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Abstract—Updating the software running on constrained IoT
devices such as low-power sensors and actuators in a secure and
efficient way is an open problem. The limited computational,
memory, and storage capabilities of these devices, together with
their small energy budget, indeed, restrict the number of features
that can be embedded into an update system and make it
also difficult to build a generic and compact solution. As a
result, existing update systems for constrained IoT devices are
often not portable, do not perform a proper verification of the
downloaded firmware, or focus only on a single phase of the
update process, which exposes them to security threats and calls
for new solutions. In this paper we present UpKit, a portable
and lightweight software update framework for constrained IoT
devices encompassing all phases of the update process: from the
generation and signature of a new firmware, to the transmission
of the latter to an IoT device, its verification and installation.
UpKit employs a novel update architecture that is agnostic to
how new firmware images are distributed and that introduces
a double-signature process to guarantee the freshness of a new
firmware. This, together with an additional verification step,
allows also to reject invalid software at an early stage and to
prevent an unnecessary reboot of the device. We keep UpKit’s
design modular and provide an open-source implementation for
several operating systems, off-the-shelf hardware platforms, as
well as cryptographic libraries. We further include support for
differential updates and flexible memory slots, which allows
to significantly increase the efficiency of the update process.
An experimental evaluation shows that UpKit can be used to
efficiently update highly-constrained IoT devices, and that it
has a comparable memory footprint to state-of-the-art solutions,
despite the introduction of several additional features.

I. INTRODUCTION

The Internet of Things (IoT) is becoming an integral part
of our daily lives, with billions of networked smart objects
empowering the development of smart buildings, grids, and
cities, as well as attractive applications in the area of connected
health, precision agriculture, and cyber-manufacturing [1].

Smart objects are often unsupervised and operate in harsh
environmental conditions for several years [2]. During this
extended period of time, the software (SW) running on these
devices needs to be regularly updated in order to add new
features, fix bugs, and resolve known security vulnerabilities.

The inability of doing so may: (i) result in reduced perfor-
mance, (ii) negatively affect customer satisfaction, and (iii) ex-
pose the device to attacks compromising the safety and privacy
of the involved users [3], [4]. Even worse, compromised IoT
devices may be exploited to perform massive distributed denial
of service attacks able to affect critical infrastructures of the
Internet, as recently shown by Mirai and other IoT botnets [5].

Therefore, in order to fix bugs, patch vulnerabilities, im-
prove performance, and extend functionality, it is necessary

to embed some software update capabilities in the firmware
running on each IoT device [6], [7]. Such capabilities include,
among others, the (over-the-air) download of the update image,
the verification of its integrity and authenticity, as well as its
installation [8]. All these steps should be performed while
minimizing the downtime of a device and its services.

Updating constrained IoT devices. Updating the software
running on constrained IoT devices, e.g., low-power sensors
and actuators [9], is still an open research problem [6],
[10]. These devices are typically severely limited in terms of
network bandwidth, as well as computational, memory, and
storage capabilities, which restricts the number of features that
can be embedded into an update system [11]. The availability
of only 100 to 250 kB of ROM and 10 to 50 kB of RAM [12],
indeed, makes it impossible to reuse or even adapt solutions
developed to update powerful gateway nodes and high-end IoT
devices embedding a user interface [13]–[18], as these require
sufficient memory and computational power to run Linux and
its derived distributions. At the same time, low-power IoT
devices are typically battery-powered and their operation needs
to be highly efficient, so to preserve the limited energy budget.

Therefore, SW update solutions for constrained IoT devices
need to have a small memory footprint and should minimize
energy expenditure, for example, by using differential updates
in order to reduce the data transferred over the network and
the actual update time [19]. Furthermore, constrained IoT
devices are largely heterogeneous in nature (i.e., there is a
plethora of different hardware platforms) and make use of
different lightweight operating systems (OS) [20], optimized
networking and application-layer protocols [21], as well as
cryptographic libraries [22]–[24]. This heterogeneity calls for
a lightweight update solution that is portable across different
hardware platforms and operating systems, as well as efficient
and generic (i.e., independent of the employed protocols or
libraries). Unfortunately, such a solution does still not exist,
and existing approaches exhibit a large number of drawbacks.

Limitations of existing approaches. To cope with the
aforementioned constraints, existing update solutions for con-
strained IoT devices often implement only a limited set of fea-
tures (e.g., they address either the downloading of the firmware
or its installation) or offer only minimal protection against
tampering attacks (e.g., they do not perform a comprehensive
verification of the new firmware). Moreover, current solutions
are often tailored to a specific hardware and OS [25]–[28] or
require the use of specific networking protocols [29], which
makes them neither portable nor generic, as discussed next.



Hardware-specific solutions. Several lightweight update sys-
tems are provided directly by the hardware manufacturer (e.g.,
Nordic’s BLE Device Firmware Update (DFU) [25] and Texas
Instruments’ Over-the-Air Download (OAD) ecosystem [26]).
Although these solutions are quite popular, they are typically
bound to a specific hardware (HW) platform and their im-
plementation is partially closed-source. This precludes porta-
bility and practically forces developers to trust a black-box
implementation, while preventing further customization.
Solutions with limited capabilities. Operating systems specifi-
cally designed for constrained IoT devices (e.g., TinyOS [30]
and Contiki [31]) often embed or can be extended with over-
the-air reprogramming capabilities. Whilst portable across sev-
eral HW platforms, many of the existing solutions focus only
on a portion of the update process, or do not perform a proper
verification of the downloaded firmware and hence cannot
ensure its integrity. For example, Contiki-NG [32] allows to
download a new firmware using LwM2M1, but does not embed
a bootloader for its installation. Sparrow [27] provides Contiki
with over-the-air reprogramming using a custom update agent
and bootloader, but – similar to TinyOS’ update system [33] –
only verifies the CRC code of the downloaded firmware, which
is insufficient to protect against tampering attacks.
Combination of independent tools. A few OS for constrained
IoT devices, such as RIOT [34] and Zephyr [35], allow to
combine open-source solutions taking care of downloading
the firmware (e.g., LwM2M and mcumgr2) with others per-
forming its verification and installation (e.g., mcuboot3).
Whilst the combination of these tools represents, to date,
the state-of-the-art when it comes to update solutions for
constrained IoT devices, it entails several limitations, as we
point out in Sect. II. Combining tools that are designed
independently and do not follow a common standard, indeed,
results in modules operating in isolation from each other.
When coupling together mcumgr with mcuboot, for exam-
ple, the verification of the downloaded firmware relies solely
on the bootloader. On the one hand, this cannot prevent an
attacker from sending an outdated update image that contains
well-known vulnerabilities (update freshness problem). On the
other hand, the verification of a new image takes place only
after rebooting the device, which unnecessarily increases the
energy expenditure in case of invalid (manipulated) firmwares.

