
Received: 7 February 2024 - Revised: 3 July 2024 - Accepted: 15 August 2024 - IET Wireless Sensor SystemsDOI: 10.1049/wss2.12092

OR I G INAL RE SEARCH

APOTSA: Anchor Placement Optimisation Using Discrete Tabu
Search Algorithm for Area‐Based Localisation

Sayyidshahab Nabavi1,2 | Joachim Schauer3 | Carlo Alberto Boano2 | Kay Römer2

1Institute of Electronic Engineering, FH
JOANNEUM, Graz, Austria

2Institute of Technical Informatics, Graz University
of Technology, Graz, Austria

3Institute of Software Design and Security, FH
JOANNEUM, Graz, Austria

Correspondence

Sayyidshahab Nabavi.
Email: sayyidshahab.nabavi@student.tugraz.at

Funding information

Austrian Science Fund, Grant/Award Number:
DFH 5‐N

Abstract
Recently, there has been an increasing interest in indoor localisation due to the demand
for location‐based services. Diverse techniques have been described in the literature to
improve indoor localisation services, but their accuracy is significantly affected by the
number and location of the anchors, which act as a reference point for localising tags in a
given space. The authors focus on indoor area‐based localisation. A set of anchors defines
certain geographical areas, called residence areas, and the location of a tag is approxi-
mated by the residence area in which the tag is placed. Hence the position is not given by
exact coordinates. In this approach, placing the anchors such that the resulting residence
areas are small on average yields a high‐quality localisation accuracy. The authors’ main
contribution is the introduction of a discretisation method to calculate the residence areas
for a given anchor placement more efficiently. This method reduces the runtime
compared to the algorithms from the literature dramatically and hence allows us to search
the solution space more efficiently. The authors propose APOTSA, a novel approach for
discovering a high‐quality placement of anchors to improve the accuracy of area‐based
indoor localisation systems while requiring a shorter execution time than existing ap-
proaches. The proposed algorithm is based on Tabu search and optimises the localisation
accuracy by minimising the expected residence area. APOTSA's localisation accuracy and
time of execution are evaluated by different indoor‐localisation scenarios involving up to
five anchors. The results indicate that the expected residence area and the time of
execution can be reduced by up to 9.5% and 99% compared to the state‐of‐the‐art local
search anchors placement (LSAP) algorithm, respectively.

KEYWORD S
indoor navigation, optimisation

1 | INTRODUCTION

Indoor localisation systems are becoming more popular due to
their usage in indoor navigation and location‐based services. A
huge number of systems that rely on different technologies and
provide varying levels of performance in terms of precision,
latency, cost, dependability, and overall complexity can be
found in the literature. The most prominent wireless
communication technologies, such as Wi‐Fi, Bluetooth, RFID,
and Ultra‐wideband (UWB), can also be used as effective
localisation technologies with an accuracy ranging from a few

centimetres up to a few metres [1]. Different techniques have
been developed to improve the accuracy, reliability, and
robustness of indoor localisation techniques. The Angle of
Arrival (AOA) and Time of Flight (TOF) approaches [2] are
important examples. AOA employs triangulation based on
angles between anchors and a tag [3]. Conversely, TOF cal-
culates the distance between the anchor and the tag by esti-
mating the TOF of the received signal multiplied by the speed
of the light and applying trilateration to determine the tag's
position [4]. Another frequently‐used technique is Received
Signal Strength (RSS), which leverages the measurement of

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2024 The Author(s). IET Wireless Sensor Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Wirel. Sens. Syst. 2024;1–14. wileyonlinelibrary.com/journal/wss2 - 1

https://doi.org/10.1049/wss2.12092
https://orcid.org/0000-0003-4772-9651
mailto:sayyidshahab.nabavi@student.tugraz.at
https://orcid.org/0000-0003-4772-9651
http://creativecommons.org/licenses/by/4.0/
https://ietresearch.onlinelibrary.wiley.com/journal/20436394
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fwss2.12092&domain=pdf&date_stamp=2024-09-03

signal power loss to calculate the distance. In this research
work, we improve an existing approach in indoor localisation,
which is known as area‐based localisation: it is very cost‐
effective and offers a good trade‐off between localisation ac-
curacy and system complexity based on RSS. It should be
noted that although there are technologies such as UWB or
Bluetooth low energy, that typically localise a tag with an ac-
curacy of a few centimetres, the advantage of using RSS is that
this method works for any wireless technique that measures the
signal strength. Essentially this could be useful in cases where
neither large bandwidth nor multi‐antenna arrays are available,
or if only very simple receivers are at hand. Hence, it becomes
a perfect option in such situations, especially when estimating
the rough position is sufficient [5, 6]. Instead of determining a
single‐point position, area‐based localisation seeks to find
small areas where the node is located. Due to the different
phenomena that heavily influence radio signals (e.g. multi‐path
propagation, non‐line‐of‐sight conditions, and environmental
changes), localisation errors are inevitable, and depending on
the technology used, some of them are more serious than
others. The comparison [7] between area‐based localisation
and multilateration under different settings reveals that area‐
based localisation is more robust than multilateration in min-
imising location estimation errors, since the probability of
having an erroneous estimate of being near or far is negligible
compared to having an erroneous estimate of distance.
Area estimation is critical. In area‐based localisation, the

location uncertainty is naturally linked to a geometric region
known as the residence area. As the number of anchors in-
creases, more complex and irregular shapes are constructed
(see Figure 1), making it more challenging to compute resi-
dence areas. Based on the geometry of the residence area,
existing area‐based localisation methods may be classified as
circle‐based [8], triangle‐based [5], or symmetric/half‐sym-
metric lens‐based (HSL) area localisation [9]. Lasla et al. [10]
have observed that the circle‐ and triangle‐based approaches
suffer from two main problems compared to the HSL
approach: ‘(i) In some cases, the decision about the presence of
a sensor inside a given area is misleading, which affects the
correctness of the obtained residence areas, or (ii) they require
high anchor density to achieve a low location estimation error

