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Abstract—Reliability of communications is key to expand
application domains for sensor networks. Since Wireless Sensor
Networks (WSN) operate in the license-free Industrial Scien-
tific and Medical (ISM) bands and hence share the spectrum
with other wireless technologies, addressing interference is an
important challenge. In order to minimize its effect, nodes can
dynamically adapt radio resources provided information about
current spectrum usage is available.

We present a new channel quality metric, based on availability
of the channel over time, which meaningfully quantifies spectrum
usage. We discuss the optimum scanning time for capturing the
channel condition while maintaining energy-efficiency. Using data
collected from a number of Wi-Fi networks operating in a library
building, we show that our metric has strong correlation with
the Packet Reception Rate (PRR). This suggests that quantifying
interference in the channel can help in adapting resources for
better reliability. We present a discussion of the usage of our
metric for various resource allocation and adaptation strategies.

Index Terms—ISM Bands, Interference, Dynamic Resource
Adaptation, Forward Error Correction, Cross-Layer Optimiza-
tions, Wireless Sensor Networks

I. INTRODUCTION

Wireless technologies have grown exponentially during the

last decade and are progressively cast around for more appli-

cations. Many standardized technologies operate in crowded

license-free Industrial Scientific and Medical (ISM) frequency

bands. Wireless networks in these bands are now ubiquitous

in residential and office buildings as they offer great flexibility

and cost benefits. However, despite the extensive research, the

issue of reliability of wireless networks remains a challenge.

Medium access techniques such as TDMA and FDMA cannot

be readily applied in the context of ISM bands [1], as they are

not designed to tolerate inter-network interference. Instead,

distributed multiple access schemes based on carrier sense,

such as CSMA, are widely employed along with Spread Spec-

trum modulation techniques which provide some robustness

as well as generate lower levels of interference. Although

this bottom-up approach to unlicensed spectrum usage exac-

erbates the challenges to achieve reliability and predictability

in low-cost wireless solutions, there are many gains for end

users [2] and extensive opportunities for innovation [3]. It

has also incubated new research directions, such as dynamic

spectrum allocation for future wireless systems [4]. Inspired

by this paradigm, we investigate mechanisms for interference

avoidance within ISM bands for low-power radios.

Wireless Sensor Networks (WSN) are seen as a viable al-

ternative for monitoring, control and automation applications,

provided they are made appropriately reliable and delays are

bounded. To this end, interference and coexistence pose a

major challenge. In this paper, we present the Channel Quality

(CQ) metric that provides a quick and accurate estimate of

interference by capturing a channel’s availability over time at

a very high resolution. This metric is useful towards achieving

better reliability and lower latency through dynamic radio

resources allocation.

Interference from coexisting networks in ISM Bands is

typically referred as Cross Technology Interference (CTI).

Even though CTI represents a well known problem [5–8] it has

not been adequately addressed in WSN. This problem is hard

to resolve for two reasons: a) efficient cooperative schemes

for spectrum access are not possible with currently deployed

technologies and b) there are large RF power and spectrum

footprint asymmetries. CTI could be avoided by sophisticated

communication protocols that are sensitive to instantaneous

spectrum occupation. However, low-cost hardware and lim-

ited energy-budget of the nodes make the typical spectrum

sensing techniques as proposed for non resource constrained

systems [9] unsuitable for WSN.

This paper has the following contributions:

• A novel channel quality metric that is based on channel

availability and is agnostic to the interference source.

• An analysis of the parameter space and validation of the

metric’s performance with real-world interference traces.

The rest of this paper is organized as follows. Section II

provides further motivation for this work and in Section III

we derive the expression for our CQ metric. Section IV

describes how we use the energy detection (ED) feature in

IEEE-802.15.4 compliant radios to measure evolution of signal

(interference) strength in 802.15.4 channels, our experimental

setup and our data collection experiments. We then discuss

results of our evaluations and conclude the paper in Section V.

II. MOTIVATION

Any given network configuration at deployment phase, like

channel selection, is typically not enough as the network



may experience communication interruptions or simply fails

at some point. We need WSN that seamlessly adapt resources

and self-organize to maintain their integrity in a changing

environment. Several recent studies have addressed burstiness

and interference in wireless links. Srinivasan et al. proposed a

metric to quantify link burstiness and show impact on protocol

performance and achievable improvements in transmission

cost [10]. Also, Munir et al. investigated scheduling algorithms

to improve reliability and provide latency bounds [11]. How-

ever, these solutions can not react to instantaneous changes in

the channel condition. They rather select routes and channels

using long-term observations.