The need for a portable update framework. This state
of affairs represents a major problem, as existing solutions
for constrained IoT devices are often incomplete, hardware-
specific, and – to some extent – insecure. This raises the need
of an update framework for constrained IoT devices that:
(i) takes care of the update process in its entirety, (ii) moves
away from the combination of multiple independent tools,
and (iii) employs a novel, generic architecture guaranteeing

1Lightweight machine-to-machine (LwM2M) is an efficient protocol
developed by the Open Mobile Alliance that is designed, among others, to
manage and provide software updates for constrained IoT devices [28].

2MCU Manager (mcumgr) is an open-source tool allowing communication
with remote devices using Bluetooth Low Energy or a serial interface [29].

3MCUboot (mcuboot) is an open-source bootloader for 32-bit MCUs [36].

a secure and efficient verification of new firmware. Such a
comprehensive update framework should be portable across
different OS and HW platforms, as well as open-source, which
would simplify maintenance and customization, as well as
prevent vendor lock-in. All these goals should be achieved
while maximizing the energy-efficiency of the solution (in
order to preserve the limited energy budget of battery-powered
smart objects), and without loss of generality. For example,
one should be able to perform updates using both a push
approach (e.g., by having a smartphone informing the smart
object about the availability of new firmware [25], [29]), and
a pull approach (e.g., by having the smart object periodically
polling a server to look for updated software [27], [28]).
Likewise, the sought framework should allow to verify the
integrity of a new firmware not only once the latter reaches
the bootloader, but also after its download (i.e., enabling an
early rejection of invalid software).

Our contributions. In this paper we present UpKit, a software
update framework for constrained IoT devices that achieves
all these goals. UpKit provides a single, lightweight solution
encompassing all phases of the update process: from the gen-
eration and signature of a new firmware, to the transmission
of the latter to an IoT device, its verification and installation.
UpKit adopts a novel update architecture that is agnostic to
how new firmware images are distributed (i.e., the framework
seamlessly supports both push and pull approaches). It further
introduces a double-signature process in which a unique re-
quest token is included in the manifest of the update image and
is signed by the update server. This, together with an additional
verification step in the update agent, guarantees the freshness
of a new firmware and allows to reject invalid software at an
earlier stage, preventing an unnecessary device reboot. UpKit
allows sharing of cryptographic libraries between the update
agent and the primary device application, which reduces its
memory footprint and makes the framework suitable also
for highly-constrained devices. Furthermore, UpKit supports
differential updates without requiring extra flash space by
including a configurable pipeline that allows modifying the
received update before storing it in persistent memory. More-
over, in addition to the static update mode (where the firmware
is loaded from a fixed position in memory), UpKit supports
the A/B update mode alternating two slots for loading and
storing the new firmware, which reduces the time required to
perform the update and maximizes energy-efficiency.

We have designed UpKit to be portable across different
operating systems and hardware platforms, as well as kept its
design generic and open-source4. To showcase its functional-
ity, we have developed an implementation for three popular
OS (Contiki-NG, RIOT, and Zephyr), off-the-shelf hardware
platforms (Nordic Semiconductors’ nRF52840 plus Texas In-
struments’ CC2650 and CC2538), as well as cryptographic
libraries (TinyDTLS, tinycrypt, and CryptoAuthLib).

An experimental evaluation highlights UpKit’s small mem-
ory footprint and high energy-efficiency, as well as provides a

4https://github.com/updatekit/upkit

https://github.com/updatekit/upkit
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Fig. 1: Commonly-used firmware update architecture for constrained IoT devices.

comparison with popular SW update solutions for constrained
IoT devices such as mcuboot, mcumgr, and LwM2M.

After analyzing in detail the drawbacks of state-of-the-art
portable software update approaches for constrained IoT de-
vices in Sect. II, this paper makes the following contributions:

• We present UpKit, a novel framework encompassing all
phases of the update process and performing verification
of a new firmware also in the update agent. By doing
so, UpKit increases the security of the update process,
guarantees the freshness of a new firmware, and rejects
invalid software at an earlier stage (Sect. III).

• We keep UpKit’s design modular, generic, and agnostic to
how new firmware images are distributed. Furthermore,
we maximize the code reuse of different cryptographic
libraries and support differential updates in order to
maximize energy efficiency (Sect. IV).

• We design UpKit to be portable and develop a full-fledged
implementation for several constrained hardware plat-
forms, OS, as well as cryptographic libraries (Sect. V).

• We evaluate UpKit experimentally in terms of memory
footprint and energy-efficiency, providing a comparison
with state-of-the-art solutions (Sect. VI).

After describing related work in Sect. VII, we conclude our
paper in Sect. VIII, along with a discussion on future work.

II. LIMITATIONS OF EXISTING APPROACHES

Only a few software update solutions for constrained IoT de-
vices are portable across different OS and hardware platforms.
Among them, the most widespread are LwM2M, mcumgr, and
mcuboot [28], [29], [36]. As these solutions are designed
independently (i.e., without following a common standard)
and do not cover the whole update process (LwM2M and
mcumgr only take care of the distribution of the firmware,
whilst mcuboot performs its verification and installation),
their combination is required in order to assemble a complete
update system. In state-of-the-art solutions (e.g., in RIOT and
Zephyr), this results in the architecture shown in Fig. 1.

The software update process can be divided into four phases,
shown as dashed rectangles in Fig. 1. The firmware is created
in the generation phase and distributed to the device(s) in the
propagation phase. Thereafter, the verification phase ensures
the validity of the received update, and the loading phase
finally takes care of installing and executing the update.

