the same CTC message to devices
employing diverse technologies simultaneously. Packet-level
modulation, instead, makes use of properties such as the packet
duration [9], [23], [26], the interval between packets [10], [11],
and the energy-level with which they are sent [7], [12], [27] to
perform CTC. This approach is more generic than physical-
layer emulation and allows a bidirectional CTC between
heterogeneous devices, as well as the broadcasting of a CTC
message to multiple devices employing diverse technologies
simultaneously. When following this approach, CTC messages
are typically decoded by means of energy detection techniques
such as RSS sampling. These are available on most off-the-
shelf radios: either mandated by standards [22] or available as
vendor-specific extensions [21]. To ensure generality, we base
X-Burst on packet-level modulation and create a dedicated
module to support the different encoding approaches proposed
in the literature. As we show in Sect. IV, this module also
simplifies their combination and the creation of new schemes.
Tackling the heterogeneity of wireless technologies. Even
though the use of energy detection techniques such as RSS
sampling has been widely used to decode CTC messages,
a few challenges arise when creating a generic decoding
functionality that should work across multiple technologies.
One, indeed, needs to cope with the fact that different tech-
nologies may specify diverse ways to compute the RSS value.
The IEEE 802.15.4 standard, for example, specifies that the
RSS is calculated as the average signal strength of eight
symbol periods, i.e., the average over the last 128µs. Other
technologies, instead, return the current signal strength at
the antenna pins instantaneously. This may lead to different
types of RSS measurements depending on the employed HW
platform, which affects the effectiveness of the decoding

2XBee [15] has shown that physical-layer emulation is also possible from
a low-end to a high-end device by means of cross-decoding, but did not show
how to achieve a bidirectional communication using commodity devices.

strategies based on static thresholds [9], as shown in Fig. 1.
For example, approaches making use of a single RSS thresh-
old Θ to estimate the duration of an energy burst (i.e., the
duration δt in which the activity in the channel is stronger
than Θ), may be suitable when using a BLE device returning
an instantaneous RSS measurement (Fig. 1a), but not when
using an IEEE 802.15.4 device returning an averaged RSS
value (Fig. 1b). In the latter case, the choice of Θ strongly
affects the accuracy of the estimated δt. A wrong selection
of Θ (e.g., -55 or -90 dBm) would result in large estimation
errors γ = δt−∆t (with ∆t being the actual duration of the
energy burst), as shown in Fig. 1c. Unfortunately, it is hard to
find a suitable threshold that minimizes γ in advance, as the
strength of a signal is affected, among others, by the distance
between the devices, by the employed transmission power, as
well as by the characteristics of the surrounding environment.
To cope with these issues, we create in X-Burst a dedicated
decoding module, which allows to separate the technique used
to decode CTC messages from other functionality. As we
show in Sect. IV, this module allows to easily compare the
performance of different decoding strategies and find the one
that works best across multiple technologies.
Tackling the heterogeneity of HW platforms. CTC schemes
based on packet-level modulation typically map a data symbol
into an energy burst of pre-defined duration [23], power [11],
or into the length of the gap between consecutive bursts [27].
The supported set of properties used to map a symbol (i.e.,
the different burst durations, power levels, or gap lengths)
is referred to as alphabet. The size of an alphabet and the
supported set of values are strongly dependent on the charac-
teristics of the employed HW. For example, when encoding
information in the duration of an energy burst, the set of
supported durations should be chosen such that all the plat-
forms involved in the CTC communication have the ability to
discern two distinct durations by means of RSS sampling. This
implies that the minimum difference between two durations
supported in the alphabet should be proportional to the timing
characteristics of each device, i.e., to aspects such as the time
granularity, the time necessary to measure, process, and store
an RSS value, as well as the response time of the radio when
issuing a TX command. Fig. 2 illustrates how those timing
aspects can largely vary across different HW platforms. Whilst
the difference between older platforms (e.g., the TelosB mote)

200
300
400
500 Time granularity

RSS sampling
RSS processing / writing
Radio response time

TI CC2650 LaunchPad
(BLE)

TI CC2650 LaunchPad
(IEEE 802.15.4)

Zolertia Firefly
(IEEE 802.15.4)

TelosB mote
(IEEE 802.15.4)

Hardware platform

0
5

10
15
20
25
30

Du
ra

tio
n

[
s]

Fig. 2: Different hardware platforms can have largely diverse
timing characteristics, which affects the creation of an alphabet
that is compatible with multiple heterogeneous devices.

and newer platforms based on ARM Cortex-M3 CPUs (e.g.,
TI LaunchPad and Zolertia Firefly) is quite evident, one can
still note how there is a non-negligible variability also across
the timing characteristics of these newer platforms, and that
the response time of the BLE radio is very long. Accounting
for these variations when building an alphabet is important in
order to achieve a high CTC throughput, as this requires that
the operations of transmitter and receiver are precisely timed.
However, the construction of such an alphabet is ideally done
automatically, so to abstract the low-level HW details to the
developer. To this end, X-Burst embeds a dedicated alphabet
module that aids the automated creation of a CTC alphabet
that is supported by all communicating devices.

