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ABSTRACT
Making experimental research on low-power wireless networking
repeatable, reproducible, and comparable is a long overdue step that
hinders a wide acceptance of this technology within the industry.
In this paper, we start to fill this gap by proposing and applying
a well-defined methodology that specifies how to plan and execute
experiments, as well as how to report their results. We further
discuss potential definitions for repeatability, replicability, and re-
producibility in the context of low-power wireless networking.
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1 INTRODUCTION
A scientific contribution can be considered valid only when the
results have been reproduced by others. While this seems obvious,
the current practice in low-power wireless research is a far cry from
this goal. Even if the source code is available, the description of
the evaluation setup and how the results are derived from the raw
measurements are often incomplete and invalid from a statistical
standpoint. More fundamentally, it remains an open question how
can results be considered reproducible in the face of uncontrollable
variability in the test environment (e.g., a testbed).
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Figure 1. Towards benchmarking of wireless networking. To
improve the reproducibility and comparability of research contribu-
tions, a formalized description of the test configuration description
(P1) and a well-defined methodology to conduct experiments (P2) are
necessary. Only then, one can start debating about the repeatability
and reproducibility of the results (P3). This paper focuses on P2+P3.

In recent years, the low-power wireless community has started to
work on improving the reproducibility and comparability of exper-
imental results [4, 11–13] The goal is to derive a set of benchmark
problems that can be used as a recognized yardstick to compare
the performance of different networking solutions (e.g., routing
vs. flooding), different platforms (e.g., single-core vs.multi-core), or
even different low-power wireless technologies (e.g., BLE vs. IEEE
802.15.4) in relevant scenarios inspired by real-world applications.

A benchmark problem associates a given test configuration with
a set of relevant performance metrics. Such a well-defined setup
is meant to enable a quantitative performance comparison of dif-
ferent low-power wireless communication protocols. However, to
improve the reproducibility and comparability of protocol perfor-
mance, defining benchmark problems is just one piece of the puzzle.
We identify six sub-parts in solving this complex problem:

P1 A common framework to describe the test configuration of
wireless networking experiments. Such a framework should
include both the test scenario (i.e., the traffic pattern and
load), as well as the test environment (i.e., the testbed infras-
tructure or simulator tool used in the evaluation).

P2 A well-defined experimental methodology that prescribes
how to plan, execute, and report experimental results. For
example, such methodology should inform the experimenter
about which data should be collected and how, the way the
collected data should be processed, and how to synthesize
the data into a statistically meaningful performance report.

P3 Formal definitions of repeatability, replicability, and repro-
ducibility in the context of low-power wireless networking.

P4 A well-defined comparison methodology that prescribes, for
example, how can one claim that “protocol A is better than
protocol B.”
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P5 A set of benchmark problems, formulated using the frame-
work to describe the test configuration (P1) and executed ac-
cording to the well-defined experimental methodology (P2).

P6 Technical solutions (i.e., tools) that let experimenters apply
this methodology (thus improving reproducibility) without
cluttering research papers with details about the evaluation.

Initial work has been conducted to address P1 [4]. In this paper,
we focus on P2 and P3 (see Fig. 1), specifically,
• We outline a well-defined methodology that specifies how
experimental evaluation should be conducted, and how re-
sults should be reported (Sec. 3). This methodology relies on
a sound approach based on non-parametric statistics.
• We apply the proposed experimental methodology in a case
study, reporting the performance of seven low-power wire-
less protocols evaluated on the same test configuration (Sec. 4).
• We propose definitions for repeatability, replicability, and re-
producibility in the context of low-power wireless network-
ing, where (potentially large) performance variation is ex-
pected due to uncontrollable environmental factors (Sec. 5).

2 BACKGROUND ON STATISTICS
This section introduces the necessary background on non-parametric
statistics as the basis for the methodology proposed in Sec. 3.

The output of an experiment is a sequence of measurements, e.g.,
the end-to-end latency of packets received by one node. We can
interpret the set of measurements as an empirical distribution (e.g.,
of the end-to-end latency). By performing more repetitions of the
same experiment, we increase the confidence that the empirical
distribution closely matches the true population distribution one
would observe when performing infinitely many repetitions.