We describe next these four phases and illustrate the typical
update procedure, using a push approach employing mcumgr
(to propagate the update using a smartphone) and mcuboot
(to verify and install the firmware) as running example.
Note that the same procedure is followed by a pull approach
combining LwM2M and mcuboot, with the difference that
no smartphone is included in the architecture shown in Fig. 1,
i.e., there is no gateway between IoT device and update server.
Generation Phase. The update process starts with the vendor
server, which embeds a private key to perform digital sig-
nature, receiving the firmware binary 1 . The vendor server
then creates the update image by attaching the manifest (i.e.,
a set of metadata describing the firmware, such as version
and firmware digest) and the generated digital signature.
Popular solutions [25], [36] enforce the use of a public-key
digital signature, hence excluding symmetric-key algorithms
that would make all devices sharing such key vulnerable if
the key is compromised [3]. When the update image has been
generated, it can be transferred to an update server 2 , which
is in charge of propagating it to the IoT device(s).
Propagation Phase. The update server, which may be owned
by an external company or by the vendor itself, advertises the
presence of a new update image version 3 . The application
running on the smartphone requests the new update image to
the server over a secure channel on the Internet 4 , and stores
the received image locally 5 . The smartphone then pushes
the update image to the update agent running on the IoT
device over a secured BLE connection 6 . The update agent
is a portion of the firmware running on the IoT device that is
used to interact with the update server for downloading a new
update image, as well as for storing the latter in persistent
memory. During the propagation phase, the freshness of the
update image must be granted, which consists in preventing
that outdated update images reach the device, i.e., precluding
an attacker from sending a valid, but old image with well-
known vulnerabilities. Popular solutions such as mcumgr,
do not provide any solution to mitigate this issue, whilst
LwM2M, instead, relies on transport layer security to grant
update freshness. In fact, when considering a configuration
using LwM2M and mcuboot, the freshness of an update is
granted by the secure connection between the server and the
update agent, which is carried out using secure CoAP with
public-key based client authentication. This, however, implies
a direct connection between server and IoT device, which, in



many cases (e.g., when using a gateway or a smartphone, as
in Fig. 1), is not available. Once the update image has been
fully stored on persistent memory, the IoT device reboots 7
and the update process is resumed by the bootloader. Note that
state-of-the-art solutions such as mcumgr and LwM2M do not
make use of differential updates. The latter could enhance the
efficiency of the propagation phase by reducing the amount of
data to be transferred and stored on the IoT device.
Verification Phase. Before loading the new update image, the
bootloader checks its digital signature to verify its integrity and
authenticity. In case the verification fails, the bootloader must
remove the new update image and perform the rollback to the
previous one. If the verification is successful, instead, the in-
stallation proceeds 9 . Note that postponing the verification to
the bootloader has a negative impact on the energy-efficiency
of the solution. Indeed, if an invalid update is received (e.g.,
tampered while stored on the smartphone or modified during
transmission if an untrusted channel is used), the IoT device
still needs to download and store the full update in memory,
as well as to reboot – even though one may already recognize
the new update as invalid from the manifest. This unnecessary
download and reboot of the IoT device reduces not only its
functionality, but also its availability, as rebooting the device
causes its temporary disconnection from the network.
Loading Phase. The update image typically contains the full
application statically linked to a specific memory offset. This
allows the update agent to locate the image on any memory
object, while the bootloader moves the update image to the
right offset in order to correctly load the firmware. If the
verification was successful, the bootloader moves the update
image to the correct memory address and jumps to it, so to
start executing the new firmware 10 .

Key limitations. The architecture depicted in Fig. 1, which is
commonly adopted when updating the software of constrained
IoT devices, presents a number of fundamental problems:

• The freshness of an update (i.e., the rejection of outdated
images) relies exclusively on the security of the connec-
tion with the server, which in case of LwM2M consists
in transport-layer security. Unfortunately, an end-to-end
secure channel between IoT device and update server is
not necessarily available, especially in the presence of
intermediary devices such as gateways and smartphones,
as discussed previously. Therefore, the update freshness
property must be granted during the verification phase as
already done with the integrity and authenticity proper-
ties, independently from the network protocol used.

• The update agent is only designed to propagate the new
firmware and does not verify the validity of the update
image. Hence, an invalid firmware may be downloaded
and stored on the IoT device, unnecessarily increasing its
energy expenditure. Furthermore, during reboot, the IoT
device may not be reachable for an extended amount of
time, which affects the availability of the system.

• Most IoT systems do not embed any functionality to
update the bootloader [3], [35]. The latter is indeed a

complex task that could brick the device in case of failure
(i.e., leave the device in an inconsistent state, making it
useless). This implies that bugs or vulnerabilities in the
verification of the firmware (e.g., the use of deprecated
digital signatures and digest algorithms) cannot be miti-
gated. This raises the need to perform verification also on
the update agent: while the bootloader would still remain
vulnerable, no invalid update image is forwarded to it.

All these issues can be solved by improving and anticipating
the verification of new firmware to the update agent, as well
as by providing a single solution covering the whole update
process. To this end, we have designed UpKit: a SW update
framework for constrained IoT devices that we describe next.

III. UPKIT: GENERAL ARCHITECTURE

UpKit is a portable update framework for constrained IoT
devices encompassing all phases of the update process and
supporting several features. In contrast to the state-of-the-
art approaches described in Sect. II, UpKit introduces a
verification step also in the update agent and makes use of
a novel architecture, which is shown in Fig. 2.

A. Generation Phase

Also in UpKit the update process starts with the vendor
server, receiving the raw firmware binary 1 , which is then
used to generate the update image by adding the manifest
and its digital signature. The update image is then loaded
on an update server that is connected to the Internet and is
reachable from any IoT device 2 . However, differently from
common architectures (Fig. 1), in UpKit the update server is
also involved in the generation phase. In particular, the update
server performs a double signature on the update image to
ensure that an update is bound to a specific device and request.
This allows to grant update freshness during the verification
phase, without the need to rely on transport layer security.

B. Propagation Phase

Once a new update image is generated, the update server
announces its availability over the Internet 3 . Smartphones
acting as proxy receive this information and use their local
connection to the IoT device(s) to request a device token 4 .
The latter is a structure containing the following fields:

• a 32-bit unique ID of the device, which may be derived
from unique identifiers such as the MAC address;

• a 32-bit nonce generated by the device for each request;
• a 16-bit value containing the current version if differential

updates are supported by the device, or zero otherwise.
The device token is received by the smartphone 5 , which
sends it to the update server while requesting the new available
update image. The values of the device token are then added to
the manifest and signed again: this makes the update unique
for each device and each request. This way, the IoT device
knows that the update image is the last one available on the
server, provided that: (i) the device token values match the
previous ones and (ii) the update server’s signature is valid.
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Fig. 2: UpKit’s architecture: in contrast to existing solutions, UpKit introduces a double-signature process and performs verifi-
cation also in the update agent, which guarantees the freshness of a new firmware and allows an early rejection of invalid SW.