Keeping main CTC functionality HW-agnostic. A key goal
of our work is the creation of a portable framework that
abstracts low-level HW-specific details from the development
of the main CTC functionality. This requires the creation of
a hardware abstraction layer that offers basic primitives such
as RSS sampling or the transmission of energy bursts of pre-
defined duration to the upper layers taking care of the actual
CTC logic. This is important also in light of the heterogeneity
of HW platforms: some radios only support the transmission of
standard-compliant packets using payloads of different length,
whilst some others also support test modes that allow the fine-
grained creation of precisely-timed modulated carriers [28].
Similarly, some HW platforms return the absolute RSS in
dBm, whilst some others return the number of times in which
the RSS exceeded a given threshold [19]. In X-Burst all HW-
dependent functionality is hence separated from the encod-
ing/decoding strategies and from other CTC configurations,
which enhances the portability to new devices.

Seamless integration with existing functionality. A device
typically uses CTC to carry out additional activities on top
of its normal operations, e.g., it exploits CTC to coordinate
the frequency usage with surrounding wireless appliances [2].
Making sure that CTC works in parallel with existing func-
tionality can be, however, quite challenging, especially in
constrained IoT devices. Operating systems (OS) tailored for
this class of devices typically employ optimized network
stacks making use of duty-cycling strategies to periodically
switch off the radio and minimize energy consumption. CTC
functionality should hence only make use of the radio while

Fig. 3: X-Burst’s modular architecture.

the latter is not used by traditional communications. This
should ideally be achieved without requiring modifications to
the existing network stack or duty-cycling strategy, as this
would incur a significant overhead and cause compatibility
problems. Furthermore, the transmission of CTC messages
and their reception using RSS sampling should not block
the CPU for an extended amount of time, as this may affect
normal operations such as periodic sensor measurements and
their processing. We hence integrate X-Burst into Contiki by
creating a virtual radio that learns the duty-cycle of a device by
analysing the calls to the radio_on() and radio_off()
functions. The virtual radio then schedules all CTC-related
operations such that existing functionality is not affected.

III. X-BURST: ARCHITECTURE

We design X-Burst to be highly-modular, in order to re-
duce the complexity of CTC implementations, maximize code
reuse, and simplify the development of new functionality.
Fig. 3 sketches X-Burst’s overall architecture, which follows
the design rationale illustrated in Sect. II.

A hardware abstraction layer (HAL) provides the minimal
functions needed to transmit energy bursts with a given
duration or transmission power, as well as the ability to sample
the received signal strength. The HAL module is the only
one containing hardware-dependent functionality and helps
maintaining the main CTC functionality HW-agnostic.

An encoding module exploits the primitives offered by the
HAL to instruct the radio transceiver to transmit energy bursts
with a given length or power. This module is unaware of how
an energy burst is actually sent, i.e., whether using frames or
test modes. Similarly, a decoding module processes the RSS
samples obtained from the radio and detects the duration or
the power level of an energy burst as accurately as possible.

A coding scheme module is used to define the number of
bits of information (n) that are encoded into a CTC symbol.
Each CTC symbol is then mapped to a set of properties
(e.g., burst durations, power levels, or lengths of the gap
between bursts) depending on a given alphabet, whose size
needs to be at least 2n. For example, when using a symbol
length of 1 bit (n = 1) and when encoding information into
the duration of an energy burst, the alphabet is composed

of two burst durations identifying a “0” and a “1”, respec-
tively. To allow CTC broadcasting, i.e., the transmission of a
CTC message to devices employing diverse technologies si-
multaneously, a generic alphabet that is supported by all com-
municating devices needs to be found. To this end, an alphabet
computation module automatically derives the alphabet’s set of
values based on the hardware properties of the communicating
devices (e.g., the time granularity, the time necessary to
measure, process, and store an RSS value, as well as the
radio response time). The alphabet computation module hence
makes sure that all devices involved in the communication
have sufficient features to encode or decode information. The
computation of the alphabet can also be influenced by user
policies defining whether to prioritize throughput or reliability.
For example, a more aggressive policy can minimize the
difference between two durations in the alphabet, which would
shorten the transmission time and maximize throughput, at the
price of a higher likelihood of decoding errors.

Finally, a frame management module takes care of assem-
bling and disassembling CTC messages based on a given
frame structure. This gives the flexibility to define what
should be prepended or appended to a CTC payload, e.g.,
a synchronization preamble, a header with the address of the
intended recipient, or a footer embedding a checksum.

