
Harmony: Saving Concurrent Transmissions
from Harsh RF Interference

Xiaoyuan Ma∗†, Peilin Zhang‡, Ye Liu§, Carlo Alberto Boano¶, Hyung-Sin Kim‖,
Jianming Wei∗, � Jun Huang∗

∗Shanghai Advanced Research Institute, CAS, China †University of Chinese Academy of Sciences, China
‡Carl von Ossietzky University of Oldenburg, Germany §Nanjing Agricultural University, China

¶Graz University of Technology, Austria ‖Google Inc., USA
{maxy, wjm, huangj}@sari.ac.cn, peilin.zhang@informatik.uni-oldenburg.de,

yeliu@njau.edu.cn, cboano@tugraz.at, hyungkim@google.com

Abstract—The increasing congestion of the RF spectrum is a
key challenge for low-power wireless networks using concurrent
transmissions. The presence of radio interference can indeed
undermine their dependability, as they rely on a tight synchro-
nization and incur a significant overhead to overcome packet
loss. In this paper, we present Harmony, a new data collection
protocol that exploits the benefits of concurrent transmissions
and embeds techniques to ensure a reliable and timely packet
delivery despite highly congested channels. Such techniques
include, among others, a data freezing mechanism that allows
to successfully deliver data in a partitioned network as well
as the use of network coding to shorten the length of packets
and increase the robustness to unreliable links. Harmony also
introduces a distributed interference detection scheme that allows
each node to activate various interference mitigation techniques
only when strictly necessary, avoiding unnecessary energy ex-
penditures while finding a good balance between reliability and
timeliness. An experimental evaluation on real-world testbeds
shows that Harmony outperforms state-of-the-art protocols in
the presence of harsh Wi-Fi interference, with up to 50% higher
delivery rates and significantly shorter end-to-end latencies, even
when transmitting large packets.

I. INTRODUCTION

Low-power wireless networks are a fundamental building
block of the Internet of Things (IoT) and empower valu-
able applications in various fields [1]–[5]. Many of these
applications are mission-critical and pose strict dependability
requirements on network performance. As a result, low-power
wireless networks are often expected to deliver information
reliably through multi-hop links within bounded delays, in
order to interact effectively with the physical world. These
requirements are especially stringent in the context of cyber-
physical systems (CPS), where sensor data and actuation
commands must be delivered reliably and timely, while the
availability of battery-powered devices needs to be maximized.

Such need for dependable communications has challenged
the low-power wireless community in the past decade. Whilst
conventional protocols are built on the assumption that packet
collisions should be avoided, a new wave of solutions based
on the concept of concurrent transmissions (CT) disputes this
view and represents a major technical breakthrough in the
development of dependable multi-hop wireless protocols [6].

This work was supported partially by the National Key R&D Program of
China (No. 2017YFE0119300), the National Natural Science Foundation of
China (No. 61902188), and the German Research Training Group DFG-GRK
1765: System Correctness under Adverse Conditions (SCARE). This work
was done when Hyung-Sin Kim was at UC Berkeley.

When using CT, a node can successfully receive a packet
purposely transmitted by multiple nodes at the same time on
the same carrier frequency, thanks to the capture effect (with
timing errors < 160 µs) and constructive interference (with
timing errors < 0.5 µs) [7], [8]. Hence, CT allow low-power
wireless devices to receive a packet despite a collision, which
enables the creation of dependable communication protocols.

Indeed, by having nodes re-broadcast a packet immediately,
one can quickly flood information throughout a network with-
out wasting time and energy for routing, scheduling, and other
collision avoidance mechanisms. Furthermore, CT allow to use
many (if not all) nodes in the network and exploit the spatial
diversity to maximize the number of packets successfully
delivered despite the presence of unreliable links.

A large number of studies have recognized the potential
of CT and proposed low-power wireless protocols exploiting
the inherent spatial and temporal redundancy of CT-based
flooding to increase the robustness and efficiency of data
collection and dissemination [8]–[20]. These works have also
shown how to improve the performance of CT-based protocols
by using different flooding rounds [8]–[10], retransmission
mechanisms [11]–[13], as well as by introducing network
coding [14]–[17] and channel hopping techniques [18]–[20].
Challenges. Despite the better performance and versatility
compared to traditional schemes, there are major concerns
about the practicality of CT-based solutions in real-world
settings. Specifically, all the advantages of CT rely on a tight,
network-wide time synchronization, i.e., all nodes need to be
precisely synchronized to a single host (also called initiator).
As soon as nodes start losing synchronization to the host, the
performance of CT-based networks degrades significantly [20].

Whilst maintaining a tight synchronization for an extended
period of time is a challenge in itself [21], it is extremely
difficult in the presence of radio interference. Indeed, RF
interference often leads to a network partition, i.e., to the
disconnection of a fraction of nodes from the rest of the
network, which makes it hard to keep nodes synchronized.

The presence of radio interference in the surroundings of
a low-power wireless network also results in an increased
packet loss, end-to-end delay, and energy expenditure [22].
This can be a severe problem in real-world settings, due to
the increasing proliferation of wireless devices and consequent
congestion of the RF spectrum. For example, the ubiquitous-
ness of Wi-Fi appliances is a major threat to co-located low-

power wireless networks making use of the 2.4 GHz ISM
band. Wi-Fi devices, indeed, make use of high data rates (up
to 450 Mbps) and large bandwidth channels (20–40 MHz). As
a result, the presence of several Wi-Fi networks can lead to
a complete congestion of the frequencies used by co-located
IEEE 802.15.4 devices [23], which cannot be fully mitigated
by CT approaches based only on channel hopping [18]–[20].

To date, the research community did not focus on the design
of a CT-based data collection protocol that can achieve a
dependable performance in the presence of harsh RF interfer-
ence, i.e., when all available channels are highly congested.

Closing this gap requires the design of a CT solution that
embeds (i) techniques ensuring a reliable and timely packet
delivery despite highly congested channels, as well as (ii) the
ability to keep time synchronization even when the network
is temporarily partitioned. Such a solution should also be
able to (iii) sustain a balanced performance over time, i.e.,
enable a reliable and timely data collection without incurring
unnecessary energy expenditures. Doing so requires (iv) in-
terference detection schemes allowing each node to quickly
quantify the interference in the whole network and decide the
corresponding mitigation techniques. This way, nodes can use
only the technique(s) necessary to mitigate the interference
present at a given point in time, maximizing energy efficiency.
Our approach. In this paper we design Harmony, a data
collection protocol based on CT that embeds all these features
and sustains a dependable performance despite harsh RF
interference. Harmony divides time into epochs and each
epoch contains multiple negotiation-and-action phases. These
are used to differentiate the behaviour of each node in the
network over time. During the negotiation, all nodes share
their current status (e.g., have data to transmit, data has been
received successfully) and determine their next actions (e.g.,
flood a packet, forward incoming packets, or enter sleep mode)
based on the shared information and simple local rules.

To avoid congested frequencies, Harmony makes use of
channel hopping. In particular, it embeds a scan-and-lock
mechanism inspired from [20], where each node scans the
available channels before each negotiation/action and locks to
the least noisy one. To increase the reliability of CT even
further, Harmony can make use of network coding to shorten
the length of packets and overcome the packet loss caused
by interference. Harmony also embeds a novel data freezing
mechanism enabling a successful data delivery in a partitioned
network. To this end, relay nodes can act as source and initiate
the flooding of packets received in previous rounds.