[10]’. For this reason, HSL is considered superior to those
approaches.
Number and placement of anchors influence the

localisation accuracy. In area‐based localisation methods,
the precision of localisation is notably influenced by both the
number and placement of anchors. Therefore, it is important
to optimally place a sufficient number of anchors to achieve
the desired level of accuracy. Cheriet et al. [11] presented a
heuristic‐based method for determining the optimum anchor
locations for the symmetric/half‐symmetric lens‐based local-
isation. A central idea of their heuristic is using the Shapely
library [12] to get the residence areas induced by anchors at
certain spots. It should be mentioned that although on the one
hand the LSAP approach yields impressive results, on the other
hand, it is a time‐consuming approach that requires a signifi-
cant amount of time to find the optimum solutions, particularly
for higher resolutions and higher number of anchors.
Contributions. Based on the mentioned principles, we

introduce the APOTSA approach utilising a simple dis-
cretisation for computing the residence areas. This discretisa-
tion yields a good approximation for the residence areas and
significantly improves the computation time. Only in the very
last step, we utilise the Shapely library to get the exact size of
the residence areas. This methodology aims to find the an-
chors' best placement, leading to better position accuracy in the
target area. Also, for comparison, we use three methods pre-
sented in ref. [11], namely genetic algorithm anchors placement
(GAAP), which is based on a genetic algorithm, Bruteforce,
which is an algorithm that enumerates all possible solutions to
find the correct one, and Local Search‐Based Anchor Place-
ment (LSAP), which commences by seeking optimum solu-
tions within a low‐resolution grid of the discretised search
domain, then it continues to explore higher‐resolution search
domains in the vicinity of the anchor to identify more optimal
solutions. Note that the GAAP approach is faster than LSAP;
however, it can only be applied to small‐scale problems.
Therefore, we aim to develop an algorithm that is comparable
to GAAP with respect to computation time but gives better
results than LSAP.

With APOTSA, we make the following contributions:

i) In the design of APOTSA, we adapt the Tabu search al-
gorithm to a localisation approach called HSL, which tries
to localise a node by minimising the expected area of its
region, in order to find the optimal combination of anchor
positions in a given area.

ii) We develop APOTSA as an area‐based approach that
discretises the given space, aiming to reduce the compu-
tation time while maintaining an acceptable accuracy.

iii) We evaluate the performance of APOTSA, and we execute
the same scenarios as in ref. [11] for different numbers of
anchors and resolutions. Results indicate that APOTSA is
capable of having better performance in terms of execu-
tion time and expected area compared to the local search
anchors placement (LSAP) algorithm by up to 9.5% and
99%, respectively. The rest of this article is structured as
follows: Section 2 briefly overviews the state‐of‐the‐art in

F I GURE 1 Comparison of our discrete approach and Shapely method
for the same solution. (a) Our approach, (b) shapely.

2 - NABAVI ET AL.

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

indoor localisation. Section 3 formally introduces the
problem and the HSL technique. Section 4 presents our
approach. Section 5 compares our approach to existing
approaches from the literature.

2 | RELATED WORK

In this section, we conduct a brief overview of previous work
relevant to anchors' placement optimisation to try to increase
the precision of positioning and navigation.

In ref. [13], Ren et al. proposed RSSI quantisation using a
genetic algorithm. Initially, they utilised a genetic algorithm to
establish the optimum threshold for quantising RSSI and
segmenting the sensing disks of nodes into distinct rings. Each
ring is then assigned a specific binary code. This binary code
sequence can be mapped to an overlapping area, which rep-
resents the potential location of the target, given that the area
corresponding to a binary code sequence might not be unique.
Also, in scenarios where users require real‐time, accurate target
locations, the paper also proposes a two‐step centroid local-
isation algorithm. In ref. [14], Liu et al. proposed Landmarc, a
LocAtion Detection based on dynamic active Rfid Calibration,
which employed fixed location references known as reference
tags to calibrate. They utilised RFID tags at a reasonable price.
The location of tracking tags is estimated by comparing the
received signal from reference tags and tracking tags at reader
tags. Anzum et al. [15] propose a zone‐based solution to the
indoor localisation problem using the Counter Propagation
neural Network (CPN) approach. In their research, they have
subdivided the interest zone into subzones covered by a spe-
cific number of access points (APs). They have collected the
signal powers of the APs as a vector to represent each zone
using a vector of signal powers received from different APs.
The aim is to predict a zone based on the signal sample vector.
Lee et al. [16] investigate area‐based positioning for indoor
environments. They use the combination of KNN and Dif-
ferential Evolution (DE) algorithm and RSSI channel model to
improve the accuracy of indoor localisation. Pan et al. [17]
propose a heuristic DE approach for optimising anchor
placement to minimise the Cramer‐Rao lower limit (CRLB)
and estimate range error. They use area division and region
combination methods to reduce the search space and paral-
lelise optimisation in different areas by maximising the line‐of‐
sight (LOS) coverage regions. Miao et al. [18] examine anchor
placement optimisation challenges; they created a distance‐
dependent noise model to account for inaccurate distance
measurements. They employed a statistical method known as
the Fisher information matrix to evaluate the anchor place-
ment. Zhou et al. [19] investigated the placement of anchors
for unmanned‐aerial‐vehicle (UAV)‐enabled localisation using
the RSS approach. To tackle the problem, the user is consid-
ered to be located in a circular area, which is determined
through UAV anchors. This research aims to minimise the
average (localisation) mean‐square error (MSE). Eventually, it
is proven that placing the UAV anchors considering symmet-
rical horizontal angles and the same distance to the area centre

can decrease the MSE lower bound. Tian et al. [20] proposed
an innovative Wi‐Fi and BLE localisation system APs
approach. This approach aims to maximise positioning accu-
racy while ensuring a predefined level of coverage modelled as
a certain degree of coverage. The Cramer‐Rao lower bound
(CRLB) is applied to evaluate the positioning accuracy. The
Motley‐Keenan model simulates the path loss based on the
direct ray between the anchor and tags to testify the algorithm
more practically. Wang et al. [21] introduced two anchor
placement algorithms consisting of two parts. The first part is a
greedy approach that employs sub‐modular function proper-
ties for anchor placement. The second algorithm is a random
sampling technique for placing the anchors that successfully
localise all targets. They evaluated real‐world and randomly‐
generated floor plans to assess these algorithms' perfor-
mance. Based on their results, they achieved a reduction in the
percentage of the number of required anchors for randomly
generated floor plans compared to the existing methods.
Younis et al. [22] proposed a theoretical framework for area‐
based indoor localisation. Their suggested approach involves
considering a circle centred at the anchor's position with a
radius equal to the anchor's range to model the coverage of
each anchor. Their main goal is to increase the accuracy of
indoor localisation by reducing the average of residence areas.
Cheriet et al. [11] investigated the anchor placement in an area‐
based indoor localisation approach, which aims to increase the
accuracy. They investigated an area‐based localisation
approach, namely HSL, which can lead to complex and
irregular shaped residence areas. Their simulation framework is
implemented in Python and is uses the Shapely library to es-
timate the area of these irregular shapes. They implemented
heuristic algorithms, such as local search anchor placement
Algorithm (LSAP) and GAAP, Brute force, and RND, which is
a random walk‐inspired algorithm, to find an optimal solution.
While the results of their algorithms are very promising with
respect to the solution quality (especially LSAP), these
methods suffer from huge computational times induced by
using the Shapely library. In fact, LSAP does not even find a
feasible placement for five anchors and a fine‐grained dis-
cretisation in reasonable time. Our approach now presents a
different way of calculating the residence areas and does this by
getting even better quality solutions and dramatically reducing
the computational time needed.