IV. DESIGN AND IMPLEMENTATION DETAILS

We describe next X-Burst’s core modules in detail. We start
by illustrating the operations of an encoding (Sect. IV-A) and
decoding (Sect. IV-B) module. We then show an algorithm to
automatically derive the set of values of an alphabet supported
across multiple HW platforms (Sect. IV-C) and detail on the
operations of the frame management module (Sect. IV-D).

A. Encoding
As discussed in Sect. II, we base X-Burst on packet-level

modulation and create an encoding module to support the
various approaches proposed in the literature (e.g., schemes
encoding information in the duration of or gap between frames,
as well as in the energy level with which they are sent).

Our basic implementation uses a burst-only encoding
scheme where the duration of an energy burst is used to convey
information. We further enrich our X-Burst implementation
with a burst+gaps scheme that exploits also the length
of the gap between two consecutive bursts. As we show
in Sect. VI, the latter allows to improve the throughput by
shortening the time on-air of a CTC frame.

We implement both schemes by making use of the
generate_burst() function available from the HAL to
transmit an energy burst. Off-the-shelf IEEE 802.15.4 devices
can generate a burst by sending a frame and by adjusting the
length in bytes of its payload. Accounting for the mandatory
synchronization and PHY header (6 bytes), the minimum
duration of an energy burst is 192µs at a data rate of 250 kbit/s.
Increasing the payload by one byte allows to generate longer
durations in steps of 32µs up to a maximum of 4256µs
(127 bytes). Advanced radios also allow the creation of more
precisely-timed modulated IEEE 802.15.4 test carriers [28].

1 2 3 4 5 6 7 8 9 10
Number of thresholds

50
40
30
20
10

0
10
20
30
40
50

Es
tim

at
io

n
er

ro
r

 [
s]

(a) Number of thresholds

0.1 1 2 3 5 7
Distance [m]

25
20
15
10

5
0
5

10
15
20

Es
tim

at
io

n
er

ro
r

 [
s]

(b) Distance between devices

Fig. 4: Accuracy of a decoding scheme based on multiple
threshold and adaptive duration correction (adc_multi_th).
The estimation error γ is significantly reduced compared to
classic decoding schemes making use of a single threshold (see
Fig. 1c), and is not affected by the distance between nodes.

Off-the-shelf BLE devices compliant to the BLE standard
v4.2 and above are required to implement a direct test mode
for RF PHY conformance testing [21]. This mode allows
to send test packets with payload up to 255 bytes in any
of the 39 BLE channels and without the need of an active
connection. One can hence generate a burst with off-the-
shelf BLE transceivers by adjusting the length of the payload
of a test packet. Accounting for the mandatory preamble,
synchronization word, header, and checksum (10 bytes), the
minimum duration of an energy burst is 80µs at a data rate of
1 Mbit/s. Increasing the payload by one byte allows to generate
longer durations in steps of 8µs up to 2120µs (255 bytes).

B. Decoding

The decoding module uses the sample_RSS() function
available from the HAL to detect the energy of a specified
channel and analyse the stream of measured RSS values. The
processing of these values can take place online or offline, i.e.,
one can store the stream of RSS values for later analysis, or
process them on-the-fly at the cost of a lower sampling rate.

We implement different decoding strategies, starting from a
scheme making use of a single static threshold (single_th)
as in [9]. However, as highlighted in Fig. 1, the use of a
single threshold is not suitable for devices returning a non-
instantaneous RSS measurement and is hence not generic.
We therefore design a decoding scheme (named multi_th)
based on a configurable number of thresholds φ. This scheme
outperforms the one based on a single threshold, but its
accuracy is still affected by a systematic error introduced by
the mismatch between the thresholds (selected beforehand)
and the strength of the signal with which a CTC frame is
received (which varies at runtime). To compensate for this
systematic error, we augment the multiple threshold scheme
with an adaptive duration correction (adc_multi_th). The
latter exploits the known duration of bursts in the preamble
of a CTC frame to estimate the systematic error and correct
the subsequent RSS readings. Fig. 4 shows the performance of
this scheme on the same device performing non-instantaneous
readings used to illustrate Fig. 1b and 1c (i.e., a TI LaunchPad
2650 used in IEEE 802.15.4 mode). The horizontal white
lines represent the median and the blue boxes represent the

25th and 75th percentiles; the vertical whiskers show the
remaining measurements, whilst the blue crosses represent
statistical outliers. Fig. 4a shows that, regardless of the number
of thresholds, the estimated burst duration error γ does not
present a systematic offset (as opposed to Fig. 1c). Fig. 4b
shows that, when using φ=10, γ is consistently below ±25µs
regardless of the distance between nodes, which hints that this
decoding scheme can be used to overcome the heterogeneity
of different HW platforms in measuring the RSS.

C. Coding Scheme & Alphabet Computation
X-Burst’s coding scheme module currently supports the en-

coding of n = {1, 2, 4} bits of information into a CTC symbol.
Each symbol is then mapped to a set of properties (e.g., burst
durations) depending on a given alphabet. To automatically
compute the latter such that it is supported by several devices
with heterogeneous characteristics, we implement an alphabet
computation module based on the following algorithm.