Previous studies have shown that performance measurements
are often not normally distributed [10]. Hence, it is inappropriate
to compare sets of performance measurements based on the sam-
ple mean and the sample standard deviation. Rather, more robust
methods from non-parametric statistics should be applied, which
suggest using instead the median or other percentiles.

Assume we have a set of measurements X . After sorting X , the
median is the measurement at index ⌊n/2⌋, where n is the number
of measurements in X ; the p-th percentile, 0 < p < 100, is the
measurement at index ⌈np/100⌉. Assuming the X measurements
are independent and identically distributed (iid), one can derive the
probabilityα that the true percentilep of the population distribution
falls in the interval I = [x j ,xk ]. I is called a confidence interval (CI)
for the percentile p with confidence level α . For large n, indices j and
k can be approximated as ⌊(np − z

√
np (1 − p))/2⌋ and ⌈1 + (np +

z
√
np (1 − p))/2⌉ respectively, where z = 1.96 for a confidence level

α = 95 % [8]. Tables are available in the literature for small values
of n [8, 10]. This allows deriving the minimal number of samples n
necessary to give a CI for any percentile p. Typically, the CIs tend
to get narrower with more repetitions, i.e., larger n.

3 METHODOLOGY
To improve on the reproducibility and comparability of research
contributions, it is paramount to agree on how the evaluation of
these contributions should be performed. In other words, a well-
defined experimental methodology is required.
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Figure 2. The experimental procedure can be decomposed
in three phases: experiments, analysis, and synthesis. An
experimental methodology should answer five questions: (1) Which
metrics to compute? (2) Which data to collect? (3) How many samples
to collect? (4) How to synthesize results? (5) How many experiments
should be performed?

In order to derive such a methodology, it is important to first
dissect the evaluation process itself. Let us assume one protocol
is to be evaluated on one test configuration. 1 We argue that the
experimental procedure can be decomposed into three main phases:
The experiments which lead to the collection of raw data.
The analysis which processes the raw data of each experiment.

This usually means computing a set of metrics.
The synthesis which aggregates the processed data of multiple

experiments in a comprehensive summary. We call this sum-
mary a performance report.

We illustrate these phases in Fig. 2. A number of strongly interre-
lated questions must be answered to fully describe this process:

(1) Which metrics should be computed? Only the experimenter
can decide on the performance dimensions that matter (e.g.,
reliability). For each dimension, different metrics can be con-
sidered and different measures can be useful to compute.

(2) Which raw data should be collected? There is a trade-off be-
tween the ease of collecting raw data and their richness. The
more fine-grained the data being collected are, the more
information can be extracted out of them.

(3) How many samples should be collected? Given the chosen
measures, how many samples are necessary in order to ob-
tain statistically relevant numbers? Answering this question
is necessary to define the minimal length of an experiment.

(4) How to synthesize results into a performance report? It is a
priori not clear how the results of multiple experiments
should be aggregated.

(5) How many experiments should be performed? Depending
on the chosen synthesis approach, how many experiments
should be performed in order to obtain statistically relevant
performance reports?

In the remainder of this section, we look into each of these ques-
tions and make concrete proposals. Altogether, this sketches a
well-defined methodology to conduct experimental evaluations.

3.1 Which metrics to compute?
Before deciding which metrics to use in an evaluation, one should
reflect on the physical dimensions of interest. Different application
domains (e.g., condition monitoring or industrial control) likely
focus on different dimensions (e.g., reliability or latency). Each
dimension can be investigated using one or several metrics, based
on which some performance measures are computed.
1We do not discuss here how to formally describe a test configuration (P1); this is
beyond the scope of this paper. We simply assume such formal description exists.
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For example, let us consider energy efficiency. This is a physical
dimension that can be investigated using, e.g., the radio duty cycle
as a metric. If one is interested in the mean depletion time of a
node’s battery (related to the average energy consumption), a valid
measure is, e.g., the median radio duty cycle across all nodes. If one
is interested in the expected time before a first node depletes its
battery (related to the maximum consumption), a different measure
is needed, e.g., the maximal current draw of individual nodes.

As described in Sec. 2, in our context, the physical quantities we
study are expected to be non-parametric. Thus, statistical meth-
ods based on mean and variance should not be used. Instead, the
literature recommends using confidence intervals (CI) on sample
percentiles [10], which are are good candidates as performance
measures. Moreover, performance reports must be based on the
same metrics to be comparable. This calls for a consolidation of a
core list of “metrics that matter,” for which [14] provides a good
starting point.