The use of these techniques causes a higher energy expen-
diture in order to deliver packets as reliably and quickly as
possible despite interference. Hence, using these techniques
all the time (e.g., when interference is absent) would lead to
a major energy waste and may even be counter-productive,
e.g., cause longer delays. To trigger the usage of one or
more features only when strictly necessary, Harmony uses
a novel interference detection scheme named SNI. The latter
allows each node to build a bitmap capturing the interference
throughout the whole network during the negotiation. This

bitmap is used to cope with the dynamicity of interference
and balance reliability, timeliness, and efficiency at runtime.

To maintain time synchronization in the presence of inter-
ference, Harmony makes use of one or more synchronization
agents. When a node loses connectivity with the host, i.e., the
network is temporarily partitioned, it can locally synchronize
with nearby agents and operate normally, rather than impa-
tiently triggering a re-joining procedure [20]. This allows some
nodes to deliver packets for an extended time, during which
synchronization can be restored once interference has ceased.

We implement Harmony on off-the-shelf IEEE 802.15.4
nodes using Contiki [24] and evaluate its performance on
two popular testbeds in the presence of artificial RF inter-
ference generated using JamLab [25] and JamLab-NG [23].
In particular, we first show that the interference mitigation
techniques embedded in Harmony are effective and enable a
dependable data collection even in the presence of harsh Wi-Fi
interference. We then compare the performance of Harmony to
state-of-the-art CT-based protocols including Mixer [17] and
CrystalCH

ND [19]. Our results show that Harmony outperforms
the state-of-the-art in the presence of interference, and that it
sustains a high reliability even when transmitting large packets.
Contributions. After describing the key challenges in achiev-
ing a dependable data collection under harsh RF interference
in Sect. II, this paper makes the following contributions:

• We design and implement Harmony, a novel CT-based
data collection protocol that sustains a dependable per-
formance even in harsh RF environments (Sect. III).

• We illustrate Harmony’s basic components, introducing
a novel negotiation-and-action phase to schedule each
node’s behaviour in a distributed manner (Sect. III-A).

• We enrich Harmony with two techniques increasing the
chances of successful packet delivery in harsh RF envi-
ronments. These techniques are based on network coding
and a novel data freezing mechanism ensuring a success-
ful data delivery in a partitioned network (Sect. III-B).

• We present a network-wide interference detection scheme
helping Harmony to sustain a good balance between
reliability, timeliness, and energy efficiency (Sect. III-C).

• We extensively evaluate the performance of Harmony on
popular testbeds under artificial RF interference, showing
significant performance improvements over state-of-the-
art CT-based protocols (Sect. IV).

After describing related work in Sect. V, we conclude our
paper in Sect. VI, along with a discussion on future work.

II. TOWARDS A DEPENDABLE DATA COLLECTION
IN HARSH RF ENVIRONMENTS

As discussed in Sect. I, the presence of radio interference in
the surroundings of a network undermines the dependability of
CT schemes, as they (i) rely on a tight, µs-level synchroniza-
tion, and (ii) incur a significant energy overhead to counteract
packet loss. Because of the increasing congestion of the ISM
bands, we seek to design a protocol that fully exploits the
potential offered by CT, while being able to withstand harsh
interference with reasonably balanced performance over time.

We discuss next the challenges in sustaining such a depend-
able and balanced performance under harsh RF interference.
We further highlight which mechanisms should be embedded
in the design of an interference-resilient CT-based protocol.
Using multiple channels. When it comes to interference-
resilient CT-based solutions, the community has mostly fo-
cused on the use of channel hopping techniques [18], [19],
[26]. Some solutions embed the use of multiple channels
within multiple CT-slots [26], whereas others make use of
the same channel during a flooding round and change channel
across subsequent floods [19]1. Whilst both approaches ex-
plore frequency diversity, they do not allow to deliver a packet
if interference persists on a given channel for an extended
time. Indeed, if no potential recipient receives the packet, the
information does not propagate and the flooding round ends.

Approaches making use of back-to-back transmissions [18]
mitigate this problem, but require nodes to keep sending
information for several CT-slots, and to remain accurately syn-
chronized with the rest of the network to channel-hop (which
is intrinsically hard and highly inefficient under interference).

To avoid the need of hopping synchronously and to min-
imize energy consumption, Harmony uses a scan-and-lock
mechanism, where information is sent back-to-back over seve-
ral frequencies, but where each node listens to only one chan-
nel rather than actively hopping every CT-slot. In particular,
each node scans all available channels and locks to the least
noisy one, as detailed in Sect. III-B. By doing so, the scan-and-
lock mechanism avoids that nodes listen to congested channels
and maximizes the chances that a node receives a message
without a tight synchronization to the host, as packets are sent
back-to-back on multiple frequencies.
Correctly defining node behaviour. In order to efficiently
orchestrate the data collection in the network, nodes need to
be aware of which packets have been correctly received by the
sink and of which source nodes have data to send. This way,
when all packets have been delivered correctly, nodes can turn
off their radio and save energy. Similarly, as soon as a source
node has a new packet to send, all relay nodes as well as the
sink should wake up and be ready to receive or forward data.
If several source nodes need to send a packet at the same time,
they should do so using different slots to avoid collisions.

To this end, protocols like Crystal [10] make use of flooding
rounds to acknowledge the reception of messages and inform
source nodes whether re-transmissions are needed. However,
if relay nodes do not receive packets due to the presence of
interference, they assume no data needs to be forwarded and
turn off their radio, which leads to an erroneous behaviour
of the nodes in the network, increases end-to-end delays, and
even incurs a packet loss.

In order to ensure a robust negotiation even under heavy
interference, Harmony makes use of negotiation-and-action
phases where all nodes reliably share their current status

1We refer to CT-slot as the concurrent transmission of a message to
multiple receivers using Glossy [7]. A flooding round is composed of several
consecutive CT-slots used to propagate (flood) information across the network.

N

S

1 2

3

4
5

D

Flooding round 1

1
1

2

3

Packet has propagated through N

hops in the current flooding round
Node initiating

the flood

Node listening

(and relaying)

S

1 2

3

4
5

D

Flooding round 2

1
1

S

1 2

3

4
5

D

Flooding round 1

1
1

2

3

S

1 2

3

4
5

D

Flooding round 2

0
0

0
1

2

0000

(a) Existing approaches (b) Approach in Harmony

0

Fig. 1: Interference may partition the network, preventing the
completion of a flood and leading to de-synchronization (a). In
Harmony, additional nodes are allowed to transmit messages
to maintain synchronization or to resume a previous flood (b).

and determine their next actions, as described in Sect. III-A.
Instead of considering the absence of packets as the condition
to sleep as in [10], Harmony’s negotiation is explicit, meaning
that a node turns off its radio only after successfully receiving
a complete picture of the status of other nodes in the network.

Dealing with network partitions. The presence of persistent
interference may be deleterious for the performance of CT-
based protocols, as it may lead to network partitions. Espe-
cially the presence of wideband interferers can be critical:
for example, when two or three co-located Wi-Fi devices
are operating on orthogonal frequencies, all IEEE 802.15.4
channels can experience a significant packet loss [23]. This
makes channel hopping mechanisms ineffective and makes
it hard to (i) deliver messages correctly and (ii) keep nodes
synchronized. When nodes lose synchronization to the host,
they are unable to wake up synchronously and receive packets,
which significantly degrades the network performance.