1) Given the properties of each device involved in the
communication, determine the minimum burst duration
that can be generated by each device and select the
largest one (d0). The latter is commonly the minimum
burst duration generated by the device employing the
technology with the slowest data rate.

2) For each device involved in the communication, cal-
culate the minimum spacing between two consecutive
burst durations as s = 2 · (tgranularity + trss), where
tgranularity is the resolution of a clock tick and trss
is the time necessary to sample and process an RSS
value. Hence, s embodies the Nyquist rate, i.e., twice the
maximum component frequency of the sampled RSS.

3) Select the largest s across all devices involved in the
communication (smax) and use it to calculate the set
of durations di = ddi−1 + smaxe, with i = 1, ..., 2n and
where the ceiling operator rounds di to the next duration
that can be supported by each radio.

In the current version of X-Burst, the properties of each device
involved in the communication are known beforehand and
provided at compile time. In principle, however, one can also
let devices advertise their HW properties at runtime using a
baseline alphabet that works across all technologies, and then
let a set of devices use this info to negotiate a more performant
alphabet. The creation of such runtime scheme is beyond the
scope of this paper and will be addressed in future work.

D. Assembling and Disassembling CTC Frames
X-Burst’s frame management module takes care of assem-

bling and disassembling CTC messages based on a given frame
structure. In our current implementation, a CTC frame consists
in a preamble of 5 bursts, as well as a 1-byte options bit-mask.

The latter specifies whether a header pre-pending the actual
payload contains the length of the CTC frame in bytes, the
network ID, the address of transmitter and receiver, as well as
whether an acknowledgement is requested and a checksum is
appended at the end. As described in Sect. V, this module is
used as an interface with the OS, which provides the CTC data
to be transmitted and receives the decoded CTC messages.

Fig. 5: Integration of X-Burst into Contiki’s network stack.

V. INTEGRATION INTO CONTIKI

As a proof of concept, we integrate X-Burst into the Contiki
operating system [24]. We make sure that the integration is
seamless, i.e., that no changes to Contiki’s core functions
and network stack are necessary. This allows developers to
extend existing applications with CTC capabilities without
the need to re-implement functionality and without leading to
compatibility problems. We also ensure that traditional duty-
cycled communication is not affected by CTC functionality,
thanks to a smart scheduling of the radio access.
Virtual radio. To ensure a seamless integration, we employ
the architecture sketched in Fig. 5. We make use of a virtual
radio that is informed about (or learns) the duty-cycle of a
device and that schedules all CTC-related operations such
that traditional communications are not affected. As shown
in Fig. 5, Contiki’s traditional network stack is unchanged
(light blue color), as the virtual radio is simply loaded instead
of the actual radio driver implementation. In the case of
usual communications, the virtual radio only forwards the
data between the radio layer and the upper layers. Thus, the
application transmits and receives normal traffic as usual. The
virtual radio allows the application to queue outgoing CTC
traffic and set the CTC configuration at runtime using existing
functions of Contiki’s network stack, as well as to be notified
of incoming CTC traffic by posting ctc_newdata() events.
All X-Burst’s modules (except the HAL) make only use
of Contiki’s standard functions and rtimers: this ensures
portability across all platforms supported by Contiki.
Adapting to existing duty-cycling strategies. Our goal is to
avoid that developers making use of X-Burst need to modify
Contiki’s radio duty-cycling (RDC) layer or have detailed
knowledge about its implementation. We hence let the virtual
radio either exploit pointers to Contiki’s configuration files
specifying the duty-cycle period, or autonomously learn it by
timestamping the calls to Contiki’s radio_on() functions
and by analysing their distribution. Whenever the application
fills the CTC queue with new information to be transmitted, the
virtual radio waits for a radio_off() event and transmits
the CTC packet a configurable number of times until the end
of the current duty-cycle period. The virtual radio can also
allocate a configurable portion of the remaining duration of a
duty-cycle period after a radio_off() event to let a device
perform RSS sampling and look for incoming CTC frames.

We further define several flags indicating whether CTC can
be granted a higher priority than normal communication and
whether RSS sampling should take place only every nth duty-

Zolertia Firefly TI CC2650 LaunchPad
 (IEEE 802.15.4 mode)

TelosB mote

Hardware platform

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 [k

bi
t/s

]

Reception from the BLE device
Transmission to the BLE device

(a) Bidirectional communication

TI CC2650 LaunchPad
(BLE mode)

Zolertia Firefly TI CC2650 LaunchPad
(IEEE 802.15.4 mode)

Hardware platform

93
94
95
96
97
98
99

Fr
am

e
re

ce
pt

io
n

ra
te

 [%
]

(b) Broadcast communication
Fig. 6: X-Burst allows heterogeneous devices to make use of
the same solution and achieve a bidirectional CTC (a), as well
as to broadcast the same CTC frame to multiple recipients (b).

cycle period, so to minimize energy-expenditure. These flags
can be used as a starting point for the implementation of more
advanced functionality that is beyond the scope of this paper,
e.g., strobing mechanisms ensuring that a recipient is ready to
receive a CTC frame, as well as the synchronization of the
cyclic operations of heterogeneous devices.