3 | OVERVIEW OF HSL AREA‐BASED
LOCALISATION

In this section, we discuss the HSL area‐based localisation
technique introduced by Lasla et al. [9] as our approach is
based on HSL. HSL is a range‐free localisation method that
estimates proximity information between a node and a set of k
anchor nodes using RSS values. This information is employed
to estimate the residence area of the node s with respect to the
set of nearby anchors (Figure 2 shows a simple example using
two anchors). HSL draws, for every pair of anchors ai and aj ,
two circles: one of them called CðaiÞ has its centre in ai, and

NABAVI ET AL. - 3

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

the other one called C
�
aj
�
in aj , and the radius of both of them

corresponds to the distance between ai and aj. The geometric
shape produced by the intersection of the two circles CðaiÞ
and C

�
aj
�
is a symmetric lens. The perpendicular bisector of

the section connecting the two anchors splits the symmetrical
lens into two half‐symmetric lenses as shown in Figure 2,
which can be represented as HSL

�
ai; aj

�
and HSL

�
aj; ai

�
.

Moreover, we define: HSLout
�
ai; aj

�
as CðaiÞ ‐ HSL

�
ai; aj

�

and HSLout
�
aj; ai

�
as C

�
aj
�

‐ HSL
�
aj; ai

�
. The following

cases introduce these four relevant areas for a node s that
needs to be localised (see Figure 2):

1. If the distance from s to ai is less than the distance from ai
to aj and also the distance from s to aj is larger than the
distance from ai and aj , then s is considered to be
in HSLout

�
ai; aj

�
.

2. If s is closer to ai than to aj and also aj is closer to s than to
ai, then s is considered to be in HSL

�
ai; aj

�
.

3. If s is closer to aj than to ai and also ai is closer to s than to
aj , then s is considered to be in HSL

�
aj; ai

�
.

4. If the distance from s to aj is less than distance from ai to aj
and also the distance from s to ai is larger than the distance
from ai and aj , then s is considered to be in HSLout

�
aj; ai

�
.

5. If the distance from s to both ai and aj is larger than the
radius of both circles, then s is considered to be outside of
both circles.

In the case of three or more anchors, we use all possible
intersections resulting from them for the localisation of a tag
node (see Figure 1).

4 | APOTSA

In area‐based localisation, the precision of a node's estimated
position relies on the size of its residence area, which is
influenced by the deployment of the anchors. This study fo-
cuses on the optimal placement of a specific number of an-
chors to optimise localisation accuracy. For this, the algorithm

focuses on minimising the size of the residence areas. Assume
that in the service area S (which is equal to the area which the
anchors should cover), K anchors fa1; a2;…; akg are
deployed; due to this deployment and based on the HSL
method, the area S is divided into m non‐overlapping areas
fs1; s2;…; smg as depicted in Figure 1. The sum of these
residence areas is equal to the size of the area S, and the nodes
that need to be localised can be at arbitrary positions in S.
Hence, intuitively, an algorithm that gives small areas can be
considered as good. As already observed by Cheriet et al. [11],
this can be formalised in the following way: for a given node v
that is uniformly placed at a random place in S, let X be a
random variable that yields the residence area where v is
located in. Hence X ∈ fs1; s2;…; smg and the probability that
node v is in the area si can be calculated as (cf. [11]):

Pr½X ¼ si� ¼
si
S

ð1Þ

Hence, minimising the size of the expected residence area
E½X� gives the following:

minimize E½X� ¼
Xm

i¼1
siPr½X ¼ si� ¼

1
S

Xm

i¼1
s2i ð2Þ

Subject to:

Xm

i¼1
si ¼ S ð3Þ

For computational reasons, Cheriet et al. [11] did not allow
the anchors to be placed anywhere in S but only at some
predefined positions at an n� n grid covered by S. As illus-
trated in Figure 1, they used the Shapely library to compute the
residence areas induced by the placement of the anchors and
the corresponding circles and half lenses of the HSL approach.
In contrast to the usage of the Shapely library and depicted in
Figure 1, in our approach, we employed a discretisation
approach for area calculation, which is described in the next
subsection.

4.1 | Discretisation

Our approach uses two grids, called a_grid, for the anchor
placement and g_grid for the expected residence area calcu-
lation as depicted in Figure 3. Both grids of nodes are covered
by S and the number of points in the first and second grid is
na � na and ng � ng, respectively. Under the assumption
that all of the points of g_grid cover an equal‐sized area of S
and none of them intersects with any of the other areas, we
define the area that a point of g_grid covers as Point_Area:

Point_Area¼
S

ng � ng
ð4Þ

F I GURE 2 HSL approach.

4 - NABAVI ET AL.

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Then, instead of exactly calculating the areas si by using the
Shapely library, we simply approximate these areas by the
number of points of g_grid that are in si times the Point_Area.
This discretisation induces small errors but results in a very
performant computation compared to using the Shapely li-
brary. For checking in which residence area si a point lies, we
simply have to check its position with respect to all the circles
and half lenses of the HSL approach. For getting a good
approximation, g_grid is much more fine‐grained compared to
the a_grid. Note that the points of g_grid are positioned in
such a way that none of them has the same position as any of
the points of a_grid. Algorithmically, this is done by shifting
the coordinates of g_grid vertically and horizontally by a small
value which is indicated by e. This shifting reduces the chance
that a point of g_grid used for the expected residence area
calculation is on the boundary of a residence area—in which
case the error resulting from the discretisation is quite high as
illustrated in Figure 3.

Formally let gi denote the number of points of the fine‐
grained grid that are in area si and G the total number of
points of g_grid. Then in our approach, Equations (1) and (2)
can be approximated as follows:

Pr½X ¼ si� ≈
gi
G

ð5Þ

min E½X� ≈
Xm

i¼1
giPr½X ¼ si� ¼

1
G

Xm

i¼1
g2i ð6Þ

4.2 | Tabu search approach

In our approach, we use a Tabu search algorithm [23] to find
the optimal placement for the anchors. This method is a
metaheuristic approach to address combinatorial optimisation
problems. This algorithm is able to escape local optima by
avoiding returning to already examined solutions, and it can be
applied to both discrete and continuous problems. Frequently

in Tabu search, a set of neighbouring solutions of a feasible
solution is explored in order to get a better objective value.
Note that Tabu search is easy to implement since, on a high
level, it guides a local search algorithm in such a way that it is
not trapped in local optima. As LSAP is based on local search
and already gave promising results, we decided to use Tabu
search instead of other prominent meta‐heuristic algorithms.
We define the neighbourhood that we explore as N_SOL, and
this neighbourhood is composed of the list of anchors and
their respective movements. There are many conceivable ways
to define a neighbourhood by altering the anchors' placement,
and a larger neighbourhood usually leads to a longer compu-
tation time. In order to bound the computational resources
needed, we control the size of the neighbourhood by selecting
a subset of anchors of size γ whose position is possibly
changed in each step (called A_set), and for each anchor only
four possible moves are allowed (represented by D_set).
Figure 4 shows this list and Figure 5 the possible positional
changes of an anchor. We allow an anchor to stay unchanged,
move up, down, left, or right (encoded by the numbers 0, 1, 2,
3, 4 respectively). A parameter jump additionally indicates how
many grid points in the respective direction an anchor should
move. Putting this together, we get that N_SOL is of size 2 ⋅ γ:
position k ≤ γ represents some anchor j and position kþ γ the
corresponding move of anchor j. Formally, we can define
N_SOL as follows:

N_SOL¼ ðA_set;D_setÞ
A_set ¼ A1;A2;…;Aγ
D_set ¼

�
ζ1; ζ2;…; ζγ

�

ζ_i ∈ f0; 1; 2; 3; 4g
j ∈ f0;…;mg

F I GURE 3 Griding method. F I GURE 5 Neighbourhood for jump = 1.

F I GURE 4 Solution representation by N_SOL.

NABAVI ET AL. - 5

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Note that A1;A2;…;Aγ corresponds to a set of distinct
anchors of size γ. For example, a γ of two in the case of three
anchors indicates that a neighbourhood involves all subsets of
size two of the set of anchors, that is, ff0; 1g; f0; 2g; f1; 2gg.
For a given parameter setting, all feasible moves N_SOL are
represented by a list called Act_list. Algorithm 1 describes the
creation of this list. In this algorithm, the combination is a
function that takes a list and an input γ as an input and returns
a list containing all possible combinations of length γ of the
input list.

Algorithm 1 Create_Act_list

1: function Create_Act_list (AN;γ)
2: A_set ← combinationð½0;AN − 1�;γÞ
3: D_set ← combinationð½0;4�;γÞ
4: Act_list ← ½ �
5: for i ← 1 to lengthðA_setÞ do
6: for j ← 1 to lengthðD_setÞ do
7: Act_list:appendððA_set½i�;

D_set½j�ÞÞ
8: end for
9: end for
10: return Act_list
11: end function

The pseudocode of our approach is depicted in Algo-
rithm 4. For clarity, also Figure 6 presents the flowchart of
APOSTA The inputs of this algorithm include the following
parameters: Tabu_Length defines the length of the Tabu list;
AN defines the number of anchors within the given scenario;
Max_Iteration corresponds to the upper limit on iterations for
the Tabu search algorithm; MAX_X and MAX_Y denote the
dimensions of the search space; the parameter γ has been
previously described; P_sol represents the best solution found
on the smaller grid size and is used to initialise a first solution
on the larger grid; resolution is the grid resolution which is
used for the algorithm. Line two of the pseudocode outlines
the generation of two‐dimensional grids, the a_grids and
g_grids, which consist of Cartesian coordinates for placing
anchors and calculating areas, respectively. Also, the number of
grids on each side of a_grids and g_grids is equal to na and ng,
respectively, as discussed in Section 4.1. In our implementation,
we set na and ng as follows:

na ¼ resolution
ng ¼minðmaxð81; resolution� 3þ 1Þ; 200Þ ð7Þ

To ensure a fair comparison with other algorithms, we
initialised na equal to resolution. Therefore, we used identical
grids for anchor placement and for ng. Since the resolution
starts from very low values, we set it to 200 for cases where the
resolution is low, aiming to maintain an acceptable level of
accuracy. Subsequently, in line 3, the Act_list is created. The
Tabu search algorithm employs the Create_Act_list to create
new solutions (see Algorithm 1). Gen_Sol is the algorithm

which applies a specific action to generate a new solution by
moving the place of anchors towards, up, down, left, or right
by jump steps as depicted in Algorithm 2. The main part of the
Tabu search algorithm is depicted from line 13 on. The algo-
rithm stores the best solution found in the current iteration as
Best_N , the best solution found so far in Best:sol, and updates
the Tabu list as illustrated in Algorithm 3. This involves setting
the current solution in a state of tabu for the duration of
Tabu_Length iterations. The algorithm is precluded from
revisiting this solution within the subsequent Tabu_Length
steps. Subsequently, the algorithm tries to search for the best
neighbour of the contemporary solution. In each iteration, the
most suitable solution is substituted with the best ever‐found
solution of the algorithm in case of having a lower cost.

Algorithm 2 Gen_SOL

1: Input: sol, Action, jump
2: n_sol ← ½ �
3: for j ← γ to 2� γ do
4: if Action¼¼1 then
5: n_sol½j − γ�← Upðsol½j − γ�;jumpÞ
6: else if Action¼¼2 then
7: n_sol½j − γ�← Downðsol½j − γ�;jumpÞ
8: else if Action¼¼3 then
9: n_sol½j − γ�← Leftðsol½j − γ�;jumpÞ
10: else if Action¼¼4 then
11: n_sol½j − γ�← Rightðsol½j − γ�;

jumpÞ
12: end if
13: end for
14: return n_sol

F I GURE 6 APOTSA flowchart.

6 - NABAVI ET AL.

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Algorithm 3 Updating the Tabu List

1:function Update_Tabu_List (SOL;Tabu_list)
2: Tabu_list:appendðSOLÞ
3: if lengthðTabu_listÞ > Tabu_Length then
4: /*Delete oldest solution in Tabu

list.*/
5: Tabu_list:popð0Þ
6: end if
7: end function

Algorithm 4 APOTSA

Input: Tabu_Length;AN;Max_Iteration
MAX_X;MAX_Y;γ;P_sol, resolution
Output: Optimal Placement

1: function TabuSearch (Input)
2: Generating a_grids & g_grids
3: Act_list ← Create_Act_listðAN;γÞ
4: nAction ← lenðAct_listÞ
5: Sol ← Bestð200 random solutionsÞ
6: if P_sol exists and has less cost Sol

then
7: Sol ← P_sol
8: end if
9: Best_N & Best:sol ← ½ �
10: Best_N:fitness;Best:fitness ← ∞
11: jump ← randomð2; dresolution=10 þ 2eÞ
12: Best_N ← Sol
13: for j ← 0 to LengthðAct_listÞ do
14: N:sol←Gen_SolðSol;Act_list½j�;

jumpÞ
15: N:fitness ← CostðN:solÞ
16: if N.fitness < Best_N.fitness then
17: Best_N ← N
18: end if
19: Update_Tabu_ListðSol;Tabu_listÞ
20: Sol ← Best_N
21: end for
22: if Best_N:fitness < Best:fitness then
23: Best ← Best_N
24: end if
25: return Best:sol
26: end function

5 | EVALUATION

In this section, we assess the performance of APOTSA in
comparison to other methods. This evaluation is structured
into several subsections, each presenting insights into specific
aspects of APOTSA and the compared algorithms.