To ensure update freshness, we have also considered other
approaches, such as the inclusion of a timestamp in the
manifest indicating the expiration time of the update im-
age [10]. However, we excluded this approach, as it requires a
reliable time source on each IoT device. Indeed, time sources
may easily be faked, as shown by attacks against the NTP
protocol [37], [38]. Furthermore, the use of timestamps does
not permit to block the installation of an update until the
timestamp expires, which may allow attackers to install an
update with known vulnerabilities even though a new update
version is available. The double signature approach proposed
by UpKit, instead, ensures that the latest update image is
downloaded, and only assumes that the private key stored in
the update server remains secret, i.e., UpKit does not require
a reliable time source or a real-time clock on each IoT device.

The update server uses the current version value in the
device token to decide whether differential updates should be
used5. If differential updates are supported, the update server
uses the current version to derive the delta with the latest
update image. The full or differential update is then signed by
the update server and sent to the smartphone 7 .

Once it fully received the update image, the smartphone
starts forwarding the manifest to the update agent running
on the IoT device 8 . As soon as the manifest has been
received, the update agent verifies its content 9 and stops the
update process if any of the values or the digital signatures are
invalid. Otherwise, if the validation process is successful 10 ,
the update agent notifies the smartphone that the firmware
can be transmitted 11 . Once the firmware reached the IoT
device 12 , it undergoes a first verification phase 13 ensuring
that the calculated digest is equal to the one included in the
manifest previously received. If this is the case 14 , the device
can reboot to load the new firmware 15 .

Compared to the state-of-the-art software update architec-
tures shown in Fig. 1, UpKit introduces a first verification step
in the update agent. This ensures that the update image is valid,
granting (i) integrity and authenticity by means of the vendor
server’s signature, and (ii) update freshness by means of the
update server’s signature. This allows the IoT device to reject
invalid software at an early stage, reducing the communication

5A device can indicate to the server that is unable to support differential
updates by including a zero value in the current version field. The use of
differential updates, indeed, increases the memory usage of the update agent.

overhead to a bare minimum and avoiding an unnecessary
reboot. Furthermore, as the update agent is a portion of the
firmware running on the device (and is hence embedded in
new update images), it can be updated in case some bugs or
vulnerabilities arise within the verification procedure.

The architecture shown in Fig. 2 illustrates a push approach
and includes a smartphone to forward the updates to the IoT
device(s). Note, however, that the smartphone is not an active
component of UpKit, as it does not modify the update image in
transit. UpKit also supports updates that follow a pull approach
by allowing a direct connection between the update agent
and update server. Indeed, every device in between these two,
being it a smartphone or a gateway (border router), is only in
charge of forwarding the update image, and has no active role
in the update process. This implies that even a compromised
gateway does not affect the integrity and authenticity of an
update, nor the ability of UpKit to guarantee the freshness of
a new image, which is granted by the signature performed on
the update server. Still, a compromised gateway can perform
attacks against the device, such as denial of service attacks or
prevent an update from reaching the update agent. However,
these attacks are not strictly related to UpKit, but affect any
update system involving a device acting as proxy.

C. Verification Phase

In contrast to common approaches performing verification
only in the bootloader (Fig. 1), UpKit already performs a
first verification in the update agent to ensure that every new
firmware stored on the device memory is valid. Nevertheless,
the verification on the bootloader is still important, since the
one executed by the update agent may not be sufficient to
ensure the integrity and authenticity of the update image. For
example, the IoT device may reboot in the middle of the
propagation phase, which would leave the new update image
stored on the device incomplete. Similarly, the device may
lose power before the update agent can verify the firmware.
To prevent this, the bootloader must ensure the validity of the
values contained in the firmware’s manifest and digest, as well
as of its digital signatures after reboot 16 . Only if the update is
valid 17 , the bootloader proceeds to the loading phase, during
which the new update is effectively loaded on the device.



D. Loading Phase

The loading phase is the last step before the new code
is executed on the IoT device. It consists in preparing the
image to be executed, such as moving it to the right memory
address 18 . Similarly to other update solutions for constrained
IoT devices [3], [35], also UpKit does not support updating
the bootloader, as any failure during this phase would be fatal
to the system and brick the device. However, as discussed
earlier, any bug in the bootloader’s verifier can be mitigated
by updating the verifier contained in the update agent, thus
preventing an invalid image to reach the bootloader itself.

IV. UPKIT: INNER WORKINGS

The core of UpKit lies in the update agent and the
bootloader running on the IoT device, which orchestrate
the propagation, verification, and loading of new firmware.
As described next, we design both components to be highly
modular (Sect. IV-A) and agnostic to the network configuration
used to distribute a new firmware image (Sect. IV-B), which
makes UpKit easily portable and maximizes code reuse. We
also design UpKit’s modules to retain a high efficiency, e.g.,
by means of a configurable pipeline to manage differential
updates, as well as a flexible memory implementation to
customize memory slots and support A/B updates (Sect. IV-C).
Finally, we enable a double verification by including a verifier
module in both bootloader and update agent (Sect. IV-D).

A. Modular Design

UpKit’s modules are organized in a three-layer structure, as
shown in Fig. 3, where each layer depends on the underlying
one for its operation. Common modules are designed to work
independently from the OS or the hardware platform, and rely
on common interfaces to interact with low-level functions,
such as flash memory access as well as network or crypto-
graphic implementations. An implementation of each interface
is provided by platform-specific modules, which allows to
handle several hardware platforms and OS. The latter, indeed,
can exhibit a large heterogeneity of memory implementations
and cryptographic libraries, as discussed in Sect. V.

A finite-state machine (FSM) module coordinates the opera-
tions of the update agent, managing the data received by a pull
or push connection. This data is passed to a pipeline module,
which modifies it before storing it to persistent memory. The
memory module provides functions to handle the stored data,
whilst the verifier module takes care of the double verification
in both update agent and bootloader, as described in Sect. III.