Fig. 1(a) exemplifies the problem by depicting a network
in which a source node S (also acting as the host) attempts
to initiate a flood towards a sink node D. If a long burst of
interference persistently affects the reception on node 5, the
information cannot be propagated to the sink by the end of
the first flooding round. In the following round (which may
make use of a different channel), the information gets only
propagated until nodes 1 and 2, as this time node 3 is affected
by harsh RF interference. As a result, node 5 and the sink
D do not receive a message in either rounds: if this situation
persists, the nodes may lose synchronization from the host and
the information may remain undelivered for a long time.

Unfortunately, the scenario shown in Fig. 1(a) is rather com-
mon in existing CT-based solutions. An interference-resilient
protocol, instead, would behave as depicted in Fig. 1(b). It
allows one or more nodes (nodes 1 to 4 in this case) to
initiate the flood besides S and/or act as reference clocks
temporarily [20]. By doing so, the information gets propagated
to the sink node despite the interference affecting node 3,
and node 5 as well as D can remain synchronized. Harmony
achieves exactly this by making use of an agent-initiated
negotiation (seeing Sect. III-A) and a data freezing (seeing

Sect. III-B) technique that resumes flooding and improves
reliability when the network is partitioned.
Avoiding long packets. The probability that a packet is hit
by interference increases with the length of the message, as
this is proportional to the time necessary to transmit a packet
over the air [23]. For example, transmitting an IEEE 802.15.4-
compliant packet with a 64-Byte payload requires 2.3 ms,
whereas a packet with 8-Byte payload only takes 512 µs.

In principle, one could learn the characteristics of interfer-
ence and wait for a sufficiently long white space to transmit
information [27], [28]. In congested channels and in the
presence of highly-dynamic interference, however, it may be
hard to find and align to a sufficiently long white space.

Fragmenting larger packets into smaller chunks allows to
maximize the probability of successful reception, at the price
of an additional overhead. In Harmony, inspired by recent
work making use of network coding to increase the effective
capacity of a CT-based network [14]–[17], we divide longer
packets into blocks and send a random combination of these
blocks using LT codes [29]. Besides avoiding the transmission
of longer packets, the use of coded packet in Harmony also
helps to increase the chances of successful delivery over
unreliable channels, as described in Sect. III-B.
Detecting interference in the network. The ability to detect
the presence (and quantify the severity) of interference on a
network is a fundamental stepping stone for the selection of
an appropriate mitigation strategy at runtime [30].

CrystalCH
ND [19] is one of the few CT-based protocols that

adaptively changes its behaviour at runtime when detecting
abnormally high interference. As mentioned previously, the
basic Crystal protocol regards the absence of packets as a sign
to turn off the radio and enter sleep mode. This is often a
problem in the presence of interference, as source nodes may
actually be trying to send data that is lost while being flooded
through the network. To mitigate the problem, CrystalCH

ND

extends Crystal by letting each node perform a clear channel
assessment (CCA) periodically and keep the radio active when
significant noise is detected (i.e., when a large number of
CCA checks detect a busy channel). This way, as soon as
interference clears, nodes are still active and can forward the
pending messages towards the intended destination.

This approach is not ideal, as it assumes that the noise
measured by a node is representative of the one experienced by
other nodes in the network. In real-world scenarios, however,
the interference distribution varies across space and may only
affect a fraction of the nodes. As a result, a node may remain
awake because it measures a high interference in its surround-
ings, even though no message was actually transmitted, which
results in an unnecessary energy waste.

A much better approach would inform a node about the
presence and distribution of interference across the whole
network, such that the node can autonomously decide the
corresponding interference mitigation technique. For example,
in the network shown in Fig. 1, if node S needs to send a
message to D and is informed that there may be a strong
interference nearby nodes 3 and 5, it can use network coding

Negotiation

Actions

Time

Neg 1 2 Neg 1 2 Neg 1 2 Neg 1 2 Neg 1 2

Epoch

Negotiation-

and-action

phase

TxTxRx TxRx Tx TxTx

TxRx Tx TxRx TxTx Tx

Tx TxRx Tx Tx Tx

RxTx Tx TxTxTxRx Tx

TxRx TxTxRx Tx Tx Tx

TxTxRx Tx Tx Tx

Tx TxTx Tx Tx

Tx

Tx

Tx

CT-slotChannel

scanning

X Transmit/Receive Tx Transmit after timeout Overhear

Channel 1 Channel 2 Channel 3

S

1

2

3

4

5

D

Action

N
o
d
e
s
 i
n
 t
h
e
 n

e
tw

o
rk

Radio off

Neg

X Xth action

Host-initiated negotiation Neg Agent-initiated negotiation

Channel scanning

Fig. 2: Overview of Harmony’s design: time is split in epochs,
during which several negotiation-and-action phases take place.

to fragment information or send the same message twice to
maximize the chances of a successful and timely delivery.

In Harmony, we design a mechanism called SNI that
allows each node to build a bitmap capturing the interference
distribution across the network. This way, a node can grasp the
severity of the congestion and use more (or less) aggressive
schemes to deliver packets. As shown in Sect. III-C, the SNI
allows nodes to autonomously decide which interference miti-
gation features to enable and achieve a balanced performance.

III. HARMONY : DESIGN AND IMPLEMENTATION

We describe next the design and implementation of
Harmony in detail. We first provide an overview of the pro-
tocol and its basic components (Sect. III-A). We then present
several mechanisms that make Harmony’s transmissions robust
to harsh RF interference (Sect. III-B) and describe how to
activate them in order to achieve a good balance between
reliability, timeliness, and energy efficiency (Sect. III-C). We
finally illustrate how we implemented Harmony on top of the
Contiki OS on a popular IEEE 802.15.4 platform (Sect. III-D).

A. Protocol Overview and Basic Components

Harmony is a CT-based data collection protocol in which
the nodes in the network can take over three roles: source
(generating messages), relay (forwarding messages), and sink
(collecting messages). In our implementation we assume that
there is only one sink in the network. One of the nodes in the
network also acts as a host, i.e., as reference clock.

Fig. 2 sketches the high-level design of Harmony: time is
split in epochs, during which a number γ of negotiation-and-
action phases take place (γ = 4 in this illustration).
Negotiation-and-action phase. Each of these phases consists
of one negotiation and multiple actions. A negotiation consists

Radio off

Neg

X Xth action

Host-initiated negotiation

TimeNeg 1 2 Neg 1 2 Neg 1 2 Neg 1 2

S1

R1

R2

R3

R4
S2

D

S1

R1

R2

R3

R4
S2

D

S1

R1

R2

R3

R4
S2

D

S1

R1

R2

R3

R4
S2

D

SleepingListening / forwardingInitiating TX at the xth action

S1

R1

R2

R3

R4
S2

D

(+) = use network coding; (*) = use data freezing;

S1: send S1: forward S1: send S1: forward S1: send (+) S1: send (+)

S2: forward S2: send S2: send S2: forward S2: forward S2: forward

R1: forward R1: forward R1: forward (*) R1: send (*) R1: send (*) R1: send (*)

R2: forward R2: forward R2: forward (*) R2: send (*) R2: send (*) R2: send (*)

R3: forward R3: forward R3: forward (*) R3: forward (*) R3: forward R3: forward

R4: forward R4: forward R4: forward R4: forward R4: forward R4: forward

D: receive D: receive D: receive D: receive D: receive D: receive

Neg Agent-initiated negotiation

Channel scanning

1

2 1

2
2 1, 2

x

1a c c c

db

1, 2

1, 2

Ne

Fig. 3: The agent-initiated negotiation, together with the use of
network coding and data freezing techniques, allows Harmony
to reliably deliver packets despite network partitions.

of a many-to-all/all-to-all data sharing session during which
the source nodes indicate whether they have data to send
and the sink node acknowledges the successful reception of
packets. Source nodes also share whether they have nothing
to send, i.e., in normal conditions, nodes always receive infor-
mation from every source node in the network. Note that the
all-to-all data sharing utilizes CT and in-network processing
together [8], completed within 80 ms in our implementation.