VI. EVALUATION

We evaluate X-Burst experimentally. We first showcase
its functionality by enabling a bidirectional CTC between
multiple heterogeneous BLE and IEEE 802.15.4 devices
(Sect. VI-A). We then analyse the robustness and throughput of
different encoding schemes as a function of different payload
and symbol lengths in the absence and presence of radio in-
terference (Sect. VI-B). We finally analyse X-Burst’s memory
footprint in terms of RAM and ROM usage (Sect. VI-C).
Experimental setup. We make use of the three most pop-
ular off-the-shelf IoT platforms supported by Contiki: the
TI CC2650 LaunchPad, the Zolertia Firefly (employing a
TI CC2538 transceiver), and the TelosB mote (embedding a
TI CC2420 radio). We use two versions of the TI CC2650
LaunchPad: one configured in IEEE 802.15.4 mode, and one
configured in BLE mode. Unless specified differently, we carry
out all experiments in a vacant office with the devices placed
at 1 meter distance and using a transmission power of 0 dBm.

A. Enabling multi-platform bidirectional CTC

We first showcase how X-Burst allows devices with diverse
HW characteristics and making use of heterogeneous technolo-
gies to achieve a bidirectional CTC. We share all X-Burst’s
layers (except the HAL) across the different HW platforms and
configure an experiment in which a TI CC2650 LaunchPad
in BLE mode sends and receives data to/from each of the
other IEEE 802.15.4 devices individually, using the alphabet
enabling the highest data rate for bidirectional communication.
We employ a burst-only encoding and let each device
transmit back-to-back CTC frames with a payload of 16 bytes.

Fig. 6a shows the throughput of each platform when trans-
mitting and receiving data to/from the BLE device. Two
aspects are worth of note. First, the throughput when receiving
data from a BLE device is slower than when transmitting to it:
this is due to the BLE transmitter’s higher radio response time,
as highlighted in Fig. 2. Second, the throughput of the Zolertia
Firefly is higher than that of the TI CC2650 LaunchPad in

IEEE 802.15.4 mode, which in turn is higher than that of the
TelosB mote. This is due to the diversity in the platforms’ RSS
sampling and processing speed: lower sampling and processing
rates result in a lower throughput.

We next let a TelosB mote broadcast CTC data with an
automatically-computed alphabet that is supported by all other
IEEE 802.15.4 and BLE devices. Fig. 6b shows that all devices
can correctly receive more than 94% of the individual CTC
frames. Relative differences between the platforms are due
to the different RSS sampling and processing rates. Further-
more, the instantaneous RSS measurements of the TI CC2650
LaunchPad in BLE mode allows for a more reliable decoding.

B. Performance of different CTC configurations

We evaluate next the performance of different encoding
strategies and coding schemes in the absence and presence
of radio interference. We compare the reliability (i.e., the
number of individual CTC frames received correctly) and
the throughput (effective data rate when sending CTC frames
back-to-back) of each direction. We make use of coding
schemes with 1, 2, or 4 bits length, as well of burst-only
and burst+gaps encoding schemes. For each configuration,
we send 3000 CTC frames with different payload lengths.
Due to space constraints, we show only the results relative to
the communication between an IEEE 802.15.4-based Zolertia
Firefly and a TI CC2650 LaunchPad in BLE mode, but the
relative trends apply also to other platforms.

Absence of radio interference. Fig. 7 shows the perfor-
mance of different CTC configurations in absence of ra-
dio interference for both directions. Increasing the payload
size, as expected, reduces the chances to correctly receive a
frame. The throughput, nevertheless, increases when making
use of a higher payload size, due to the lower number of
packets sent and hence lower message overhead (caused by
the transmission of a CTC preamble, header and checksum).
For the same reason, making use of burst-only (BO)
encoding results in a lower throughput, compared to the use
of a burst+gaps (BG) encoding: one can indeed embed
more information in the latter and minimize the number of
frames sent. Fig. 7b shows that burst-only is signif-
icantly more reliable than burst+gaps encoding in the
BLE → IEEE 802.15.4 direction. This is due to the inaccu-
racy of Contiki’s wait() implementation in the TI CC2650
LaunchPad, which is used to generate the gaps between bursts.

The use of a 2-bit coding scheme consistently offers the
highest reliability, with the 4-bit scheme outperforming the
1-bit one. The reason for this can be found in the trade-off
between the symbol length and the longest duration used for
the transmission. On the one hand, having a symbol length of 4
requires an alphabet of at least 16 durations, some of which are
very long. On the other hand, a 4-bit scheme only requires
two bursts to convey 1 byte of information. However, for
the BLE → IEEE 802.15.4 direction and the burst-only
configuration, the 4-bit scheme offers the higher throughput,
due to the higher response time of the BLE radio.