There are aggressive techniques to deal with interference in

wireless systems. Successive Interference Cancellation (SIC)

has been partially demonstrated for 802.15.4 in Software De-

fined Radios [12]. Nevertheless, there are practical limitations

to advance with it. For example, it is known that SIC requires

highly linear amplifiers in the receiver (large dynamic range)

and also excellent adjacent channel suppression, because resid-

ual energy put in the front-end causes it to underperform

and desensitizes the radio. Both of these requirements lead

to expensive solutions. Furthermore, it is questionable whether

SIC’s demand for signal processing could outweigh its benefits

compared to other approaches, in view of available technology,

inexpensive hardware and energy budget constrains. Finally,

these ideas are not trivially applied to CTI because a large

heterogeneous set of possible signals to disentangle further

complicate SIC-based solutions.

Alternatively, we advocate modest improvements in low-

power receiver architecture can enable energy efficient spec-

trum sensing, which is necessary for nodes to form smart

reactive networks that eliminate the need for highly complex

radios. Spectrum occupation can change rapidly in time and

space, yet under unfavourable channel conditions nodes adapt

resources or find better channels to maintain communications.

Dynamic resource adaptation can lower latency bounds and

boost reliability but in order to encompass this information

into protocols one needs accurate spectrum sensing. In this

paper we show that sufficiently accurate spectrum sensing is

feasible with sensor nodes.

Currently, the radio transceivers in WSN nodes are mostly

based on the IEEE-802.15.4 standard that is intended for low-

power operation. On reception, off-the-shelf radios require

around 50 mW and consume 200 – 2000 µJ per packet

received. This power is drawn by the PLL synthesizer, digital

demodulator, symbol decoder and RF analog blocks for sig-

nal filtering, amplification and down-conversion among other

functions, typically in this order. Recent incursions in 0.18 µm

CMOS process of PLL realizations [13–16], targeted for these

systems, report fairly appealing figures: power consumptions

below 3 mW and lock-in times less than 30 µs. Since the PLL

synthesizer is known to be by far the most power-hungry block

in the receiver, these results suggest that the next generations

of WSN radios would require, at least, one order of magnitude

less chip energy per bit received.

Now, in order to support ED spectrum sensing only the PLL

synthesizer, analog RF blocks plus AGC are necessary, while

the demodulator can be turned off. Interestingly, among other

optimizations, this further reduces energy consumption while

the receiver is used exclusively to detect the RF energy in the

channel, but we have not yet found any 802.15.4 radio chip

providing this flexibility.

III. CHANNEL QUALITY METRIC

The source of interference in wireless networks are typically

very diverse. Interference causes a decrease in the Signal-

to-Noise plus Interference Ratio (SNIR) which can result

in packet losses. Any device that produces RF signals with

spectral components within or near the receiver passband is

a potential interferer. Average energy in a channel has been

used as an indicator of channel usage in the previous litera-

ture [17, 18]. Unfortunately, this metric is unable to distinguish

between a channel where the traffic is bursty with large

inactive periods and a channel that has very high frequency

periodic traffic with the same energy profile. Clearly, the first

scenario is preferable. It may well be the case that the traffic

in the second case consists entirely of short-duration peaks

resulting in much lower average energy but unusable channel.

Motivated by this observation, we propose a metric that is

based on the fine-grained availability of the channel over time

and ranks channels with larger inactive periods, or vacancies,

more favourably.

Consider the energy levels (or RSSI) in some channel are

measured periodically with period P . Suppose, the acceptable

noise level and interference threshold is RTHR. Therefore,

the channel can be considered idle when RSSI < RTHR.

For example, Figure 1 shows RSSI samples over time along

with idle intervals, which we refer as channel vacancies (CV).

Let mj denote the number of CV made of consecutive j idle

samples and n the total number of samples. Then m1+m2+
. . .+mn = m is the total number of observed CV. Notice that j

consecutive clear channel samples imply that the channel was

idle for at least (j − 1)P time units. We define the average

channel availability (CA) as:

CA(τ) =
1

n− 1

∑

j|(j−1)P>τ

jmj (1)

where τ > 2P is the time window of interest, which could be

the duration of transmission of packets. As we argued earlier,

a channel where m2j = k is more desirable than a channel

where mj = 2k, although jmj is the same for both cases. In

other works, we want to rank a channel with larger vacancies

higher even though the sum of the idle durations might be the

same. Hence, we define the Channel Quality metric as:

CQ(τ) =
1

(n− 1)

∑

j|(j−1)P>τ

j(1+β)mj , (2)

where β > 0 is the bias. CQ in equation (2) take values

between 0 and nβ , where the larger values indicate better

channels. Observe that this expression is agnostic to the in-

terference source. For example, Figures 1(a)-(b) show channel



-80

-70

-60

-50

-40

-30

 0  1  2  3  4  5  6

R
S

S
I 

(d
B

m
)