B. Support for Different Network Configurations

UpKit is agnostic to the network configuration used to
distribute a new firmware, which ensures generality. To this
end, a FSM coordinates the update process, independently
from the use of a pull or push connection. When using the
former (e.g., a CoAP connection to the server), the update
agent performs requests to the server and passes the received
data to the FSM. Similarly, when using the push approach
(e.g., a smartphone connecting via BLE to the device), the
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Fig. 3: UpKit’s design is highly portable: common modules
and interfaces allow to keep platform-specific code separate,
so to handle heterogeneous hardware platforms and OS.

data received from the callback function is passed to the FSM,
which handles the received data according to the reached state.

The FSM moves across eight states, as shown in Fig. 4:

• Waiting. The update process is idle until a device token
is requested to the FSM. The device token is filled with
a nonce, the device ID, and the current version. The
nonce is stored in the FSM state to be compared with
the received one, granting update freshness. The FSM
returns the device token and moves to the next state.

• Start update. The memory slot containing the oldest
firmware (i.e., the one with the smallest version number)
is erased to make arrangements for the new update image.

• Receive manifest. The FSM accept data until the size of
the manifest is reached and then moves to the next state.

• Verify manifest. The verifier module of the update agent
ensures the manifest validity by checking its digital sig-
natures to grant integrity and authenticity. Furthermore,
it ensures that the other manifest values are correct, e.g.,
by comparing the received device ID and the nonce with
the one of the device token, as well as by ensuring that
the new version is higher than the last one available. If
the manifest is valid, the FSM moves to the next state.

• Receive firmware. The FSM accepts chunks of the
firmware until its size, contained in the manifest, is
received. The FSM then moves to the next state.

• Verify firmware. The digest of the received firmware is
calculated and compared with the digest contained in the
manifest. If the two digests match, the integrity of the
update is granted and the propagation phase is completed.
The device can then reboot to apply the update.

• Cleaning. This state is reached if the verification is
unsuccessful or in case of other errors. All variables in
the FSM are initialized and the used slot invalidated.

The FSM does not directly write data to persistent memory.
Instead, it passes the data to a pipeline module, which trans-
forms it on-the-fly before storing it in memory. This allows to
easily support differential updates without requiring additional
memory slots, as described in Sect. IV-C.
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Fig. 4: UpKit’s finite-state machine (FSM).

C. Support for Efficient Operations

UpKit allows an efficient software update process by sup-
porting differential updates (which reduce the size of the
update to be transferred) as well as by supporting A/B updates
(which reduce the time required for the loading phase).
Differential updates. After receiving the device token (see
Fig. 2), the update server generates a patch containing only
the differences between the firmware’s current version and
the new update image. The resulting patch is smaller in size
compared to a full firmware image and can be transferred in
a more efficient way to the IoT device, hence minimizing the
amount of time during which its radio transceiver is turned
on. Instead of storing the patch in memory before applying
it, in UpKit we implement a pipeline able to apply the patch
on-the-fly, i.e., writing directly the new update on persistent
memory. This avoids the need of an additional memory slot
to store the patch, which would reduce the space available for
the actual application code. Before being applied, the patch
goes through a decompression stage and a patching stage.

We implement these two stages based on the results of
Stolikj et al. [19], who identify the bsdiff and lzss
algorithms as the ones offering the best compromise between
size of the generated patch and memory footprint of the
patching and decompression routine.

UpKit’s pipeline includes four stages, as shown in Fig. 5:
• Decompression stage: the delta generated on the server

needs to be decompressed on the device using lzss, an
improved version of the popular lz77 algorithm with a
small usage of flash memory and RAM [19].

• Patching stage: once the data is decompressed, the output
is a patch that needs to be applied to the latest firmware
in order to generate the newest. The patching stage is im-
plemented using the bspatch routine, which performs
the opposite of the bsdiff algorithm used on the server.

• Buffer stage: input data is stored in a buffer until the latter
is full. Matching the buffer size with the flash sector size
results in faster writes and fewer flash erasures.

• Writer stage: this is the last stage of the pipeline, which
interacts directly with the memory interface to write the
data received from the buffer to persistent memory.

Network 
Data 

Decompression Writer 

BufferPatching 

Memory
Interface 

Fig. 5: Pipeline stages.
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Fig. 6: Memory slots configurations.

Flexible memory slots. In order to support SW updates, the
persistent memory of an IoT device needs to be organized in
slots, each one storing a single update image. The organization
of these slots depends on the type of memory available (i.e.,
one or more flash memories), and on the loading mode of the
bootloader (i.e., on the number of bootable slots available).
In UpKit, slots are managed by the memory module, which
provides portable functions to erase, swap, or override a slot
with another. To support multiple flash memories, several
slots, and different loading modes, UpKit defines two types
of memory slots: bootable slots (B), which contain a directly
executable image, and non-bootable slots (NB), which require
the image to be moved to a bootable slot to be executed. This
distinction allows to easily support different configurations, as
shown in Fig. 6. UpKit supports both static software updates,
where there is only one bootable slot (Fig 6., Configuration B),
as well as A/B updates, where two bootable slots are available,
allowing the bootloader to directly jump to the newest slot
without having to swap the images (Fig 6., Configuration A).

D. Support for Double Verification

To implement verification both in the bootloader and the
update agent, UpKit uses the same verifier module. The
latter handles the security features described in Sect. III,
ensuring that the digital signatures of the firmware digest
and the manifest are valid. Moreover, the verifier module
grants the compatibility of the update image with the device
characteristics, by ensuring the validity of the manifest fields:

• ID: indicates a unique device identifier. It is needed to
grant update freshness and the received update image
must contain the same ID included in the device token.

• Nonce: indicates a unique number that refers to the
firmware request. It is needed to grant update freshness,



and it must match the one included in the device token.
• Old version: indicates the version to which the differential

update has been calculated by the update server;
• Version: each received update image must have a version

strictly higher than the newest one available on the device.
• Size: indicates the size in bytes of the firmware and allows

to block the reception in case it has been exceeded.
• Digest: represents the hash of the firmware and ensures

its integrity once it has been received.
• Link offset: indicates the memory address for which the

firmware has been built to ensure that a firmware is
compatible with a specific slot;

• App ID: a unique identifier indicating the application and
HW platform for which the update has been built.

Compared to the manifest used by existing solutions (e.g.,
mcuboot and mcumgr), UpKit’s manifest adds the first three
fields (i.e., ID, nonce, and old version) as well as the update
server’s signature. These fields allow to grant update freshness
independently from the network configuration (see Sect. III)
and allow to support differential updates (see Sect. IV-C).