Therefore, after a negotiation, all the nodes in the network
know how they should act, i.e., whether they should remain
awake to forward packets, (re-)transmit information, or turn off
their radio for the following θ actions (θ = 2 in Fig. 2) of a
pre-defined duration. Each action is a CT flooding round, long
enough to forward information from one source to the sink by
using CT flooding2. In case no source node has data to send,
all nodes enter low-power mode until the next negotiation.
Agent-initiated negotiation. Harmony supports two types of
negotiation: host-initiated and agent-initiated, marked in Fig. 2
as green and orange, respectively. During the agent-initiated
negotiation, one or more synchronization agents are allowed
to initiate a flood besides the host and pretend to be reference
clocks. As highlighted in Sect. II, this allows nodes in the
network to maintain (local) synchronization to at least one of
the synchronization agents despite network partitions.

Fig. 3 illustrates this in more detail by showing the ex-
emplary behaviour of a network with two source nodes
(S1 and S2, with the former acting as a host), a sink node
D, and four relay nodes (R1 to R4) during an epoch with
γ = 4 negotiation-and-action phases. Both S1 and S2 have
two packets to send during this epoch. The first negotiation

2The action in which a source node transmits information changes after
every negotiation and can be computed locally based on the number of actions
θ and the number of the current negotiation, as detailed in Sect. III-D.

is initiated by the host (S1): as the network is interference-
free, at the end of the negotiation all nodes are aware that S1

and S2 have data to send. Hence they will behave accordingly
during the following two actions: S1 will send packet a during
the first action, whereas S2 will transmit packet b during the
second one; all other nodes will forward data to D.

The second negotiation is agent-initiated, i.e., it is initiated
by the host as well as several other synchronization agents (R2

and S2 in this example). During this negotiation, a strong inter-
ference is present in the surroundings of node R3, blocking all
its communications. Even though interference is partitioning
the network, the nodes can maintain synchronization thanks to
the synchronization agents and can decide locally on a series of
actions. In particular, node S2 can schedule the transmission of
packet d to the sink D, which receives the packet successfully.
Network-wide interference estimation. After every negotia-
tion (both host-initiated and agent-initiated), the nodes derive
information about the presence of interference throughout the
network. As every source node and the sink share their status,
all nodes can infer the presence of interference through the
network by analysing whether some of the messages from
these nodes were not received during the negotiation.

This interference detection mechanism, named SNI (sensing
network-level interference) and detailed in Sect. III-C, is used
by every node to decide whether additional features should
be activated in an attempt to sustain a more reliable delivery
under interference. Such features, described in Sect. III-B,
include the transmission of coded packets and a data freezing
mechanism resuming flooding in a partitioned network.

In the example shown in Fig. 3, after the second negotiation,
S1, R1, and R2 can derive that the network is partitioned, as
they do not receive any information from S2 and D; R3 does
not receive any packet due to the interference and infers it
is isolated from the network; nodes S2 and R4 infer that the
network is partitioned, but that they have a reliable path to D.

B. Ensuring Reliable Delivery in Harsh RF Environments

Based on the SNI, nodes can decide whether activating some
of the features embedded in Harmony that help increasing the
reliability under harsh RF interference.
Data freezing. In Fig. 3, after the second negotiation, nodes
R1, R2, and R3 know that there is interference on the path
towards D and that S1 has data to send. They can hence
decide to enable Harmony’s data freezing (DF) mechanism,
during which relay nodes can initiate an action with the packet
that was received during previous actions. In this example,
during the first action following the second negotiation, node
S1 transmits packet c towards D. Because of the persistent
interference on R3, this message will only be received by R1

and R2. These two nodes, who activated DF, will store c and
attempt its transmission during the next actions, unless the
sink acknowledges its reception.

During the third negotiation, a strong interference is affect-
ing nodes R1 and R2, which do not receive messages from
other nodes and infer that strong interference is present nearby.
Therefore, they keep the DF mechanism activated and initiate

Original Packet Block 1 Block 2 Block 3 Block 4

Combinations Comb. array C[i] Comb. array index

1st action

2nd action

1st action

2nd action

Phase: p

Phase: p+1

1 3

1 4

2 3

1 3 4

C[0] = 00000101b

C[1] = 00001001b

C[2] = 00000110b

C[3] = 00001101b

((p * θ) + (1 – 1)) mod L

((p * θ) + (2 – 1)) mod L

(((p+1) * θ) + (1 – 1)) mod L

(((p+1) * θ) + (2 – 1)) mod L

...
Fig. 4: Harmony can use LT codes to shorten the packet length
and increase the robustness of transmissions to interference.

the flood of packet c in the following two actions, during which
the message will successfully reach D. As Harmony appends
a sequence number to all outgoing messages (see Sect. III-D),
the sink is able to filter out the duplicated message.

Nodes using DF store a packet for at most pdf negotiation-
and-action phases, with pdf being a parameter configurable at
compile time (pdf = 2 in our implementation). This way, all
nodes using DF will forget a packet simultaneously.
Network coding. In Harmony, any node can use Luby Trans-
form (LT) codes [29] to shorten the packet length and increase
the robustness of transmissions to interference. Specifically, a
packet P with a length of l Bytes is divided into B blocks of
dl/Be Bytes each, i.e., P = {x1, x2, x3, ..., xB}. A different
combination of these blocks is sent by a node in successive
actions based on a pre-defined combination array C of length
L, as illustrated in Fig. 4.

To reduce the overhead, Harmony does not add inside every
packet the combination array embedding the information of
which blocks are being carried. Instead, it computes this infor-
mation from the sequence number of the current negotiation-
and-action phase p, the number of actions in each phase θ,
and the current action’s number, as shown in Fig. 4. The use
of agent-based negotiation ensures that nodes always know p
(even when a network is partitioned) and decode the original
packet without the need of extra information. In the Fig. 3
example, after the third negotiation, S1 notices that c was not
acknowledged by D for the second time in a row, and hence
decides to use network coding during the following actions.
Scan-and-lock. To make an efficient use of channel hopping,
Harmony adopts a scan-and-lock mechanism, as discussed in
Sect. II. In this scheme, inspired from [20], each node scans the
available channels before each negotiation/action, and locks to
the least noisy one, as illustrated in the bottom of Fig. 2. A
node first scans the received signal strength (RSS) over the set
of channels used (three in this example). It then picks the least
noisy one (i.e., the one with the lowest RSS) and listens to
only this frequency. When a node needs to initiate the flood or
to relay a message, it transmits packets back-to-back across all
given channels: this way all other nodes can receive the packets
opportunistically. To maximize the reception of packets under
interference, nodes can trigger a re-transmissions in case no
data has been received within a given number of CT-slots.