3.2 Which data to collect?
Obviously, the minimal requirement is that the collected data are
sufficient to compute the metrics of interest.

Moreover, the more fine-grained or unprocessed the data are,
the richer and thus more interesting they are. For example, let us
consider the end-to-end latency of individual packets. Raw data
containing the transmission and reception timestamps are far more
valuable than data containing only their relative difference. The
latter only quantifies latency, whilst the former can also provide,
e.g., information about the receiving jitter.

3.3 How many samples to collect?
As discussed in Sec. 3.1, a tendency in the data can be described
with a median, i.e., the 50th percentile. Instead, if one is interested
in extreme performance, a higher percentile (e.g., 95th or even 99th
percentile) might be more suited as a measure.

Moreover, these measures are often predictive. In other words,
we attempt to estimate what the true value of the measure would
be if the test were run forever. In such a case, one cannot report
on exact values but can only provide CI on the true value, given a
certain confidence level α (see Sec. 2).

It follows that the minimal number of samples one must collect
depends on the measure of interest. Intuitively, if a few samples
can be sufficient to estimate the median, many more are required to
estimate the 99th percentile. The required number of samples must
be computed given the desired confidence level α and the selected
measure. For example, assuming a confidence level α = 75%, 2 the
approach described in Sec. 2 yields that 3 samples are enough to
report a CI on the median, whereas estimating the 97.7th and 99.8th
percentiles requires a minimum of 61 and 1027 samples [10]. 3

3.4 How to synthesize results?
After analysis, each experiment provides a set of processed data,
i.e., the chosen measures (see Sec. 3.1). However, to concisely re-
port on the system performance (and eventually compare different
systems – P4), it is useful to synthesize these results using what

275% is a rather low confidence. A higher level, such as 95%, would be preferable.
3These percentiles “correspond” to the µ + σ and µ + 2σ for a normal distribution.

we call performance indicators. An indicator is a unique numerical
value that synthesizes the system’s performance across the whole
evaluation along one of the measures. Thus, a performance report
synthesizes the whole evaluation into a vector of sizeM , whereM
is the number of measures.

The definition of “good” indicators is a priori not trivial. Analog
to the discussion in Sec. 3.3, we suggest to define indicators using
percentiles on the measures. Again, the percentiles to use depend
on the type of performance statements that one is trying to make.
The median across all tests can be to used to report on average
performance; a higher percentile is needed to investigate extreme
performance (e.g., the latency of a real-time protocol).

As the evaluation contains only a finite number of tests, the true
percentiles must be estimated using CI at a given confidence level
α . This results in two values per measure: the lower and upper
bound of the CI. Let us recall the meaning of a CI: The true value
of the percentile for the underlying distribution lies somewhere in
the interval with probability α . We propose to use as performance
indicator the “conservative bound,” which depends on the metric.
Consider for example the reliability measured as packet reception
rate (PRR): the higher the PRR, the better. Thus, to be conservative,
one should use the lower bound of the CI as a performance indicator
for this metric. It is the opposite for the energy consumption: the
lower, the better. Thus, the upper bound of the CI should be used
as a performance indicator.

3.5 How many experiments to perform?
The final question to answer in order to complete the experimental
evaluation planning is: How many repetitions should be performed?

Once again, the answer depends on the type of performance
statements one wants to make; in other words, it is subordinate
to how the results are synthesized (see Sec. 3.4). A minimum of 3
samples (i.e., 3 repetitions) are required to obtain a 75% CI on the
median performance. More repetitions allow one to make stronger
statements by increasing the confidence level; e.g., a 95% CI on the
median requires 6 samples [10]. Additional repetitions may also
help narrowing the CIs by excluding extreme values.
Summary. This section presented a methodology to plan, execute,
and report on experimental evaluations. This methodology does not
specify what should be done in the evaluation (e.g., which metrics
to compute), but rather how to do it (e.g., how to choose valid mea-
sures). In particular, we propose a statistically relevant approach
to answer two basic yet difficult questions: (i) How long should an
experiment run? (ii) How many repetitions should be performed?