Time (ms)

10 101 153 5

total samples n = 300, vacancies m = 4

P = 20 µs, RTHR = - 44 dBm

(a)

-80

-70

-60

-50

-40

-30

 0  1  2  3  4  5  6

R
S

S
I 

(d
B

m
)

Time (ms)

30 72 63 63 22

total samples n = 300, vacancies m = 5

P = 20 µs, RTHR = - 44 dBm

(b)

Fig. 1. Channel vacancies: two scenarios with the same CA

vacancies with RTHR = −44 dBm. The channel availability

is similar in both cases (CAa = 0.88 in Figure 1(a) and

CAb = 0.83 in Figure 1(b)), but due to less collisions the

probability of correct reception is higher in the case of scenario

in Figure (a) than that in Figure (b).

IV. EVALUATION

In this section, we first describe our experimental set-up

used for data collection followed by an analysis of our metric

when applied to the data. We devise off-line experiments

and implement them in Python [19] scripts to be run over

the traces. This has the advantage of producing a naturally

controlled environment, e.g. isolating channel effects that are

present in an online experiment. We show that our metric is

highly correlated with PRR.

A. Experimental Setup

In order to experimentally investigate our proposal we need

traces of interference signals that help understand channel

degradation in real-world settings. More specifically, we want

to find out how our metric can help identifying a usable

channel and eventually establish which alternative techniques

can be applied to employ it effectively. Therefore, we have

designed an experimental setup to study interference in the

2.4 GHz ISM band. This band is available globally; there

are thousands of certified devices on the market that operate

in it and coexistence problems are well known [5, 6], which

ultimately facilitates the task of collecting interference traces.

Our setup has no limitations to study any kind of interference,

but given that Wi-Fi has been identified as the most critical

interference source to affect WSN [6] and it is also widely

available, in this paper we report experiments with traces

where interference stems solely from Wi-Fi networks.

In our setup we scan all 16 802.15.4 channels simultane-

ously. We employ a set of 17 TelosB sensor nodes. In order

to do multiple channel readings simultaneously we use one of

the motes to transmit a scanning beacon on channel 26, which

instructs all other nodes to switch to their respectively assigned

channels and begin scanning. The motes are connected via

USB hubs to a laptop as shown in Figure 2. We sample RSSI

values at 40 kS/s on the CC2420 transceiver and store them in

a memory buffer up to the largest possible number of samples.

After completing 5600 samples, in approximately 130 ms, all

nodes return to listen on channel 26 and wait for the next

scanning beacon, in 8 seconds, while all RSSI readings we

(a) (b)

Fig. 2. The experimental setup used to collect energy level traces on IEEE-
802.15.4 channels deployed at the Library of the Faculty of Engineering at
the University of Porto (a) and detail of TelosB motes arranged in a USB
hub (b).

kept in the memory buffer are dumped to a file. Having one

node per channel enables us to increase the pace at which data

is collected and makes it easy to organize the log files.

A large density of Access Points capable of producing noto-

rious spectrum occupation is mainstream in many metropolitan

areas today and particularly in university campus. However,

it is the density of users and the overall volume of data

been transferred that actually produces congestion. Thus, we

used our ensemble to collect measurements in our laboratory,

which has moderate traffic on a few 802.15.4 channels. Then

we conducted a measurement campaign at the Library of the

Faculty of Engineering of the University of Porto, where we

found very heavy traffic from 802.11 Wi-Fi networks. In our

experiments, signals are well above the noise floor (10 - 70

dB), but more relevant is the time distribution of burst patterns

that varies from a few microseconds to tens of milliseconds.

To examine our metric proposal we then perform off-line

experiments, upon a set of traces from a four hour capture.

B. Sampling Time

One of the questions we seek to answer is how long should

we sample a channel in order to have a meaningful CQ value.

Sampling too shortly leads to uncertainty about the near future

state of the channel. Notice that the clear channel assessment

(CCA) used in Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA) mechanism would not help here given

the asymmetric scenario in transmission power and spectral

footprint [see 8]. Basically, such asymmetries in the PHY

layer among different radios, make the distributed coordination

approach fail. WSN nodes employ orders of magnitude less

RF power than other channel contenders, which makes them

more vulnerable to packet corruption since it is improbable

that other nodes would detect an ongoing transmission and

thus defer theirs. For this reason, it is necessary to sample

for longer time, definitely larger than a CCA accounting for 8

symbol periods or 128 µS, in order to capture a sequence of

events large enough to estimate the probability of successful

packet reception.