C. Ensuring Balanced Performance
The data freezing and the network coding features are only

effective under interference. If the network is interference-free,
these approaches may increase energy consumption, commu-
nication latency, or even reduce the reliability. To activate them

S1 S2 D S1 S2 D S1 S2 D S1 S2 D S1 S2 D

S1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0

S2 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0

R1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0

R2 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0

R3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0

R4 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0

D 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1

S1

R1
R2

R3

R4

S2

D

S1

R1
R2

R3

R4

S2

D

Scenario 1

S1

R1
R2

R3

R4

S2

D

S1

R1
R2

R3

R4

S2

D

Scenario 2 Scenario 3 Scenario 4

S1

R1
R2

R3

R4

S2

D

Scenario 5

Fig. 5: Harmony’s SNI mechanism allows nodes to identify the
presence and severity of interference throughout a network.

only when strictly necessary, Harmony makes use of the SNI
mechanism to get a picture of the connectivity in the network.

The SNI mechanism works as follows: at the end of every
negotiation, nodes compute a bitmap similar to the one shown
in Fig. 5. The bitmap is built by gathering the information
collected during the negotiation from every source node in the
network as well as the sink. As discussed in Sect. III-D, the
packets exchanged during the negotiation contain a field where
each non-relay node adds information. The bitmap is built by
marking with “1” each non-relay node whose information has
been added to this packet. Thus, a node is able to infer the
connectivity with the sink and with other source nodes, as well
as the severity of network partitioning.

Fig. 5 illustrates how the bitmap is built by every node
in the network depicted at the bottom. Scenarios 1 and 2
correspond to the second and third negotiations described in
Fig. 3, respectively. In scenario 1, nodes S1, R1, R2, and R3

realize about the network partition, whereas in scenario 2, node
R3 realizes that it has a connection to the sink (but not to S1).

Scenarios 3 and 4 show how the SNI mechanism allows to
also understand the severity of the interference in the network.
In these scenarios, some of the relay nodes are affected by
interference, but there are alternative paths allowing the sink
and each source node to exchange information. Thanks to the
SNI, these nodes know that they do not need to enable DF or
network coding, hence preserving their energy budget.

By exploiting the SNI information after every negotiation,
Harmony enables and disables interference mitigation strate-
gies only when strictly necessary, achieving a balanced perfor-
mance between reliability, timeliness, and energy efficiency, as
shown by the evaluation results presented in Sect. IV.
D. Implementation

We implement Harmony using the popular Contiki operating
system [24], on top of the off-the-shelf TelosB platform [31].

The implementation consists of two modules: a network
and an application module. The network module embeds the
primitives used for the actions (flooding based on the scan-and-
lock mechanism) and for the negotiations (many-to-all/all-to-
all communication). These primitives are called by a process
running in the application module. The latter is in charge of
making decisions (e.g., enter low-power mode, remain active

SFD Phase seq. number Bitmap Sink field Source node field CRC

4 Bytes

Reser-

ved

Sink

node bit

Src. node

bit 8

Src. node

bit 7

Src. node

bit 6

Src. node

bit 5

Src. node

bit 4

Src. node

bit 3

Src. node

bit 1

7 Bits 1 Bit 1 Bit 1 Bit 1 Bit 1 Bit 1 Bit 1 Bit 1 Bit 1 Bit

Rec. source

node 6

Rec. source

node 7

Rec. source

node 8

1 Byte 1 Byte 1 Byte 1 Byte

Rec. source

node 1

Rec. source

node 2

Rec. source

node 3

Rec. source

node 4

Rec. source

node 5

Source

node 6

Source

node 7

Source

node 8

1 Byte 1 Byte 1 Byte 1 Byte

Source

node 1

Source

node 2

Source

node 3

Source

node 4

Source

node 5

4 Bytes 2 Bytes 2 Bytes4 Bytes

Src. node

bit 2

Fig. 6: Format of the packet used in Harmony’s negotiation,
assuming a network with φ = 8 source nodes and one sink.

to forward packets, enable an interference mitigation strategy)
based on the bitmap returned by the SNI after a negotiation.

During a negotiation, all nodes exchange packets with
the format shown in Fig. 6. The sink node sets to 1 the
corresponding bit in the bitmap field and enters the last 4 bits
of the sequence number of the last received packet from each
source node. Every source node sets to 1 the corresponding
bit in the bitmap field regardless of whether it has data to
transmit. If this is the case, the source node enters also the
last 4 bits of the sequence number of the packet to be sent.

Each negotiation-and-action phase is assigned a 4-Byte
sequence number that is entered in every packet sent during
the negotiation. The sequence number of the current phase p
is used to determine the order in which source nodes having
packets to transmit initiate the flood. Specifically, given M
source nodes {S0, S1, ..., SM−1} in a network, out of which
N of them {s0, s1, ..., sN−1} have data to send in the current
action, the node whose index is s(p×θ+f) mod N , with f being
the current action, initiates the flood; whereas all the other
source nodes in the network act as relay. This guarantees that
only one source node sends a packet at a given time when the
negotiation is successful. Note that the packet format shown
in Fig. 6 contains only up to φ = 8 source nodes. If the
total number of source nodes in the network M is higher than
φ, a source nodes Si participates actively only into the kth

negotiation, where k = (i/φ) + 1, so to avoid collisions.
If a negotiation is unsuccessful due to interference (i.e., at

least one source node or the sink has a bitmap bit set to 0),
in the following θ actions all the relay nodes and the sink
keep their radio on. The source nodes, instead, will send a
packet with a given probability (set to 50% in our current
implementation) or act as a relay otherwise. This leaves some
of the actions available to other nodes to send data. For
example, in the scenario 5 of Fig. 5, both source nodes (S1

and S2) are interfered. Therefore, during the first action, S2

acts as a relay, whereas S1 sends its message, which reaches
the four relay nodes (who have activated the DF mechanism,
as they have no path to the sink D). During the second action,
S2 transmits its message, which is correctly received by D. If
interference on S2 clears in any of the following actions, D
can get the original message sent by S1 during the first action
(either from S1 directly or thanks to the DF mechanism). This
probabilistic scheme hence helps to increase the chance of
successful packet reception with unsuccessful negotiations.

A correct parametrization of Harmony is very important.
The number of negotiation-and-action phases γ during an

epoch directly affects the synchronization accuracy and should
be increased if the network typically operates under strong in-
terference. The number of actions θ in a negotiation-and-action
phase should be low to minimize latencies, so that negotiations
occur more frequently and nodes can signal that they have data
to transmit. If low latencies are not necessary, this number can
be increased to avoid frequent energy-expensive negotiations.

IV. EVALUATION

We evaluate the performance of Harmony experimentally
using two popular large-scale testbeds: FlockLab [32] and
D-Cube [33]. Our evaluation answers the following questions:

• How does Harmony perform under interference? Do the
DF and network coding features really help increasing
the reliability under harsh interference? (Sect. IV-A)

• How does Harmony’s performance compare to that of
state-of-the-art CT-based protocols? (Sect. IV-B)

Testbeds. We run our tests on FlockLab [32] and D-Cube [33],
which embed 27 and 51 TelosB nodes, respectively. We select
FlockLab, as it is one of the reference testbeds used by the
community to evaluate the performance of low-power wireless
protocols. We also make use of D-Cube, as it allows to
accurately profile latency and power consumption in hardware,
as well as to generate repeatable Wi-Fi interference [23].
Metrics. We compute three metrics during our experimental
campaign: (i) average end-to-end reliability, average end-to-
end latency, and average power consumption. The average
end-to-end reliability is the ratio between the number of
received and sent packets by all source nodes. The end-to-
end latency is computed on all received packets as the time
elapsed between the generation of a packet by a source node
and the time in which it is received by the sink. The power
consumption is the average across all the nodes in the network.