5.1 | Performance metrics

In our analysis, we compare the performance of APOTSA with
other approaches using two main metrics: Expected residence
area (in terms of EX) and execution time. The EX parameter for
APOTSA is computed by the discrete version using Equa-
tions (5) and (6). For the other approaches, EX is computed
through the Shapely library, using Equations (1)–(3). For a fair
comparison, generated solutions by APOTSA are evaluated
using the Shapely library, similar to other approaches. It should
be noted that we corrected a minor bug for our computational
experiments in the source code of the LSAP and the other ap-
proaches used for comparisons [24]. The error was due to
calculating the expected area using Shapely in our_library:py
which is provided by Lasla et al. [24]. The reason was that while
the algorithm tries to calculate the intersection area caused by the
anchors, generated intersections have intersections in each cir-
cles, which is ignored in the calculation. It should be mentioned
that, in terms of the time of execution, the corrected version
takes much more time. This increment is attributed to the ne-
cessity of verifying the presence of intersections in each iteration.
Furthermore, these intersections may result in the generation of
inaccurate expected areas. Time of execution refers to the
duration an algorithm requires to discover a solution for a given
scenario in seconds. This metric is computed using the time
function from the process_timeðÞ in Python [25]. Considering
the extended time spans for some of the scenarios in our
simulation, the logarithmic scale is used to represent the graphs.
Note that lower values for both the expected area and time of
execution are desired.

5.2 | Experimental setup

APOTSA implementation.We implemented our Tabu search
approach in Python to evaluate its effectiveness and compared
it with the existing approaches described in ref. [11]. Note that
it would be possible to implement our algorithm in a faster
programming language (such as C, Cþþ, or Java) since we do
not use any special non‐standard libraries (except for one call
to the Shapely library at the very end of our algorithm).
However, the implementation in Python allows for a fair
comparison to the existing approaches, which were also
implemented in Python.

In APOTSA, the input parameters affect the quality of the
solution and also influence the time of execution. The
following Table 1 lists all the parameters that we used:
Simulation settings.We used the same instances that were

already presented in ref. [11]: the area S inwhichnodes need to be
localised corresponds to a square, and this square coversmultiple
grids (a_grids) used for potential anchor placement, namely
3 � 3, 5 � 5, 9 � 9, 17 � 17, 33 � 33, and 97 � 97. More-
over, the number of anchors that are placed ranges from three to
five. Figure 7 shows the increase in the number of the a_grids
(blue grids) from 5� 5 to 9 � 9: this is done by adding one grid

NABAVI ET AL. - 7

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

point (red dot) between each grid point of the previous step (blue
dot). Intuitively, a good solution for the 5� 5 case can be used as
a starting point for a refined solution for the more fine‐grained
9� 9 grid. This observation was already algorithmically
exploited byCheriet et al. [11] successfully, and therefore, we also
implemented this idea in our Tabu search by searching for an
anchor placement on a 3� 3 grid and passing the corresponding
solution that we found to the next more refined grid (in Algo-
rithm 4 this is done with P_Sol).

5.3 | Baselines for comparison

We compared our approach with the LSAP (local search an-
chor placement) approach, a Brute Force approach, and a
genetic algorithm (GAAP) introduced by Cheriet et al. [11],
and the corresponding implementations can be found in the
GitHub repository [24]. Our evaluations focus on reducing
both the execution times of the algorithms and the expected
residence areas they found. We executed all the algorithms 10
times for any of the different instances on the same servers
(Intel(R) Xeon(R) Gold 6230 CPU @ 2.10 GHz, 64 cores,
600 GB RAM) to have a fair comparison, and the results
presented in this paper are the averages of the corresponding
running times and expected residence areas.
Local Search Anchor Placement (LSAP). Cheriet et al.

[11] developed a local search algorithm. The algorithm first
searches for high‐quality solutions on an a_grids of small
dimension and then (step by step) increases the resolution of
the grid in order to get better solutions. Each step passes the
previous solution to the problem with a higher resolution.
Refining the resolution increases the number of locations
where the anchors can be placed. The higher resolutions are
obtained by adding new points between the points of the lower
resolution (as depicted in Figure 7).
Brute Force algorithm (BF). The BF algorithm tests all

feasible anchor placement solutions for a specific scenario. As
discussed in ref. [11], for m anchors and a grid of size n � n,
the number of feasible anchor placements is computed as
follows:

�m
n2

�
¼

n2

m!ðn2 − mÞ!
ð8Þ

Obviously, for higher resolutions, the number of feasible
solutions grows dramatically and hence makes this approach
impracticable. Therefore, the BF can only be applied to low‐
resolution scenarios. For this reason, the results shown in the
subsection 5.4 are not available for this algorithm.
Genetic Algorithm (GAAP). In the last years, meta-

heuristic algorithms have obtained great attention in solving
numerous optimisation problems [26]. The genetic algorithm is
one of the optimisation algorithms which is inspired by natural
evolution and has two major stages: selection and reproduc-
tion. The algorithm attempts to pick the best solution from the
population during the selection phase. In the reproduction
phase, the algorithm attempts to develop a new solution uti-
lising the current generation using tactics like mutation and
crossover. Lasla et al. [11] employed the genetic algorithm
anchor placement approach as a comparative technique. They
adopt a genetic algorithm for this problem, and it is initialised
with randomly‐generated solutions in each stage; the best so-
lutions are passed to the next level.

5.4 | Results

In this subsection, we discuss the most important results of our
computational experiments. Generally, it can be seen that by
increasing the number of anchors or grid size, the EX value
decreases. However, this reduction is associated with a not-
iceable increase in execution time.

Figure 8 displays the expected residence areas achieved for
three anchors. The figure shows that increasing the resolution
leads to a decrease in the expected residence area for all al-
gorithms. Among the approaches, the genetic algorithm found
the worst result, however, in a short amount of time compared
to the other approaches (as shown in Figure 9 and on larger
grid sizes). The Brute Force algorithm obviously needed the
longest execution time. Our approach consistently out-
performed the LSAP in terms of execution time. Since the
number of anchors here equals three to avoid repetitive results,
the scenario where γ equals the number of anchors is omitted
in Figures 8 and 9. Figures 10 and 11 illustrate the expected

TABLE 1 Simulation parameters.