4-bit BO 2-bit BO 1-bit BO 4-bit BG 2-bit BG 1-bit BG

4 8 16 32 64
Payload [bytes]

65
70
75
80
85
90
95

100

Fr
am

e
re

ce
pt

io
n

ra
te

 [%
]

4 8 16 32 64
Payload [bytes]

0

1

2

3

4

5

Th
ro

ug
hp

ut
 [k

bi
t/s

]

(a) IEEE 802.15.4 → BLE

4 8 16 32 64
Payload [bytes]

65
70
75
80
85
90
95

100

Fr
am

e
re

ce
pt

io
n

ra
te

 [%
]

4 8 16 32 64
Payload [bytes]

0

1

2

3

4

5

Th
ro

ug
hp

ut
 [k

bi
t/s

]

(b) BLE → IEEE 802.15.4
Fig. 7: Reliability and throughput of different CTC configura-
tions in absence of radio interference.

Presence of radio interference. We introduce radio interfer-
ence in the surrounding of the communicating CTC nodes
as follows. We generate Bluetooth interference by letting
two Raspberry Pi3 create a point-to-point Bluetooth con-
nection and transmit RFCOMM packets with a length of
1000 bytes every 11.034 ms, which results in a data rate
of 725 kbit/s. We generate Wi-Fi interference by letting one
Raspberry Pi3 placed at about 2 meters from the commu-
nicating nodes make use of JamLab-NG [29] emulating a
user streaming videos with a transmission power of 30 mW.
Fig. 8 shows the performance of different CTC configurations:
due to space constraints, we show only the results of the
IEEE 802.15.4 → BLE direction, but the relative trends apply
also to other direction. One can note that the performance of
CTC, as expected, decreases significantly in the presence of
the heavier Wi-Fi interference. One can also note that the use
of a 4-bit coding scheme offers better performance under
interference. The reason for this is that the 4-bit encoding
uses the fewest amount of durations to convey a CTC frame, as
1 byte can be represented by two durations: this minimizes the
probability of decoding errors due to interference. Finally, we
observe that a burst+gaps encoding is more robust under
interference, due to the shorter transmission time of a frame.

C. Memory Footprint
We conclude our evaluation by quantifying the memory

footprint of X-Burst in terms of RAM and ROM usage: to
this end, we make use of the gcc-size command. Table I
shows X-Burst’s footprint for different HW platforms when
supporting a CTC symbol length of 4-bit and an encoding
scheme based on the burst durations. With a footprint of
only 1 kB of RAM and 7 kB of ROM, X-Burst is lightweight
and well-suited for resource-constrained IoT devices. The tiny
differences between platforms are due to the diverse HAL
implementations, as the HAL is the only HW-specific module.

VII. RELATED WORK

CTC has become an increasingly popular research topic, as
it promises to enable a seamless coexistence across heteroge-

4-bit BO 2-bit BO 1-bit BO 4-bit BG 2-bit BG 1-bit BG

4 8 16 32 64
Payload [bytes]

65
70
75
80
85
90
95

100

Fr
am

e
re

ce
pt

io
n

ra
te

 [%
]

4 8 16 32 64
Payload [bytes]

0

1

2

3

4

5

Th
ro

ug
hp

ut
 [k

bi
t/s

]

(a) Bluetooth interference

4 8 16 32 64
Payload [bytes]

0
10
20
30
40
50
60

Fr
am

e
re

ce
pt

io
n

ra
te

 [%
]

4 8 16 32 64
Payload [bytes]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Th
ro

ug
hp

ut
 [k

bi
t/s

]

(b) Wi-Fi interference
Fig. 8: Reliability and throughput of different CTC configura-
tions in the presence of Bluetooth and Wi-Fi interference.

Hardware platform ROM [kB] RAM [kB]
TI CC2650 LaunchPad (BLE) 7.36 1.10
TI CC2650 LaunchPad (IEEE 802.15.4) 7.86 1.17
Zolertia Firefly 6.97 1.26
TelosB mote 6.78 0.75

TABLE I: X-Burst’s memory footprint for different platforms.

neous wireless technologies operating in crowded ISM bands.
Early CTC research has explored the feasibility of convey-

ing information between devices making use of heterogeneous
technologies and highlighted potential applications [9], [10],
[11], [12], [30], [31], [32]. These works make use of packet-
level information such as duration [9], [23], [26], [31], inter-
val [10], [11] and power [7], [12], [27] to encode information.