On the D-Cube testbed, a specific GPIO pin of the TelosB
node is used to indicate whether a packet has been generated
or received: the end-to-end latency is hence the difference
between the timestamps of two GPIO events [34]. On Flock-
Lab, application packets are generated by source nodes and
timestamped using serial output logs. The average power is
computed in hardware on D-Cube, and in software [35] as the
percentage of time in which the radio is active on FlockLab.
RF interference. To test the performance of Harmony and
other protocols under interference, we use JamLab [25] and
JamLab-NG [23] to generate artificial noise in a repeatable
way. In FlockLab, we let a fraction of the nodes in the
testbed (nodes 33, 32, 28, 10, 19, and 13)3 run JamLab
on IEEE 802.15.4 channel 26 using the highest transmission
power available (0 dBm). On D-Cube, we let each Raspber-
ry Pi 3 node (connected to the TelosB node) generate wideband
Wi-Fi interference on a random Wi-Fi channel using JamLab-
NG [23].

We distinguish between two types of interference: mild and
strong. In D-Cube, mild and strong interference are generated
by running Confiture over slots of 13 ms with a channel

3The topology of FlockLab is available at
https://user.flocklab.ethz.ch/user/topology.php

0
20
40
60
80

100
Re

lia
bi

lit
y

(%
)

0
2
4
6
8

La
te

nc
y

(s
) Harmony

Harmony with DF
Harmony with 16NC
Harmony with DF and 16NC

L1
, P

T,
 8

B
L2

, P
T,

 8
B

L3
, P

T,
 8

B
L3

, A
T,

 8
B

L1
, P

T,
 6

4B
L2

, P
T,

 6
4B

L3
, P

T,
 6

4B
L3

, A
T,

 6
4B

L1
, P

T,
 8

B
L2

, P
T,

 8
B

L3
, P

T,
 8

B
L3

, A
T,

 8
B

L1
, P

T,
 6

4B
L2

, P
T,

 6
4B

L3
, P

T,
 6

4B
L3

, A
T,

 6
4B

L1
, P

T,
 8

B
L2

, P
T,

 8
B

L3
, P

T,
 8

B
L3

, A
T,

 8
B

L1
, P

T,
 6

4B
L2

, P
T,

 6
4B

L3
, P

T,
 6

4B
L3

, A
T,

 6
4B

Scenario

20
40
60
80

Po
we

r (
m

W
)

No interf. Mild interf. Strong interf.

Fig. 7: Performance of Harmony in D-Cube with and without
enabling the data freezing and network coding features.

occupancy of approximately 40 and 80%, respectively. Strong
interference makes use of 11 dB higher transmission power
than the mild one. In FlockLab, mild and strong interference
are generated by dividing time in slots of 4 ms, and by
permanently jamming a slot with a chance of 50 and 70%,
respectively. Each experiment is also run in absence of inter-
ference, so to have a reference performance in ideal settings.
Scenarios. In each testbed we use multiple many-to-one
layouts, i.e., diverse configurations of source nodes and sink,
to make sure that our results are general and not setup-specific.
In FlockLab, we select:

• Layout 1: {4, 7, 8, 11, 14, 16, 17, 24} → 1
• Layout 2: {8, 11, 17} → 16

In D-Cube, we select:
• Layout 1: {119, 207, 212, 220, 222} → 202
• Layout 2: {111, 203, 210, 217, 219, 225} → 208
• Layout 3: {112, 200, 202, 205, 209, 220, 224, 225} → 226

The maximal distance between a source node to the sink
is 4 hops in FlockLab and 6 hops in D-Cube. For each
of these layouts (denoted as L1–L3), we test the protocol
performance using different packet lengths. In particular, we
use an application payload of 8 and 64 Bytes (denoted as
8B and 64B, respectively). We also test the impact of traffic
load by making use of periodic traffic (PT) and aperiodic or
asynchronous traffic (AT). In PT, each node generates a packet
every 30 s on both D-Cube and FlockLab. In AT, packets are
generated at random intervals (D-Cube) or every 30 s, but with
different offsets across nodes (FlockLab). Each experiment
runs for 10 minutes, and is repeated at least three times.

A. Performance of Harmony under interference
We first analyse the performance of Harmony with different

configurations on D-Cube. Fig. 7 shows the reliability, end-
to-end latency and power consumption of Harmony with and
without the data freezing and network coding features enabled.

First, we can notice that the basic configuration of Harmony
sustains a near-perfect reliability in all testbed layouts even

0
20
40
60
80

100

Re
lia

bi
lit

y
(%

)

0
10
20
40
50
60

La
te

nc
y

(s
) Harmony with DF

RedNodeBus
Crystal

L2
, P

T,
 8

B

L3
, P

T,
 8

B

L3
, A

T,
 8

B

L2
, P

T,
 6

4B

L3
, P

T,
 6

4B

L3
, A

T,
 6

4B

L2
, P

T,
 8

B

L3
, P

T,
 8

B

L3
, A

T,
 8

B

L2
, P

T,
 6

4B

L3
, P

T,
 6

4B

L3
, A

T,
 6

4B

L2
, P

T,
 8

B

L3
, P

T,
 8

B

L3
, A

T,
 8

B

L2
, P

T,
 6

4B

L3
, P

T,
 6

4B

L3
, A

T,
 6

4B

Scenario

0

50

100

Po
we

r (
m

W
)

No interf. Mild interf. Strong interf.

Fig. 8: In D-Cube, Harmony outperforms state-of-the-art CT-
based protocols under strong interference in terms of reliability
and timeliness, while being comparably energy-efficient.

in the presence of mild interference (which causes a channel
occupancy of 40% on several Wi-Fi channels). This confirms
the goodness of the scan-and-lock mechanism, as well as
of the negotiation-and-action and agent-initiated negotiation,
which help sustaining a reliable performance. Under strong in-
terference, the performance of Harmony’s basic configuration
decreases especially when making use of large packets (64B).

We can also see that data freezing and network coding
effectively help increasing the reliability under strong Wi-Fi
interference by up to 30%. As expected, the use of data
freezing helps reducing the end-to-end latency. The use of
network coding, instead, slightly increases the end-to-end la-
tency (as more messages need to be received and reassembled),
but allows to reduce the energy consumption (as packets are
smaller and the radio-on time can be kept shorter). A combined
use of network coding and data freezing allows to reduce the
energy consumption, but results in higher latencies.
B. Comparison to the state-of-the-art

We compare next the performance of Harmony to state-
of-the-art CT-based solutions such as CrystalCH

ND [19] and
RedNodeBus [12]. We do so by examining the performance of
these three protocols during a public hackathon4 [36], where
the protocol developers have run their solution under the same
settings for several months on the D-Cube testbed.

Fig. 8 shows the performance of the aforementioned proto-
cols for different configurations. Overall, all protocols perform
very reliably in absence of interference and in the presence of
mild interference, with CrystalCH

ND showing a remarkable en-
ergy efficiency. However, under strong interference, Harmony
significantly outperforms both CrystalCH

ND and RedNodeBus in
terms of reliability and latency, while sustaining a comparable
power consumption. In particular, Harmony achieves a 100%
reliability in all scenarios involving mild interference, and up
to 50% higher reliability under strong interference.

As Mixer [17] did not take part in the hackathon, we
compare its performance to the one of Harmony by running

4We participated to the EWSN 2019 dependability competition as Team 01.