Parameter Value

Tabu_Length 10

Anchors_Number 3, 4, 5

Resolution 3, 5, 9, 17, 33, 97

Max_iteration 20, 30

MAX_X 192

MAX_Y 192

γ 2, 3, AN (number of anchors)

F I GURE 7 Expanding grid from 5 to 9.

8 - NABAVI ET AL.

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

residence areas and execution time for four anchors, respec-
tively. It can be seen that our methods outperform the
comparative approaches, with a considerable decrease in
execution time as well. Additionally, it can be seen that in the
case of 3 and 4 anchors, GAAP is faster than other algorithms,
though it yields poorer results regarding the size of the ex-
pected area compared to others. Conversely, In the case of 5
anchors for higher resolutions, it can be seen that our algo-
rithm performs better in terms of the execution time and the
size of the expected area. Figures 12 and 13 represent the five
anchors case. Only our approach and the genetic algorithm can
be executed for higher‐resolution grids within a runtime limit
of 100,000 s. Our approaches can reduce the expected resi-
dence area by more than 30% compared to the genetic algo-
rithm. In the 97� 97 resolution, our algorithm with γ = 2
consumes even less time than the genetic algorithm. In any
case, our approach achieved a reduction from 88 to 98 units of

EX. Note that in all cases, the tradeoff between the solution
quality and the consumed time is evident in our approach for
the different values of γ.

Figure 14 shows the sum of the difference between areas
calculated by our discretisation and the Shapely library. It can
be seen that the difference decreases when the resolution of
the grids is increased. For fine‐grained grids, the areas are
almost equal. The violin plots presented in Figure 15
showcase a comparative analysis of the distribution of the
sizes of the residence areas obtained by the different algo-
rithms for 10 runs. Since the algorithms perform approxi-
mately the same in lower resolutions, the plots are shown for
the 17 � 17, 33 � 33, and 97� 97 cases. For three anchors,
the algorithms show a similar performance, except for the
GAAP approach. In the case of 4 anchors, the Tabu search
with γ ¼ AN produces fewer areas of size greater than 500
compared to the other approaches, which indicated that not
only the expected size of the areas is superior compared to
the other approaches. In the case of 5 anchors, due to

F I GURE 8 Expected residence area with three anchors.

F I GURE 9 Time of execution with three anchors.

F I GURE 1 0 Expected residence area with four anchors.

F I GURE 1 1 Time of execution with four anchors.

F I GURE 1 2 Expected residence area with five anchors.

F I GURE 1 3 Time of execution with five anchors.

NABAVI ET AL. - 9

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

extensive computation time, results for Bruteforce and LSAP
are unavailable; among the illustrated approaches, γ ¼ AN
yields the lowest maximum area compared to the other ap-
proaches. It is worth noting that the GAAP approach
often gives a very good median area; however, due to the
variance in the observed areas, its EX is worse compared to
the other approaches. Also, to have a more precise com-
parison, the results for expected residence area and time of
execution for each algorithm are depicted in Tables 2 and 3
respectively.

5.5 | Scalibility

In our study, to prove the scalability of our method, we
assessed it across numerous room dimensions, including
150 � 235, 170 � 216, and 300 � 123. These dimensions are
selected to be comparable and have the same area as the area
investigated in ref. [11] and to showcase the adaptability of our
approach to different room layouts. We employed the
APOTSA algorithm for these layouts with γ values of 2 and 3,
as detailed in Tables 4–6. We also tested configurations with 3,

F I GURE 1 4 Difference in area calculation.

F I GURE 1 5 Distribution of residence areas of 10 times execution.

10 - NABAVI ET AL.

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4, and 5 anchors, similar to our comparative analyses. The
results indicate that, despite minor variations due to different
dimensions, our method consistently achieves comparable
outcomes across different numbers of anchors and resolutions.
Since the room layouts are not square in these cases, there
might be slight adjustments or shifts in the anchor positions
while increasing the resolution. For example, in 150 � 246,
increasing the resolution from 17 to 33 for 3 anchors alters the
coordinates of the anchor positions. As a result, the solution
found for a lower grid might appear at different coordinates in
a higher‐resolution grid. It should be noted that the resolution
size is optional; therefore, it is also possible to use different
grid sizes.

5.6 | Discussion

In this subsection, we discuss the benefits of APOTSA.

5.6.1 | Flexibility

As discussed in the previous sections, the γ parameter adjusts
the equilibrium between the quality of the expected area and
the time of execution. This parameter lies within the interval
ð1;ANÞ; as this parameter is set higher, the algorithm tries to
search for more solutions to find the optimal one.

5.6.2 | Speed

In our approach, to avoid complicated calculations, we use a
discretisation method to calculate the expected residence area.
This method introduces approximates the true residence areas
in a reasonable way (as indicated in Figure 14). For higher
resolutions, these approximations are very good, and since we
use the Shapely library in our very last call, it is guaranteed that
the areas found by the algorithm are correct.

5.6.3 | Flexibility in room layout

The HSL approach requires that the anchor is in the line of
sight of any tag. Therefore our approach can be applied to any
convex layout. Note that we do not consider the presence of
obstacles and multipath propagation, which are phenomenons
that are critical to any indoor localisation method.

5.6.4 | Flexibility in griding

Our approach can use grids of any possible size, and more
fine‐grained grids will lead to better results; however, at the
price of a higher execution time. Hence by choosing a certain
grid size we can control the trade‐off between solution quality
and runtime in a very convenient way.

TABLE 2 Expected residence area comparison.

Anchor Resolution Genetic Brute force LSAP APOTSA γ ¼ 2 APOTSA γ ¼ 3 APOTSA γ ¼ AN

3 3 1842 1842 1842 1842 1842 –

3 5 1989 1842 1842 1842 1842 –

3 9 1654 1464 1485 1470 1464 –

3 17 1700 – 1371 1385 1375 –

3 33 1701 – 1358 1358 1344 –

3 97 1690 – 1334 1348 1331 –

4 3 944 938 938 938 938 938

4 5 717 634 634 634 634 634

4 9 659 – 493 547 489 487

4 17 643 – 478 481 460 432

4 33 647 – 465 454 437 421

4 97 645 – 455 450 431 418

5 3 485 454 454 454 454 454

5 5 372 – 301 301 301 301

5 9 306 – – 235 231 225

5 17 294 – – 220 207 204

5 33 292 – – 208 198 194

5 97 288 – – 200 193 190

NABAVI ET AL. - 11

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 | CONCLUSIONS

In this paper, we propose an approach for optimised anchor
placement in area‐based indoor localisation, especially in the
HSL setting (Table 7). Due to the complexity of the
calculation of the areas, which are induced by the placement
of the anchors, we developed a discretisation method to
calculate these areas approximately. This method helped to
significantly reduce the computational resources needed.
Furthermore, our method is based on Tabu search, and we
are using representations of the solutions, including the
anchors and their movements, in such a way that, again, the
running time is kept low. This version of the Tabu search
algorithm leads to efficiently exploring the search space by
changing the placement of subsets of anchors and results in
high‐quality solutions. We compared our approach to exist-
ing approaches from the literature, and in order to get a fair
comparison, we used Python for all algorithms. Our
approach (for 4 and 5 anchors) was as fast as or slightly
slower than the fastest approach from the literature (GAAP)
but yielded much better results. The LSAP approach from
the literature, which is able to produce solutions of com-
parable quality as our approach in the three anchor cases
and only slightly worse solutions in the four anchor cases,
did not find solutions for five anchors and larger
grids within 100,000 s. Also, in the three and four anchor
cases, its runtime was dramatically longer than that of
APOTSA.