Later work in 2017 and 2018 has focused on increasing
the throughput of CTC by means of novel techniques based
on physical-layer emulation [13], [14], [33]. For example,
BlueBee [13] allows an unidirectional BLE→ IEEE 802.15.4
communication at high data rate by exploring signal phase
shifts. WEBee [14], instead, enables an unidirectional
Wi-Fi→ IEEE 802.15.4 communication at high data rate by
letting a Wi-Fi transmitter adjust its frames’ payload so to
emulate an IEEE 802.15.4 standard-compliant packet.

As most of the CTC works until 2017 have showcased
only unidirectional CTC communications (with FreeBee [10]
being a notable exception, as it allows a bidirectional
Wi-Fi ↔ IEEE 802.15.4 communication at a few bps), recent
CTC research has also started to focus on bi-directionality. For
example, Jiang et al. [18] and Wang et al. [16] have allowed a
bidirectional Wi-Fi ↔ IEEE 802.15.4 communication at high
data rates, whereas XBee [15] provided a first step towards a
fast bidirectional BLE↔ IEEE 802.15.4 communication (en-
abling receiver-side CTC by means of cross-decoding).

Existing CTC works have hence showcased the ability to
allow communication between heterogeneous technologies in a
unidirectional or bidirectional way. However, to the best of our
knowledge, no work has yet tackled the problem of allowing a
seamless bidirectional communication between three or more
heterogeneous devices (i.e., devices with diverse HW char-
acteristics) using heterogeneous technologies with the same

solution. X-Burst fills this gap and provides a generic portable
framework that allows multiple constrained IoT platforms with
diverse characteristics to seamlessly interact using CTC.

A large portion of existing CTC schemes have been imple-
mented on platforms with plentiful resources (e.g., laptops [2],
[7], [10], [19], and mobile phones [8], [13]), or on software-
defined radios allowing full access to the transceiver [11], [12],
[17]. Only a few works have specifically targeted (also) off-
the-shelf constrained devices, but have not integrated CTC
functionality in existing operating systems in a generic and
portable way. X-Burst, instead, is integrated into the popular
Contiki operating system, and offers a generic HW-agnostic
CTC functionality for constrained IoT devices.

A few works have focused on building interference-resilient
CTC schemes by means of robust coding schemes [7] and
preamble-based decoding [34], but comparisons across differ-
ent systems is hard due to the lack of open-source implemen-
tations. As we have shown in Sect. VI, X-Burst can be used
as a tool to compare the performance of various encoding and
decoding schemes on the same platforms, which empowers a
more rigorous analysis of existing CTC schemes.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented X-Burst, a portable frame-
work that allows multiple constrained IoT platforms with di-
verse characteristics to seamlessly interact using CTC. Thanks
to its modular design and its seamless integration into Contiki,
X-Burst simplifies the development of CTC implementations
and allows to extend IoT applications with CTC capabilities
without affecting existing functionality. We have showcased
X-Burst’s functionality by enabling a bidirectional CTC be-
tween three off-the-shelf heterogeneous IoT platforms based
on IEEE 802.15.4 and BLE, analysed their memory footprint,
and compared the performance of various CTC configurations.

Future work includes the port of X-Burst to additional
operating systems and HW platforms, as well as its use to
build advanced coexistence and synchronization mechanisms
across heterogeneous devices operating in the 2.4 GHz band.

ACKNOWLEDGMENTS

This work has been performed within the LEAD project
“Dependable Internet of Things in Adverse Environments”
funded by Graz University of Technology. This work
was also partially funded by the SCOTT project. SCOTT
(http://www.scott-project.eu) has received funding from the
Electronic Component Systems for European Leadership Joint
Undertaking under grant agreement No 737422. This joint
undertaking receives support from the European Union’s Hori-
zon 2020 research and innovation programme and Austria,
Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal,
Netherlands, Belgium, Norway. SCOTT is also funded by
the Austrian Federal Ministry of Transport, Innovation and
Technology (BMVIT) under the program “ICT of the Future”
between May 2017 and April 2020. More information at
https://iktderzukunft.at/en/.

REFERENCES
[1] S. Wang et al., “Achieving Spectrum Efficient Communication under

Cross-Technology Interference,” in Proc. of the ICCCN Conf., 2017.
[2] Z. Yin et al., “Explicit Channel Coordination via Cross-technology

Communication,” in Proc. of the 16th ACM MobiSys Conf., 2018.
[3] X. Guo et al., “ZigFi: Harnessing Channel State Information for Cross-

Technology Communication,” in Proc. of the INFOCOM Conf., 2018.
[4] G. Aloi et al., “A Mobile Multi-Technology Gateway to Enable IoT

Interoperability,” in Proc. of the 1st IoTDI Conf., 2016.
[5] T. Zachariah et al., “The Internet of Things Has a Gateway Problem,”

in Proc. of the 16th HotMobile Worksh., 2015.
[6] S. M. Kim et al., “Free Side-Channel Cross-Technology Communication

in Wireless Networks,” IEEE/ACM Trans. on Netw., vol. 25, no. 5, 2017.
[7] X. Zheng et al., “StripComm: Interference-Resilient Cross-Technology