0
20
40
60
80

100
Re

lia
bi

lit
y

(%
)

0
5

10
15
20

La
te

nc
y

(s
)

L1
, P

T,
 8

B
L1

, A
T,

 8
B

L2
, P

T,
 8

B
L2

, A
T,

 8
B

L1
, P

T,
 6

4B
L1

, A
T,

 6
4B

L2
, P

T,
 6

4B
L2

, A
T,

 6
4B

L1
, P

T,
 8

B
L1

, A
T,

 8
B

L2
, P

T,
 8

B
L2

, A
T,

 8
B

L1
, P

T,
 6

4B
L1

, A
T,

 6
4B

L2
, P

T,
 6

4B
L2

, A
T,

 6
4B

L1
, P

T,
 8

B
L1

, A
T,

 8
B

L2
, P

T,
 8

B
L2

, A
T,

 8
B

L1
, P

T,
 6

4B
L1

, A
T,

 6
4B

L2
, P

T,
 6

4B
L2

, A
T,

 6
4B

Scenario

0
25
50
75

Du
ty

 C
yc

le
 (%

)
No interf. Mild interf. Strong interf.

Harmony with DF
Crystal
Mixer

Fig. 9: Also in FlockLab, Harmony outperforms state-of-the-
art protocols under strong interference in terms of reliability
and timeliness, while being comparably energy-efficient.

tests in FlockLab with configurations similar to those used in
D-Cube. We run Mixer5 with node 4 and 8 as host in L1 and
L2 (same setting used by Harmony), and use as Mixer’s round
period 30 s and 2.5 s for PT and AT, respectively, which allows
to achieve a low latency for asynchronous traffic. In parallel
to Harmony and Mixer, we also run CrystalND

6. As Mixer
does not embed channel hopping mechanisms and as JamLab
can only interfere on channel 26, we disable channel hopping
in Harmony and Crystal, so to ensure a more fair comparison.

Fig. 9 shows the performance of the three protocols for
different configurations. The results show a similar trend to
the ones in Fig. 8: Harmony exhibits the highest reliability and
lowest latency under mild and strong interference. Mixer and
Crystal show a lower energy consumption with no interference,
but a comparable or higher power draw under strong interfer-
ence. Hence, these experiments confirm the good balance that
Harmony can achieve under harsh RF interference between
reliability, end-to-end latency, and energy consumption.

V. RELATED WORK

The pioneering work by Ferrari et al. [7], who led to
the development of Glossy – a fast and efficient network
flooding service by using CT – has revolutionized the design
of low-power wireless protocols. By exploiting constructive
interference and the capture effect on the MAC layer, Glossy
provides highly reliable flooding for one-to-many communica-
tion. To realize data collection (many-to-one communication)
with Glossy, Ferrari et al. [9] have added an application-
level scheduler to construct a so-called low-power wireless
bus (LWB). The latter centrally schedules the data commu-
nication to support one-to-many, many-to-one, and many-to-
many communications. Crystal [10] focuses on data collection

5https://gitlab.com/nes-lab/mixer, hash 0b64204c.
6https://github.com/d3s-trento/crystal, hash 11ef31e. Note that in Crystal,

the sink acts as a host node by default: we hence used node 1 and 16 for L1
and L2, respectively. During our experiments on FlockLab, we fine-tuned
the length of T, so to deliver long application packets. We have also disabled
Crystal’s auto-reset function, which triggers if a node did not receive a sync for
a long time: this allows us to fully observe Crystal’s best-effort performance.

(many-to-one) applications and makes scheduling simpler than
LWB by using transmission-acknowledgement slot pairs.

Splash [14] builds a tree pipeline [37] by exploiting Glossy
in order to improve channel utilization. Pando [38] has inte-
grated fountain code with pipelines to overcome the long-tail
problem of Splash [14]. Both works, as well as Ripple [39]
are designed to deliver large amounts of data through the
network, e.g., for reprogramming the nodes, rather than for
data collection. Chaos [8] builds on Glossy to achieve fast
all-to-all data sharing. Codecast [16] provides a more gen-
eral approach to support many-to-many communication by
introducing feedback-driven network coding. More recently,
Mixer [17] has improved the effectiveness of network coding
by adding recording capabilities at each node.

These and other works have shown that CT can be used as a
basis to build dependable protocols achieving a high reliability
and low delays. In particular, a few works, especially in the
context of the EWSN dependability competition [33], have
focused on introducing channel hopping techniques [11], [18],
[20] and noise detection strategies [19] to improve the per-
formance of CT-based solutions under interference. However,
none of these works has focused on the ability to sustain a
high performance even in congested RF environments where
interference covers the entire IEEE 802.15.4 RF spectrum.

Harmony closes this gap and introduces generic techniques
allowing CT-based communications to deal with partitioned
networks and very adverse RF conditions. To this end,
Harmony revises and incorporates channel hopping and net-
work coding strategies, together with novel data freezing and
negotiation-and-action schemes. Harmony further improves
the local noise detection strategy introduced by CrystalCH

ND by
introducing a distributed interference detection scheme able
to quantify the interference on a network-level. To the best of
our knowledge, Harmony is the first work tackling all these
challenges and providing a highly robust CT-based solution to
the low-power wireless community.

VI. CONCLUSIONS

We have presented Harmony, a CT-based data collection
protocol designed to sustain a reliable performance even when
all available IEEE 802.15.4 channels are highly congested. To
do so, Harmony includes, among others features allowing to
maintain synchronization and successfully deliver data in a
partitioned network. Furthermore, a novel interference detec-
tion scheme allows Harmony to send packets aggressively only
when strictly necessary. A thorough experimental evaluation
shows that these techniques are highly effective: Harmony
outperforms state-of-the-art protocols and achieves a good
balance between reliability, timeliness, and energy-efficiency
even under strong interference and when sending large packets.

ACKNOWLEDGMENT

We would like to thank the Computer Engineering Group at
ETH Zürich for providing the FlockLab testbed, as well as the
authors of the D-Cube testbed from TU Graz. We also thank
Pei Tian for her contribution on experiments, Reto Da Forno,
and Markus Schuß for their technical support.

REFERENCES

[1] J. A. Stankovic, “Research directions for the Internet of Things,” Internet
of Things Journal, vol. 1, no. 1, Feb 2014.

[2] M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. Wu, “Deploying wireless
sensor networks with fault-tolerance for structural health monitoring,”
IEEE Transactions on Computers, vol. 64, no. 2, pp. 382–395, 2013.

[3] H.-S. Kim, H. Cho, M.-S. Lee, J. Paek, J. Ko, and S. Bahk, “Marketnet:
An asymmetric transmission power-based wireless system for managing
e-price tags in markets,” in Proceedings of the 13th International
Conference on Embedded Networked Sensor Systems (SenSys). ACM,
2015, pp. 281–294.

[4] E. A. Lee, “Cyber physical systems: Design challenges,” in Proceedings
of the 11th International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). IEEE, May 2008.

[5] F. Foukalas, P. Pop, F. Théoleyre, C. A. Boano, and C. Buratti,
“Dependable wireless industrial iot networks: Recent advances and open
challenges,” in Proceedings of the 24th IEEE European Test Symposium
(ETS). IEEE, May 2019.

[6] T. Chang, T. Watteyne, X. Vilajosana, and P. H. Gomes, “Constructive
Interference in 802.15.4: A Tutorial,” Communications Surveys Tutori-
als, vol. 21, no. 1, pp. 217–237, Sep 2018.

[7] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in Proceedings of the
10th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), 2011, pp. 73–84.

[8] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale,” in
Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2013, pp. 1:1–1:14.