TABLE 4 APOTSA γ = 2.

150 � 246 170 � 216 300 � 123

Anchor Resolution EX Time EX Time EX Time

3 3 2495 31 1587 32 2150 39

3 5 1551 89 1587 82 1885 74

3 9 1289 106 1433 97 1618 87

3 17 1267 101 1327 100 1436 91

3 33 1322 167 1307 163 1410 178

3 97 1313 812 1302 616 1404 794

4 3 862 84 715 76 1041 90

4 5 593 334 531 272 693 216

4 9 525 383 470 359 505 339

4 17 467 430 442 387 458 382

4 33 468 628 407 578 471 617

4 97 468 3031 412 2616 459 2842

5 3 495 156 392 128 630 153

5 5 294 709 265 670 377 489

5 9 247 989 236 903 282 792

5 17 230 1108 210 837 270 1010

5 33 222 1868 205 1429 261 1470

5 97 220 7882 202 6071 256 6756

TABLE 3 Time of execution comparison.

Anchor Resolution Genetic Brute force LSAP APOTSA γ ¼ 2 APOTSA γ ¼ 3 APOTSA γ ¼ AN

3 3 27 29 184 19 33 –

3 5 54 1207 495 45 89 –

3 9 78 57,865 838 55 118 –

3 17 84 – 1585 60 128 –

3 33 89 – 1613 146 287 –

3 97 88 – 1633 646 1263 –

4 3 141 316 7829 54 110 129

4 5 496 61,164 33,778 163 414 643

4 9 814 – 105,280 224 696 1130

4 17 977 – 268,145 233 714 1199

4 33 1040 – 302,497 554 1721 2914

4 97 1078 – 309,012 2364 7448 12,410

5 3 474 – 94,654 92 192 284

5 5 3000 1568 1,456,860 365 1327 4468

5 9 6430 – – 575 2512 9122

5 17 8566 – – 604 2669 9383

5 33 9197 – – 1458 6438 21,895

5 97 9853 – – 6311 26,576 90,507

12 - NABAVI ET AL.

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

7 | FUTURE WORK

The proposed method is based on an idealistic setting, since
well‐known real‐world phenomena, such as NLOS conditions
and noise, are not incorporated. Therefore applying APOTSA
in a real‐world setting needs further extensions for dealing with
these phenomena. This could be done by adding obstacles to
the service area and including ranging noise in a laboratory
setting and evaluate the performance of APOTSA there and
then modifying it. Moreover, as APOTSA is an area‐based
localisation method, the most important metric used is the
expected residence area. However, this metric does not take the
shape of an area into consideration. In practice, a perfect circle
is better for the localisation of a tag than a small crescent.
Therefore incorporating the shapes of the areas could also be
an interesting research direction for area‐based localisation in
the future.

AUTHOR CONTRIBUTIONS
Sayyidshahab Nabavi: Investigation, methodology, writing—
original draft, writing—review & editing. Joachim Schauer:
Formal analysis, methodology, writing–original draft, writing—
review & editing. Carlo Alberto Boano: Writing—review &
editing. Kay Römer: Writing—review & editing.

ACKNOWLEDGEMENTS
This research was funded by the Austrian Science Fund (FWF)
[10.55776/DFH5] within the DENISE project. For the pur-
pose of open access, the authors have applied a CC BY public
copyright license to any Author Accepted Manuscript version
arising from this submission

TABLE 7 List of abbreviations.

Abbreviation Meaning

LSAP Local search anchors placement

RSS Received signal strength

AOA Angle of arrival

TOF Time of flight

UWB Ultra‐wideband

RFID Radio frequency identification

HSL Half‐symmetric lens

CPN Counter propagation neural network

DE Differential evolution

RSSI Received signal strength indicator

CRLB Cramer‐rao lower bound

MSE Mean square error

GAAP Genetic algorithm anchors placement

NLOS Non‐line of sight

BLE Bluetooth low energy

APs Access points

TABLE 5 APOTSA γ = 3.

150 � 246 170 � 216 300 � 123

Anchor Resolution EX Time EX Time EX Time

3 3 2495 53 1587 51 2150 63

3 5 1551 157 1587 147 1885 129

3 9 1289 208 1433 179 1618 161

3 17 1267 206 1380 210 1430 155

3 33 1281 327 1363 241 1413 305

3 97 1245 1719 1359 1452 1403 1401

4 3 862 162 748 142 1041 205

4 5 593 936 532 869 693 557

4 9 508 1222 477 1194 505 1030

4 17 491 1470 447 1236 458 1190

4 33 493 2292 430 1906 475 2063

4 97 430 9093 441 8489 467 8951

5 3 495 321 392 310 630 348

5 5 294 2613 266 2445 377 1666

5 9 244 3977 236 4021 282 3077

5 17 219 4504 214 3478 268 3635

5 33 217 7712 208 5615 271 6950

5 97 216 33,209 203 26,731 267 32,301

TABLE 6 APOTSA γ = AN.

150 � 246 170 � 216 300 � 123

Anchor Resolution EX Time EX Time EX Time

3 3 2495 57 1587 50 2150 65

3 5 1551 164 1587 149 1885 127

3 9 1289 206 1432 182 1618 162

3 17 1267 219 1327 215 1430 167

3 33 1322 359 1330 277 1413 347

3 97 1313 1694 1367 1493 1403 1354

4 3 862 204 714 186 1041 268

4 5 593 1403 531 1224 693 869

4 9 499 2027 477 2134 505 1655

4 17 466 2347 447 2183 458 1926

4 33 467 3073 409 2916 468 3033

4 97 463 15,640 399 14,733 468 14,887

5 3 495 466 392 432 630 519

5 5 294 6694 265 7736 377 4373

5 9 224 12,762 235 13,461 269 10,609

5 17 221 15,830 203 16,051 266 11,996

5 33 213 24,489 196 22,965 261 19,936

5 97 212 122,716 195 114,225 259 97,138

NABAVI ET AL. - 13

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CONFLICT OF INTEREST STATEMENT
No Conflict of interest statement.