Communication in Coexisting Environments,” in Proc. of INFOCOM’18.
[8] I. Rüb et al., “Ad Hoc 802.11-802.15.4 Crosstalk-Based Communication

in Practice,” in Proc. of the 3rd MadCom Worksh., 2018.
[9] K. Chebrolu and A. Dhekne, “Esense: Communication through Energy

Sensing,” in Proc. of the 15th MobiCom Conf., 2009.
[10] S. M. Kim and T. He, “FreeBee: Cross-Technology Communication via

Free Side-Channel,” in Proc. of the 21st MobiCom Conf., 2015.
[11] X. Zhang et al., “Gap Sense: Lightweight Coordination of Heteroge-

neous Wireless Devices,” in Proc. of the INFOCOM Conf., 2013.
[12] Z. Chi et al., “B2W2: N-way Concurrent Communication for IoT

Devices,” in Proc. of the 14th ACM SenSys Conf., 2015.
[13] W. Jiang et al., “BlueBee: a 10,000x Faster Cross-Technology Commu-

nication via PHY Emulation,” in Proc. of the 15th SenSys Conf., 2017.
[14] Z. Li and T. He, “WEBee: Physical-Layer Cross-Technology Commu-

nication via Emulation,” in Proc. of the 23rd MobiCom Conf., 2017.
[15] W. Jiang et al., “Achieving Receiver-Side Cross-Technology Communi-

cation with Cross-Decoding,” in Proc. of the MobiCom Conf., 2018.
[16] S. Wang et al., “Networking Support For Physical-Layer Cross-

Technology Communication,” in Proc. of the 26th ICNP Conf., 2018.
[17] Z. Yu et al., “Crocs: Cross-Technology Clock Synchronization for WiFi

and ZigBee,” in Proc. of the 15th EWSN Conf., 2018.
[18] W. Jiang et al., “Transparent Cross-Technology Communication over

Data Traffic,” in Proc. of the 36th INFOCOM Conf., 2017.
[19] A. Bereza et al., “Cross-Technology Communication between BLE and

Wi-Fi using Commodity Hardware,” in Proc. of the EWSN Conf., 2017.
[20] M. Lenders et al., “Connecting the World of Embedded Mobiles: The

RIOT Approach to Ubiquitous Networking for the Internet of Things,”
CoRR, Tech. Rep. arXiv:1801.02833, 2018.

[21] Specification of the Bluetooth System - v4.1, https://www.bluetooth.org/
en-us/specification/adopted-specifications, SIG Bluetooth, 2013.

[22] IEEE Standard for Local and Metropolitan Area Networks - Part 15.4,
IEEE 802.15.4 Working Group, 2016.

[23] D. Croce et al., “An Inter-Technology Communication Scheme for WiFi/
ZigBee Coexisting Networks,” in Proc. of the MadCom Worksh., 2017.

[24] A. Dunkels et al., “Contiki - a Lightweight and Flexible OS for Tiny
Networked Sensors,” in Proc. of the 1st EmNetS Worksh., 2004.

[25] Z. Yin et al., “C-Morse: Cross-technology Communication with Trans-
parent Morse Coding,” in Proc. of the 36th INFOCOM Conf., 2017.

[26] Y. Zhang et al., “HoWiES: A Holistic Approach to ZigBee Assisted
WiFi Energy Savings in Mobile Devices,” in Proc. of INFOCOM, 2013.

[27] X. Guo et al., “Wizig: Cross-technology Energy Communication over a
Noisy Channel,” in Proc. of the 36th INFOCOM Conf., 2017.

[28] C. A. Boano et al., “JAG: Reliable and Predictable Wireless Agreement
under External Radio Interference,” in Proc. of the RTSS Symp., 2012.

[29] M. Schuß et al., “JamLab-NG: Benchmarking Low-Power Wireless
Protocols under Controllable and Repeatable Wi-Fi Interference,” in
Proc. of the 16th EWSN Conf., 2019.

[30] D. Croce et al., “Demo: Unconventional WiFi-ZigBee Communications
without Gateways,” in Proc. of the 9th WiNTECH Worksh., 2014.

[31] S. Yin et al., “Interconnecting WiFi Devices with IEEE 802.15.4 Devices
without Using a Gateway,” in Proc. of the 15th DCOSS Conf., 2015.

[32] X. Zhang et al., “Cooperative Carrier Signaling: Harmonizing Coexisting
WPAN and WLAN Devices,” IEEE/ACM Trans. Netw., vol. 21, 2013.

[33] Y. Chen, Z. Li, and T. He, “TwinBee: Reliable Physical-Layer CTC with
Symbol-Level Coding,” in Proc. of the 37th INFOCOM Conf., 2018.

[34] S. Wang et al., “Symbol-level Cross-technology Communication via
Payload Encoding,” in Proc. of the 38th IEEE ICDCS Conf., 2018.