[9] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proceedings of the 10th ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2012, pp. 1–14.

[10] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza, “Data prediction +
synchronous transmissions = ultra-low power wireless sensor networks,”
in Proceedings of the 14th ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2016, pp. 83–95.

[11] A. Escobar, C. Gonzalez, F. J. Cruz, J. Garcia-Jimenez, J. Klaue, and
A. Corona, “RedFixHop: Efficient ultra-low-latency network floodings,”
in Proceedings of the 13th International Conference on Sensing, Com-
munication, and Networking (SECON). IEEE, Jun. 2016.

[12] A. Escobar-Molero, J. Garcia-Jimenez, J. Klaue, F. Moreno-Cruz,
B. Saez, F. J. Cruz, U. Ruiz, and A. Corona, “RedNodeBus: Stretching
out the preamble,” in Proceedings of the 16th International Conference
on Embedded Wireless Systems and Networks (EWSN), Feb. 2019.

[13] M. Suzuki, S. Ohara, K. Jinno, C. H. Liao, and H. Morikawa, “Wireless-
transparent sensing,” in Proceedings of the 14th International Confer-
ence on Embedded Wireless Systems and Networks (EWSN), Feb. 2017.

[14] M. Doddavenkatappa, M. C. Chan, and B. Leong, “Splash: Fast data dis-
semination with constructive interference in wireless sensor networks,”
in Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation (NSDI), 2013, pp. 269–282.

[15] W. Du, J. C. Liando, H. Zhang, and M. Li, “Pando: Fountain-enabled fast
data dissemination with constructive interference,” IEEE/ACM Transac-
tions on Networking, vol. 25, no. 2, pp. 820–833, 2016.

[16] M. Mohammad and M. C. Chan, “Codecast: Supporting data driven
in-network processing for low-power wireless sensor networks,” in
Proceedings of the 17th ACM/IEEE International Conference on In-
formation Processing in Sensor Networks (IPSN), 2018, pp. 72–83.

[17] C. Herrmann, F. Mager, and M. Zimmerling, “Mixer: Efficient many-
to-all broadcast in dynamic wireless mesh networks,” in Proceedings
of the 16th ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2018, pp. 145–158.

[18] R. Lim, R. Da Forno, F. Sutton, and L. Thiele, “Competition: Robust
flooding using back-to-back synchronous transmissions with channel-
hopping,” in Proceedings of the 2017 International Conference on
Embedded Wireless Systems and Networks (EWSN), 2017, pp. 270–271.

[19] T. Istomin, M. Trobinger, A. L. Murphy, and G. P. Picco, “Interference-
resilient ultra-low power aperiodic data collection,” in Proceedings of the
17th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), 2018, pp. 84–95.

[20] X. Ma, P. Zhang, X. Li, W. Tang, J. Wei, and O. Theel, “DeCoT: A
dependable concurrent transmission-based protocol for wireless sensor
networks,” IEEE Access, vol. 6, pp. 73 130–73 146, 2018.

[21] T. Schmid, “Time in wireless embedded systems,” Ph.D. dissertation,
University of California, Los Angeles, CA, USA, 2009.

[22] C. A. Boano and K. Römer, “External radio interference,” in Radio
Link Quality Estimation in Low-Power Wireless Networks. Springer,
Jul. 2013, pp. 21–63.

[23] M. Schuß, C. A. Boano, M. Weber, M. Schulz, M. Hollick, and
K. Römer, “JamLab-NG: Benchmarking low-power wireless protocols
under controlable and repeatable Wi-Fi interference,” in Proceedings of
the 16th International Conference on Embedded Wireless Systems and
Networks (EWSN), 2019, pp. 83–94.

[24] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - A lightweight and
flexible operating system for tiny networked sensors,” in Proceedings
of the 1st International Workshop on Embedded Networked Sensors
(EmNetS), Nov. 2004, pp. 455–462.

[25] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. Zúñiga, “Jamlab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” in Proceedings of the 10th ACM/IEEE International Con-
ference on Information Processing in Sensor Networks (IPSN). IEEE,
2011, pp. 175–186.

[26] P. Sommer and Y. A. Pignolet, “Competition: Dependable network
flooding using Glossy with channel-hopping,” in Proceedings of the 2016
International Conference on Embedded Wireless Systems and Networks
(EWSN), 2016, pp. 303–303.

[27] G. J. Huang, G. Xing, G. Zhou, and R. Zhou, “Beyond co-existence:
Exploiting WiFi white space for Zigbee performance assurance,” in
Proceedings of the 18th International Conference on Network Protocols
(ICNP). IEEE, Oct. 2010, pp. 305–314.

[28] K. R. Chowdhury and I. F. Akyildiz, “Interferer classification, channel
selection and transmission adaptation for wireless sensor networks,” in
Proceedings of the International Conference on Communications (ICC).
IEEE, Jun. 2009, pp. 1–5.

[29] M. Luby, “LT codes,” in Proceedings of the 43rd Annual IEEE Sympo-
sium on Foundations of Computer Science. IEEE, 2002, pp. 271–280.

[30] F. Hermans, O. Rensfelt, T. Voigt, E. Ngai, L.-Å. Nordén, and
P. Gunningberg, “SoNIC: Classifying interference in 802.15.4 sensor
networks,” in Proceedings of the 12th International Conference on
Information Processing in Sensor Networks (IPSN). ACM, Apr. 2013,
pp. 55–66.

[31] Tmote Sky datasheet, Moteiv Corporation. [Online]. Available:
http://www.eecs.harvard.edu/ konrad/projects/shimmer/references/tmote-
sky-datasheet.pdf

[32] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, and J. Sommer, P.and Beu-
tel, “FlockLab: A testbed for distributed, synchronized tracing and
profiling of wireless embedded systems,” in Proceedings of the 12th
ACM/IEEE International Conference on Information Processing in Sen-
sor Networks (IPSN), 2013, pp. 153–166.

[33] M. Schuß, C. A. Boano, M. Weber, and K. Römer, “A competition to
push the dependability of low-power wireless protocols to the edge,”
in Proceedings of the 2017 International Conference on Embedded
Wireless Systems and Networks (EWSN), 2017, pp. 54–65.

[34] M. Schuß, C. A. Boano, and K. Römer, “Moving beyond competitions:
Extending D-Cube to seamlessly benchmark low-power wireless sys-
tems,” in Proceedings of the 2018 IEEE Workshop on Benchmarking
Cyber-Physical Networks and Systems (CPSBench), 2018, pp. 30–35.

[35] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He, “Software-based on-
line energy estimation for sensor nodes,” in Proceedings of the 4th
International Workshop on Embedded Networked Sensors (EmNetS),
Jun. 2007, pp. 28–32.

[36] “EWSN 2019 Dependability Competition.” [Online]. Avail-
able: https://iti-testbed.tugraz.at/blog/page/21/ewsn-19-dependability-
competition-final-results/

[37] B. Raman, K. Chebrolu, S. Bijwe, and V. Gabale, “PIP: A connection-
oriented, multi-hop, multi-channel TDMA-based MAC for high through-
put bulk transfer,” in Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2010, pp. 15–28.

[38] W. Du, J. C. Liando, H. Zhang, and M. Li, “When pipelines meet
fountain: Fast data dissemination in wireless sensor networks,” in
Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2015, pp. 365–378.

[39] D. Yuan and M. Hollick, “Ripple: High-throughput, reliable and energy-
efficient network flooding in wireless sensor networks,” in Proceedings
of the 16th IEEE International Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2015, pp. 1–9.