DATA AVAILABILITY STATEMENT
Data will be made available on request.

ORCID
Sayyidshahab Nabavi https://orcid.org/0000-0003-4772-
9651

REFERENCES
1. Flueratoru, L., et al.: HTC vive as a ground‐truth system for anchor‐

based indoor localization. In: Proceeding of the 12th International
Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT). IEEE (2020)

2. Zhang, H., Tan, S.Y., Seow, C.K.: TOA‐based indoor localization and
tracking with inaccurate floor plan map via MRMSC‐PHD filter. In:
IEEE Sensors Journal, vol. 19, pp. 9869–9882 (2019)

3. Toasa, F.A., et al.: Experimental demonstration for indoor localization
based on AoA of bluetooth 5.1 using software defined radio. In: Pro-
ceeding of the IEEE 18th Annual Consumer Communications &
Networking Conference (CCNC), pp. 1–4. IEEE (2021)

4. Zafari, F., Gkelias, A., Leung, K.K.: A survey of indoor localization
systems and technologies. In: IEEE Communications Surveys & Tuto-
rials, vol. 21, pp. 2568–2599 (2019)

5. He, T., et al.: Range‐free localization schemes for large scale sensor
networks. In: Proceedings of the 9th Annual International Conference on
Mobile Computing and Networking (2003)

6. Liu, C., et al.: Range‐free sensor localisation with ring overlapping based
on comparison of received signal strength indicator. Int. J. Sens. Netw. 2,
5–6 (2007)

7. Lasla, N., Bachir, A., Mohamed, Y.: Area‐based vs. multilateration
localization: a comparative study of estimated position error. In: 2017
13th International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 1138–1143. IEEE (2017)

8. Sheu, J.‐P., Chen, P.‐C., Hsu, C.‐S.: A distributed localization scheme for
wireless sensor networks with improved grid‐scan and vector‐based
refinement. In: IEEE Transactions on Mobile Computing, vol. 7.9 (2008)

9. Lasla, N., et al.: An effective area‐based localization algorithm for
wireless networks. IEEE Trans. Comput. 64, 8 (2014)

10. Lasla, N., et al.: Half‐Symmetric Lens based localization algorithm
for wireless sensor networks. In: Proceeding of the 37th Annual
IEEE Conference on Local Computer Networks, pp. 320–323. IEEE
(2012)

11. Cheriet, A., et al.: On optimal anchor placement for area‐based local-
isation in wireless sensor networks. In: IET Wireless Sensor Systems, vol.
11.2 (2021)

12. Retrieved from: https://pypi.org/project/shapely/
13. Ren, Q., et al.: RSSI quantization and genetic algorithm based localization

in wireless sensor networks. In: Ad Hoc Networks, vol. 107 (2020).102255
14. Flueratoru, L., et al.: HTC vive as a ground‐truth system for anchor‐

based indoor localization. In: Proceeding of the 12th International
Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT). IEEE (2020)

15. Anzum, N., Afroze, S.F., Rahman, A.: Zone‐based indoor localization
using neural networks: a view from a real testbed. In: 2018 IEEE In-
ternational Conference on Communications (ICC), pp. 1–7. IEEE (2018)

16. Lee, S.‐H., et al.: Performance of differential evolution algorithms for
indoor area positioning in wireless sensor networks. Electronics 13.4, 705
(2024)

17. Pan, H., et al.: Indoor scenario‐based UWB anchor placement optimi-
zation method for indoor localization. In: Expert Systems with Appli-
cations, vol. 205 (2022).117723

18. Miao, Q., Huang, B.: On the optimal anchor placement in single‐hop
sensor localization. Wireless Network 24, 1609–1620 (2018)

19. Zhou, F., et al.: Placement and concise MSE lower‐bound for UAV‐
enabled localization via RSS. In: IEEE Transactions on Vehicular
Technology, vol. 71, pp. 2209–2213 (2021)

20. Tian, Yu, et al.: Optimizing AP and beacon placement in WiFi and BLE
hybrid localization. In: Journal of Network and Computer Applications,
vol. 164 (2020).102673

21. Wang, H., et al.: Efficient beacon placement algorithms for time‐of‐flight
indoor localization. In: Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Sys-
tems, pp. 119–128 (2019)

22. Lasla, N., et al.: On optimal anchor placement for efficient area‐based
localization in wireless networks. In: Proceeding of the IEEE Interna-
tional Conference on Communications (ICC), pp. 3257–3262. IEEE
(2015)

23. Glover, F., Laguna, M.: Tabu search. In: Handbook of Combinatorial
Optimization. Springer (1998)

24. url: https://github.com/noureddinel/anchor‐placement‐area‐based‐
localization

25. Python 3 Documentation: time.Process_time. Accessed: [12.12.2023].
url: https://docs.python.org/3/library/time.html#time.process_time

26. Agrawal, P., et al.: Metaheuristic algorithms on feature selection: a survey of
one decade of research (2009‐2019). IEEE Access 9, 26766–26791 (2021)

How to cite this article: Nabavi, S., et al.: APOTSA:
Anchor Placement Optimisation Using Discrete Tabu
Search Algorithm for Area‐Based Localisation. IET
Wirel. Sens. Syst. 1–14 (2024). https://doi.org/10.1049/
wss2.12092

14 - NABAVI ET AL.

 20436394, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.12092 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-4772-9651
https://orcid.org/0000-0003-4772-9651
https://orcid.org/0000-0003-4772-9651
https://pypi.org/project/shapely/
https://github.com/noureddinel/anchor-placement-area-based-localization
https://github.com/noureddinel/anchor-placement-area-based-localization
https://docs.python.org/3/library/time.html#time.process_time
https://doi.org/10.1049/wss2.12092
https://doi.org/10.1049/wss2.12092
https://orcid.org/0000-0003-4772-9651

	APOTSA: Anchor Placement Optimisation Using Discrete Tabu Search Algorithm for Area‐Based Localisation
	1 | INTRODUCTION
	2 | RELATED WORK
	3 | OVERVIEW OF HSL AREA‐BASED LOCALISATION
	4 | APOTSA
	4.1 | Discretisation
	4.2 | Tabu search approach

	5 | EVALUATION
	5.1 | Performance metrics
	5.2 | Experimental setup
	5.3 | Baselines for comparison
	5.4 | Results
	5.5 | Scalibility
	5.6 | Discussion
	5.6.1 | Flexibility
	5.6.2 | Speed
	5.6.3 | Flexibility in room layout
	5.6.4 | Flexibility in griding

	6 | CONCLUSIONS
	7 | FUTURE WORK
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