V. IMPLEMENTATION

We implement UpKit for a wide range of constrained
IoT hardware platforms (such as Nordic Semiconductors’
nRF52840, Texas Instruments’ CC2650 and CC2538), as well
as operating systems (such as Contiki, RIOT, and Zephyr).
Furthermore, we include the support of two cryptographic
libraries (TinyDTLS, tinycrypt), as well as support for
a hardware security module (HSM) family. We detail next the
implementation of update agent and bootloader for the afore-
mentioned platforms, OS, and cryptographic implementations.

UpKit’s update agent. The update agent requires all the
common modules depicted in Fig. 3. We therefore implement
the four common interfaces according to the employed HW
platform (and its memory interface), cryptographic library
(SW implementation or HW crypto-modules), and network
configuration (push or pull interface). We base the pull inter-
face on the CoAP implementation provided by each OS (i.e.,
Zoap for Zephyr, libcoap for RIOT, and er-coap for
Contiki) and test our pull implementation on the TI CC2650
with Contiki, the TI CC2538 with RIOT, and the Nordic
nRF52840 with Zephyr. For each platform, we have configured
an IEEE 802.15.4 network with a border router exposing a
test server deployed on an IPv6 network. We implement the
push interface on the nRF52840 board with Zephyr, as it
offers complete support for BLE GATT. While also Texas
Instruments provides a BLE stack for the TI CC2650, the
Contiki OS used to test this platform does not fully support
it and we hence leave its implementation as future work.
To test our push implementation, we have developed an iOS
application using the Swift programming language that allows
sending the update to the device using BLE. We have also
packaged the main functions used to interact with the device in
an SDK simplifying the development of new iOS applications.

UpKit’s bootloader. We build UpKit’s bootloader on top

of Zephyr, RIOT, and Contiki. Compared to a bare-metal
implementation, the reliance on an OS increases the size of
the bootloader, but, at the same time, grants a high level
of portability. Among others, the existence of an underlying
OS allows an easy port of the bootloader to all the HW
platforms supported by the OS, without the need to manage
platform initialization code or to support various memory
drivers. Out of the modules presented in Fig. 3, UpKit’s
bootloader only needs access to the memory and the verifier
module. The former relies on the memory interface, which
abstracts the flash memory details to the upper levels. The
API is inspired by the standard POSIX IO functions, allowing
to open and close a memory slot, as well as to read and
write data. To support flash memories and the need of sector
erase before writing, specific open modes have been defined:
READ_ONLY allows to only read the memory, WRITE_ALL

erases all the content of a slot to allow writing continuously,
and SEQUENTIAL_REWRITE automatically erases each new
page encountered. The memory interface also allows assigning
a Linux file to each slot, which gives the ability to work with
devices supporting a file system, as well as to test the library
modules without the need of a simulator. We developed an
implementation for each HW platform, using a device driver
for the TI CC2650 and CC2538, as well as Zephyr’s flash
abstractions for the nRF52840. As the internal memory of
the TI CC2650 is insufficient to store both memory slots, we
use its external flash to store the non-bootable slot. Support
for internal and external memory is granted by a structure of
functions pointers that allows to use custom memory functions
depending on the type of flash used.

The security interface abstracts the security features re-
quired by UpKit, allowing to use different cryptographic
libraries, as well as to exploit cryptographic HW accel-
erators included on the chosen platform. After testing a
number of cryptographic libraries (including, among others,
polarssl, matrixssl, wolfssl, and libtomcrypt),
we have implemented UpKit with TinyDTLS, tinycrypt,
and CryptoAuthLib. These libraries were the ones exhibit-
ing the smallest memory footprint, while supporting ECDSA
signature verification using the SHA-2 and the secp256r1
ECC curve. Note that the TinyDTLS and tinycrypt
implementations perform the verification in software, while
the CryptoAuthLib allows to work with the ATECC508
HSM [39] (Atmel’s CryptoAuthentication). We use the latter
in conjunction with the TI CC2650 platform to safely store
public keys, preventing external actors from modifying them,
as well as to perform signature verification in hardware, which
also reduces the amount of flash required.

VI. EVALUATION

We evaluate UpKit experimentally by analyzing the memory
footprint of its components running on the IoT device, namely
the bootloader and the update agent. In particular, we mea-
sure UpKit’s memory footprint across different OS and HW
platforms, as well as different crypto-libraries (Sect. VI-A).



We then compare UpKit’s memory footprint with state-
of-the-art software update solutions for constrained IoT de-
vices, such as LwM2M and mcumgr as update agent for the
pull and push approach, as well as MCUboot as bootloader
(Sect. VI-B). We finally analyze the time necessary to com-
plete an update when using different UpKit’s configurations
(Sect. VI-C). Note that the evaluations carried out in this
section are obtained by disabling all debugging and logging
features of UpKit and other solutions, in order to ensure a fair
comparison. The same applies to all logging and debugging
features of the operating systems, which have been disabled to
reduce as much as possible the size of the generated firmware.

A. UpKit’s Memory Footprint

We begin our evaluation by comparing the amount of flash
memory and RAM used by UpKit’s bootloader and update
agent for the different implementations discussed in Sect. V.
UpKit’s bootloader. Table I summarizes the memory footprint
of UpKit’s bootloader built with Zephyr, RIOT, and Contiki,
when using different cryptographic libraries. The flash usage
is comparable across different OS when using the same
crypto-library, with the Zephyr build requiring about 15% less
flash memory than the one of other OS. Zephyr, however,
requires roughly 20% more RAM due to its larger run-time
stack. Table I also shows that the UpKit bootloader built with
TinyDTLS requires around 1.10 kB less flash memory than
the one built using tinycrypt, regardless of the employed
OS. We have also evaluated UpKit’s memory footprint when
using Contiki and the CryptoAuthLib library to connect
to a ATECC508 HSM, as discussed in Sect. V. With this
configuration, the bootloader requires only 14078 bytes of
flash memory, i.e., about 10% less flash memory than the boot-
loader built based on Contiki and using TinyDTLS. UpKit’s
bootloader’s code is highly portable: for each platform, approx.
91% of the code is platform-independent. The remaining 9%
of the code is platform-specific and deals with the management
of the flash memory drivers, as well as the interrupt vector
table to store and execute the update image.
UpKit’s update agent. Table II compares the memory foot-
print of UpKit’s update agent when using different OS and
network configurations (i.e., pull or push approach), as well
as TinyDTLS as a cryptographic library. When using a pull
approach based on CoAP, Contiki exhibits the smallest build
for the update agent, both in terms of flash and RAM usage.
In particular, Contiki uses 64% and 17% less flash memory
as well as 73% and 36% less RAM than Zephyr and RIOT,
respectively6. We further evaluate the memory footprint of
UpKit when using a push approach based on our Zephyr
implementation described in Sect. V. This build image makes
use of roughly 82 kB of flash and 21 kB of RAM, much less
than the Zephyr build for the pull approach. Indeed, when