The core ideas of this methodology can be summarized in the
following guidelines:

(1) Use the correct measure for the performance aspects under
investigation. To facilitate the comparability between perfor-
mance results, the same metrics should be used. This calls for
a restricted list of metrics that the community should agree
to use to investigate common performance aspects of com-
munication protocols such as average energy consumption,
worst-case latency, etc.

(2) Fine-grained data allow for a deeper analysis. Whenever pos-
sible, the raw data should be collected (and made accessible)
with the finest granularity possible.
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(3) Predictive measures should be based on confidence inter-
vals of some distribution percentiles (e.g., the median). The
(minimal) duration of a test should be decided based on the
chosen measures. The more extreme the percentiles are (e.g.,
99th), the more samples are required and hence the longer
the test must last in order to reach a given confidence level.
The latter should be set to a large value, such as 95%.

(4) The performance report should be synthesized using CIs
with a minimal confidence level of 75% (or better: 95%). The
synthesis should not be done using the mean or standard
deviation. Unfortunately, although statistically inappropriate
in our setting, the mean is commonly used in the community.

(5) Following our proposed methodology, experimenters should
often perform many “short” tests (i.e., simply long enough to
compute the chosen metrics) rather than a few “long” tests.

4 CASE STUDY
We illustrate our experimental methodology on a practical case
study, where we evaluate the performance of seven different proto-
cols on the exact same scenario. 4

4.1 Evaluation settings
Test scenario.We consider a data collection scenario in a 15-node
network with 14 sources (i.e., generating packets) and one sink node.
Each source generates 200 application payloads of 2 bytes at a fixed
rate of 10 per second. No payload is generated during the first 10 s,
after which the generation is periodic, with a pseudo-random offset
between the different sources (based on the node IDs). Once the
200 payloads have been generated (i.e., after 20 s), the test runs for
10 s more before it stops. Any application payload not successfully
received at the sink node by this time is counted as lost.

It is important to note that this scenario is terminating, i.e., it has
a definite end. This is different from a test scenario where one aims
to estimate steady-state performance. One consequence is that after
one run of the scenario, one obtains exact performance measures
rather than estimates. For example, one measures the exact number
of successfully received application packets. The uncertainty lies
in the variability of the results across multiple runs, not on the
performance that would be obtained if the tests were longer.
Test environment.We use the FlockLab testbed [9] as test envi-
ronment, using the DPP platform [3]. The latter embeds a TI CC430
SoC featuring a sub- GHz RF core. The list of nodes and the identity
of the sink node are fixed and known at design time. Tests are
run during night time (between 10pm and 7am) to limit external
interference. Further details about the test environment settings
are contained in the FlockLab XML test files, which are available
together with other additional material of this paper [1].
Performance metrics, measures, and synthesis method. Fol-
lowing our methodology, we first decide on the performance dimen-
sions we aim to investigate with our evaluation before selecting
valid measures and a synthesis strategy. As an example, we investi-
gate the following three aspects:

Q1 How many application payloads can one expect to successfully
receive in one execution of the scenario? This relates to the average
4All protocols have been designed by Master students for course in fall 2018.

reliability. A corresponding measure is the overall PRR, which
produces one value per test. We synthesize the results using the
lower bound of the 95% CI for the median PRR across all tests.
Q2 How much energy can one expect to be consumed by one node
during one execution of the scenario? This relates to the average
energy consumption across all nodes. A corresponding measure is
the median current draw across all nodes, which produces one
value per test. 5 We synthesize the results using the upper bound
of the 95% CI for the median across all tests.
Q3 After how many executions of the scenario will a first source
node have depleted its battery? This relates to the maximal energy
consumption per source node. A corresponding measure is the max-
imal current draw of one node. This is computed by considering,
for each individual node, the 95% CI of its median current draw
across all tests, 6 then taking the maximal upper bound of all the
CIs. It produces one value for the whole evaluation.