6Table II shows the smallest version of UpKit’s update agent that could be
configured for Zephyr, RIOT, and Contiki. Note that, as discussed in Sect. V,
the different OS use different implementations of the CoAP library (i.e., Zoap,
er-coap, and libcoap), as well as different underlying layers (i.e., 6LoWPAN
or OpenThread), which results in largely different memory footprints.

Operating System Library Flash RAM

Zephyr bootloader TinyDTLS 13040 8180
tinycrypt 14151 8180

RIOT bootloader TinyDTLS 15420 6512
tinycrypt 16552 6512

Contiki bootloader
TinyDTLS 15454 6637
tinycrypt 16546 6637
CryptoAuthLib 14078 6553

TABLE I: Memory footprint of UpKit’s bootloader.

Approach Operating System Flash RAM

Pull (6LoWPAN)
Zephyr 218472 75204
RIOT 95780 31244
Contiki 79445 19934

Push (BLE) Zephyr 81918 21856

TABLE II: Memory footprint of UpKit’s update agent.

(a) Bootloader (b) Pull approach (c) Push approach

Fig. 7: The RAM and flash memory footprint of UpKit is
comparable to or lower than state-of-the-art solutions.

using the pull approach, the full IPv6 stack and the CoAP
library need to be included, whereas only the BLE stack
is required when using the push approach, which results is
a lower memory footprint for the latter. In addition to the
network stack, the pipeline and memory modules require a
significant portion of flash (1632 and 2024 bytes, respectively).
This is mostly due to the differential patcher (bspatch) and
the decompression (lzss) algorithms for the pipeline module,
as well as to the functions to copy and swap two memory slots
for the memory module. The pipeline module also requires a
non-negligible amount of RAM (2137 bytes), due to the space
allocated to the lzss buffer. UpKit’s update agent is highly
portable: in average, only 23.5% of the code is platform-
specific. In contrast to the bootloader, the code of the update
agent must not only manage the flash memory to store the
update image, but needs also to interact with the network stack
to download the update image, which results in additional lines
of code being platform-dependent.

B. Comparison to Existing Solutions

We compare next the memory footprint of UpKit with the
one of state-of-the-art solutions such as LwM2M, mcumgr,
and mcuboot, showing that UpKit always requires less flash
memory, while improving the security and efficiency of the
update process. We perform the comparison using the Zephyr
OS and the nRF52840 platform, since it is the only one that
supports all the aforementioned state-of-the-art solutions.

Fig. 7a shows the comparison between UpKit’s bootloader
and mcuboot. Both have been configured to use the ECDSA
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Fig. 8: Time required to complete a SW update using UpKit.

algorithm (secp256r1 ECC curve and SHA-256 digest algo-
rithm) with the tinycrypt library. Our results show that
the UpKit bootloader requires 1600 and 716 bytes less flash
memory and RAM than mcuboot, respectively.

Fig. 7b compares the memory footprint of UpKit’s update
agent configured for the pull approach with that of LwM2M.
UpKit’s update agent requires 4.8 and 2.4 less kB of flash and
RAM, respectively. Note that the larger memory footprint of
LwM2M is due to its embedded M2M features, which would
allow to transmit also other data between device and server. It
is important, however, to note that UpKit only focuses on the
update process, whilst LwM2M could, in principle, also be
used to expose multiple objects to the server, enabling M2M
communication. Since the focus of this paper lies on the ability
to perform a software update, we disabled the other services
of LwM2M to ensure a fair comparison.

Fig. 7c compares the memory footprint of UpKit’s up-
date agent configured for the push approach with that of
mcumgr. To perform the comparison, we disabled all features
of mcumgr not related to SW updates, such as file system,
logging, and OS management features. Our results show that
UpKit requires 426 bytes less flash and only 1200 bytes
more RAM than mcumgr, despite the addition of numerous
features, such as differential updates and signature validation.

C. UpKit in Action

We compare next the time required by UpKit to complete
the different phases of a SW update using both the pull and
the push approach. We further quantify UpKit’s increased ef-
ficiency thanks to its support for differential and A/B updates.
Push vs. pull approach. We measure the time necessary to
propagate, verify, and load a full-image firmware of 100 kB
using UpKit running on the nRF52840 with Zephyr. Fig. 8a
shows our results and compares the time required to complete
an update when using a push and a pull approach to perform
a full-image update. The push approach takes 61.5 seconds,
7.6 seconds less than the pull approach: this is due to the
size of the image to be swapped (larger for the pull case,
see Table II). Therefore, in the push approach, the number
of sectors to be swapped between the two memory slots is
smaller. Fig. 8a also breaks down the time spent in each
update phase. The propagation phase takes most of the time:
47.7 and 41.7 seconds of the overall time for the push and pull
approach, respectively. The verification phase is executed in

the same way for both push and pull approaches, and accounts
for 1.78% and 1.72% of the total update time, respectively.
Finally, the loading phase accounts for 20.6% and 37.9% of the
total update time for the push and pull approach, respectively.
UpKit allows to reduce the time spent in the most time-
consuming update phases (propagation and loading) by using
differential and A/B updates: we quantify next the benefits
introduced by these features.
Efficiency of differential updates. Fig. 8b shows the impact of
differential updates on the duration of the update process using
the pull approach described above. The figure compares full-
image updates against two different cases of differential up-
dates: an OS version change (e.g., from Zephyr v1.2 to v1.3),
and a change in application functionality (e.g., 1000 bytes of
difference). Fig. 8b shows that the use of differential updates
allows UpKit to reduce the overall update time by up to 66%
and 82% in case of an OS version and application functionality
change, respectively. Note that this time is saved exclusively
in the propagation phase, as loading and verification are not
performed on the patch, but on the entire update image.
Efficiency of A/B updates. Fig. 8c shows that the use of A/B
updates decreases the time required to complete the loading
phase by 92% compared to a static boot. This reduction
derives from the fact that the bootloader can simply load the
new firmware, instead of copying or swapping the slot as
required with static updates. Note that this reduction in time
is independent on the approach used (pull or push), since the
use of A/B updates only affects the loading phase.

VII. RELATED WORK

A large body of work has focused on updating the SW
running on a device: from that of standard computers [40],
to the over-the-air update of smartphones [41], vehicles [42]–
[46], and sensor networks [33]. When it comes to updating
IoT devices, existing solutions are vastly different, as they are
tailored to the requirements and capabilities of each device.

Updating powerful IoT devices. IoT devices running Linux
distributions (e.g., gateway nodes [47], [48]) perform SW up-
dates using three main approaches. Package-based approaches
(e.g., YUM [13] and APT [14]) operate on a file-level, which
minimizes the update size and grants a high flexibility, but may
lead to inconsistencies when only a portion of the necessary
modules is updated successfully [8]. Approaches relying on
Linux containers (e.g., Balena.io [18]) allow updating
an application and all its dependencies atomically, which
represents a good trade-off between the size of an update
and the update’s consistency. Finally, approaches based on a
full-image update (e.g., swupdate [15], Mender.io [16],
and RAUC [17]) maximize consistency by atomically updating
the entire firmware, at the cost of a larger size and lower flex-
ibility. All the aforementioned solutions require a significant
amount of memory (tens of Megabytes for both RAM and
ROM), which makes it impossible to reuse or even adapt such
approaches for constrained IoT devices. Furthermore, the latter
typically do not support containers and their OS are typically



not based on a file system, which also makes package-based
and container-based approaches not applicable.

Updating constrained IoT devices. For constrained IoT de-
vices, a few vertical solutions exist, such as Nordic’s DFU [25]
and Texas Instruments’ OAD ecosystem [26]. These solutions
only work with Nordic and Texas Instruments hardware or on
platforms supported by FreeRTOS, and are hence not portable.
Similarly, other custom solutions have been specifically tai-
lored to a OS or HW platform, such as Mark Solters’s OTA
project [49] (focusing on Contiki and the TI CC2650 only),
as well as Sparrow [27] (focusing only on Contiki and the
Zolertia Zoul Re-Mote). Considering the plethora of OSes
targeting constrained devices [20], it is neither feasible nor
advisable that each OS maintains its own solution. This indeed
results in OS without an update system (e.g., NuttX [50]) or
with an incomplete one, e.g., Sparrow [27] (used by Contiki),
and Deluge [33] (used by TinyOS) only verify the CRC to
ensure integrity, which does not protect against tampering.
UpKit solves this problem by providing an open-source,
portable, and lightweight solution able to securely perform
SW updates across different OS and HW platforms.

Portable solutions for constrained devices. LwM2M [28],
mcumgr [29], and mcuboot [36] are portable solutions that
can be combined to build an update system for constrained IoT
devices. LwM2M is a M2M standard [51] that enables a device
to export a firmware object to perform SW updates. Although
it is well supported on many OS, (e.g., Zephyr and Contiki),
LwM2M only performs the propagation of an update, relying
on transport layer security to ensure update freshness, and
on the bootloader to verify integrity and authenticity. The
same limitations apply to mcumgr [29], a device management
library supported on mynewt and Zephyr that allows down-
loading an update over BLE or a serial shell. In contrast, UpKit
performs a double verification, which grants update freshness
and allows to reject invalid SW earlier, thus also prevent-
ing unnecessary radio communication and unwanted reboots.
Finally, mcuboot is a portable bootloader for constrained
devices that is compatible with different OS (e.g., Zephyr
and RIOT) and that works in combination with mcumgr or
LwM2M. However, mcuboot does not provide any mitigation
against vulnerabilities of the bootloader. In UpKit, instead, a
double verification process rejects invalid updates already on
the update agent. As the latter can be seamlessly updated, one
can also protect a vulnerable bootloader by rejecting firmwares
that are explicitly crafted to exploit well-known weaknesses of
the bootloader’s verification procedure. UpKit also makes use
of a double signature to (i) prevent that compromising a single
signature can lead to the generation of a valid update, and
(ii) to ensure update freshness, leaving to the update server’s
signature the role of signing the update for each device request.
A similar approach has been proposed by TUF [40], an update
framework for more powerful devices often used as reference
for package-based SW update systems. Other approaches grant
update freshness by making use of a timestamp in the manifest
to indicate the expiration time of the update image [10]. This,

however, requires a reliable time source on each IoT device
and makes an update valid until a fixed expiration time, even if
new update images are available meanwhile. Another category
of solutions to update constrained IoT devices in a portable
way is provided by Cloud providers. For example, Microsoft
Azure [52] offers a library suitable to connect IoT devices
to the provider’s SW update service. However, whilst these
solutions are suitable for the same device classes targeted by
UpKit, they require each IoT device to embed a real-time
clock or to have the ability to connect to an NTP server for
establishing the TLS connection and generating the secure
authentication token [53]. In contrast, UpKit does neither
require additional HW (which would increase the device cost)
nor requires the use of NTP servers (which would expose the
system to security vulnerabilities, as discussed in Sect. III).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented UpKit, an open-source,
portable, and lightweight software update framework for con-
strained IoT devices. UpKit addresses the architectural limi-
tations of existing solutions and enables the verification of a
new firmware also on the update agent. This allows to increase
the security of the update process, to guarantee the freshness
of a new firmware, and to reject invalid software at an early
stage, hence preventing an unnecessary reboot of the device.

We kept UpKit’s design modular and agnostic to how a new
firmware image is distributed, as well as enriched the frame-
work with features such as support for differential updates
and flexible memory slots. This makes UpKit easily portable,
efficient, and suitable for constrained IoT devices. After de-
veloping an implementation for three popular OS and off-the-
shelf hardware platforms, we have evaluated UpKit’s memory
footprint and compared it with that of state-of-the-art solutions.

Future work includes the port of UpKit to additional OS and
the support of the upcoming IETF SUIT standard [10], in order
to allow inter-operation with a larger range of IoT solutions.
We further plan to add a decryption stage in UpKit’s pipeline
module, in order to make confidentiality independent from the
employed transport security layer.
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