Ultimately, we synthesize the evaluation results using three nor-
malized performance indicators, one for each metric. 7 By design,
the PRR is already normalized. For the energy consumption, we
transform the measures x̂ into normalized values x = 1 − x̂/Imax,
where Imax = 25mA is an upper bound for a node’s current draw
for this configuration. Thus, our three performance indicators range
between 0 and 1 where a higher score means better performance.
Length and number of experiments. As the scenario is both
terminating and short, each experiment runs the scenario in full. 8

Ourmeasures and aggregation strategy rely on 95% CI onmedian
values across all tests. This leads to a minimum of 6 repetitions (see,
e.g., the tables in [10]). In order to obtain better estimates (i.e., to
limit the impact of potential outliers), we perform 20 repetitions. If
20 measurements are available, and sorted like x1 ≤ x2 ≤ . . . ≤ x20,
the 95% CI for the median is [x6,x15] [10].
Raw data collection. As discussed in Sec. 3.2, the raw data should
provide enough information to compute the metrics of interest, but
should also strive to be as detailed as possible, such that further
or different processing can be carried out. With this mindset, we
collect the following raw data:

• The sink node writes individual received application pay-
loads (2 pseudo-random bytes) into a serial message. The
serial dump is provided by FlockLab as part of the test results.
• FlockLab collects current drain measurements of each node,
at a rate of 144000 samples per second (1 sample every ∼
7 µs) with a 10 picoampere precision. The test results contain
both the complete time series and the average across the
whole test, for each node.

A set of processing scripts convert these raw data into our per-
formance indicators. All collected data, scripts, and utilization notes
are openly available as complementary materials [1].

5As we have the values for all the nodes, we obtain the exact median current draw for
each test. This is a descriptive statistic.
6This is a predictive statistic: We try to estimate the true median value for each node
by running a limited number of tests. Thus, we only obtain a CI (not an exact value).
7The normalization is optional, it simply helps comparing across indicators.
8200 payloads generated at a rate of 10 per second, plus 10 s at the start and the end of
the scenario, which hence lasts 40 s in total.
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Figure 3. Performance results of all protocols. A graphical rep-
resentation of all performance results provides a high-level overview,
but may be ill-suited for a static figure in a paper. Ideally, a dynamic
version of the graphic should be provided (see [1]). A data table (such
as Table 1) is more accurate and more suited to report on final results.

Table 1. Performance results of all protocols. While less visu-
ally attractive, a table provides more accurate information than a
graphic such as Fig. 3.

Protocol A B C D E F G
Average Energy 0.82 0.83 0.89 0.86 0.90 0.43 0.25
Worst-case Energy 0.67 0.44 0.82 0.18 0.52 0.27 0.19
Reliability 0.40 0.41 0.89 0.06 0.48 0.27 0.25

4.2 Evaluation results
After the evaluation comes the question of the presentation of the
results. Here, the challenge lies in reporting the results in a concise
yet informative form.

For this as well, relying on awell-definedmethodology helps. The
evaluation results can be summarized without ambiguity using the
chosen performance indicators, as their definition and derivation
are formally specified. For a few indicators, a graphical represen-
tation can give a quick overview of the respective performance of
different protocols (see Fig. 3). Nevertheless, a data table (such as
Table 1) is more precise and should be provided.

Furthermore, whenever relevant, one should provide some repre-
sentation of all processed data, i.e., the measures. For example, Fig. 4
shows the PRR and median current draw for each test of protocol C,
as well as the 95% CI for the median. Such graphic concisely shows
the data points, their spread, and their synthesis; hence, it provides
more details about the performance of a given protocol than the
performance indicators alone.

5 REPRODUCIBILITY OF LOW-POWER
WIRELESS NETWORKING

It is commonly recognized that “an experimental result is not fully
established unless it can be independently reproduced” [2]. Recently,
this fundamental statement in experimental research has been pub-
licly made by the Association for Computing Machinery (ACM) [2].
To go further and foster best practices in experimental sciences,
the ACM introduced a few years ago a badging system related to
artefact reviews for scientific publications, associated with a termi-
nology of reproducibility [2]. This terminology defines three levels

65 70 75 80 85 90 95 100

PRR (%)

2.65 2.7 2.75 2.8

Median Current Draw (mA)

Figure 4. Measurements collected for protocol C. The dots
are the measurement points of each individual test. The bar
represents the 95% CI on the median, and the square marks
the corresponding performance indicator. This graphic effi-
ciently shows the data points, their spread, and how they will be
synthesized. Such representation is encouraged whenever one aims to
give more details about the performance of a given protocol.

of reproducibility which can be summarized as follows:
Repeatability Same team Same setup
Replicability Different team Same setup
Reproducibility Different team Different setup

This terminology is intentionally loose, such that it can be adapted
to the specifics of different research fields. Whilst the intuition be-
hind these definitions is relatively simple, their formalization is far
from trivial. Given the natural variability of wireless experiments,
asking performance results to be exactly the same to qualify these
results as reproducible does not make much sense. Thus, one should
ask the results to be “close.” But how to measure this “closeness”?
How to assess whether results are sufficiently “close”? Does a hard
cut between reproducible or not even make sense; or should we
rather aim to quantify reproducibility? This paper does answer
these (difficult) questions, but does suggest some initial ideas to
open the discussion.

Let us first focus on repeatability. Our methodology synthesizes
the performance of a given protocol using some indicators (see
e.g., the case study in Sec. 4). Now, what does it mean to say: “these
results are repeatable”? According to the ACM definition, it would
mean that, if we were to re-run the complete evaluation, we would
find “close” results. In other words, repeatability is concerned with
the confidence in the results obtained in the evaluation.

One idea to investigate this question is the technique of bootstrap-
ping [5]. Bootstrapping is a statistical method based on re-sampling,
which allows increasing the accuracy on some population estimates;
this can be applied to our problem. Let us assume we perform an
evaluation with N repetitions, out of which we compute one vec-
tor of performance indicators. A bootstrap sample refers to a new
synthetic set of N tests, where each test in the bootstrap sample
is randomly chosen from the original N tests. For example, if our
original test set is {1, 2, 3}, a bootstrap sample could be randomly
created as {2, 1, 2}. For each bootstrap sample, we can compute a
new vector of performance indicators. By creating many bootstrap
samples (e.g., 1000), one easily obtains a population of performance
vectors out of the original N tests. 9 The idea is that the spread of
this population could be used to measure the repeatability of the

9While bootstrapping seems to create values out of thin air (hence its name), it has been
shown useful e.g., to provide confidence intervals on some population parameters [5];
in our case, this parameter would be the vector of performance indicators.
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(a) The performance indicators computed on the
bootstrap population are all closely grouped to-
gether, which would tend to indicate very repeat-
able results.

(b) The performance indicators computed on the
bootstrap population are very stable with respect
to energy, but exhibit a large spread with respect
to reliability. Is this “repeatable” or not?

(c) The performance indicators computed on the
bootstrap population are very stable with respect
to average energy, but exhibit a correlation be-
tween maximal energy and reliability.

Figure 5. While it is rather easy to argue that the results for Fig. 5a are “more repeatable” than those in Fig. 5b and 5c, it is yet
unclear how to generally assess the repeatability of a single protocol.

result. The intuition is that the “closer” the performance vectors
from the bootstrap distribution, the “more repeatable” the result.

As an example, Fig. 5 shows the performance indicators of the
bootstrap distributions for three different protocols from our case
study. While it is rather easy to argue that the results in Fig. 5a
are “more repeatable” than Fig. 5b and 5c, it is yet unclear how to
generally assess the repeatability of individual results. Furthermore,
it remains to be clarified whether the statistical guarantees of boot-
strapping hold for our performance indicators (which are not quite
the same as typical estimates, like, e.g., the mean). However, we
argue that this avenue deserves further investigations.

We now shortly comment on replicability and reproducibility.
These definitions yield that a different team is performing the eval-
uation again. In this context, the “closeness” between the original
and the replicated/reproduced studies could be formulated with
the following question:What is the probability that the two sets of
results are samples coming from the same underlying distribution?
This question could be answered by using another well-founded
statistical method like, e.g., the Kruskal-Wallis test [7]. But here as
well, further investigation about its applicability is needed.

6 DISCUSSION AND CONCLUSION
In this paper, we have outlined some necessary steps towards mak-
ing experimental research on low-power wireless networking re-
peatable, reproducible, and comparable. We identified the lack of a
well-defined methodology that specifies how to plan, execute, and
report on experimental results as one of the missing ingredients
towards this goal. We hence proposed a methodology suitable when
experimenting with low-power wireless protocols and applied it on
a case study. We have further discussed how complex is to define
repeatability, replicability, and reproducibility in the context of low-
power wireless networking. Further research is needed to turn our
ideas into a full-fledged, validated methodology that serves as an
accepted guideline for experimental evaluations in the field. Inspi-
ration can be taken from other disciplines, e.g., clinical studies [6],
where reproducibility has been a major concern for a long time.
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