On the other extreme, sampling too long introduces a

cumulative effect that misses the dynamics of the channel

availability and leads to poor prediction of the next state

of the channel. The more distant in time the events are the



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100  120

C
h
a
n
n
e
l 
Q

u
a
lit

y

Sampling Time, Ts (ms)

β = 0.2, RTHR = -55 dBm

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100  120

C
h
a
n
n
e
l 
Q

u
a
lit

y

Sampling Time, Ts (ms)

β = 0.2, RTHR = -65 dBm

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120

C
h
a
n
n
e
l 
Q

u
a
lit

y

Sampling Time, Ts (ms)

β = 0.5, RTHR = -65 dBm

(c)

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100  120

C
h
a
n
n
e
l 
Q

u
a
lit

y

Sampling Time, Ts (ms)

β = 1.0, RTHR = -65 dBm

(d)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100  120

C
h
a
n
n
e
l 
Q

u
a
lit

y

Sampling Time, Ts (ms)

β = 0.2, RTHR = -75 dBm

(e)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120

C
h
a
n
n
e
l 
Q

u
a
lit

y

Sampling Time, Ts (ms)

β = 0.5, RTHR = -75 dBm

(f)

Fig. 3. CQ computed over all traces for different sampling times. The curves
represent the median, boxes represent the interquartile range and bars stand
for the rest of the values

more likely is that their probabilities are independent and

therefore does not help to estimate the channel condition

either. Furthermore, during the sampling period the radio is

turned on which consumes energy.

In praxis this means that we need to find a compromise for

the sampling time that is intrinsically dependent on the system

observed.

In order to understand this compromise we progressively

compute CQ, up to 120 ms, over all traces. Figure 3 illustrates

the results which depend, primarily, on the threshold RTHR.

Since we are not interest here in any specific packet duration,

we chose τ = 0.2 ms, small enough so that most CV

contributions count in Equation 2. One common trend in

all graphs is that CQ stabilizes after some time, provided

there is sufficient interference. This indicates that Equation

2 converges toward a value that is proportional to an average

number of vacancies during the sampling period and, clearly,

also depends on β and the values of j.

As can be seen in Figure 3, the heavier the interference the

faster CQ stabilizes. On the contrary, if the channel is mostly

idle (e.g. RTHR = −55 dBm as in 3(a)), CQ grows – up to

nβ– with very high probability. An intermediate case, as when

CQ is computed for -65 dBm, see 3(b)-3(d), demonstrates that

the metric typically grows to a certain value until it finally

stabilizes. Hence, these sampling times are much smaller that
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the time scale of the interference pattern present in the channel.

Based on this behaviour, an optimum sampling time would be

as long as it is necessary to have the median of CQ stabilized.

In a system where this metric is computed online the

sampling time, represented by n in Equation 2, could be

dynamically maintained at this turning point where the median

of CQ stabilizes, or below a certain maximum value. We defer

the development of a control algorithm for this purpose to

future work. For the rest of experiments we use hand-picked

scanning times, smaller than 40 ms, based on our exploration

of these traces.

C. Correlation with PRR

We now investigate how the channel availability as de-

scribed by our CQ metric is related to the probability of

successful packet receptions. For this experiment we use a

third of each RSSI trace, lasting 130 ms, to compute the metric

and the remaining to check for the presence of interference

that may lead to packet corruption. If the RSSI readings

remain under a predetermined value RTHR during the duration

of each packet, then the packet is considered successfully

received. Actually for correct reception a signal to interference

margin is required. This is known as the Co-channel Rejection

Ratio and is defined for each radio. Multiple packets are

transmitted over each trace and the average is computed for

PRR. Packets are transmitted periodically and transmissions

are separated by an inter-packet interval IPI = 1 ms. In this

way, we conduct an experiment with 240,000+ off-line packet

verifications on traces obtained from the library with Wi-Fi

interference and using an RSSI threshold of -65 dBm.

As shown in the previous section, Equation 2 provides a

range for CQ values that depends on n and β. However, in

order to compare among CQ values computed with different

parameter values we rewrite CQ as:

CQ(τ) =
1

(n− 1)(1+β)

∑

j|(j−1)P>τ

j(1+β)mj , (3)

CQ in Equation (3) now take values between 0 and 1,

regardless of n and β values. For example, if we compute



Equation 3 with β = 0.3 for an 802.15.4 ACK frame lasting

352 µs, in the scenario in Figure 1(a) and (b) we obtain

CQa = 0.65 and CQb = 0.50, which are more accurately

reflect the difference among the two channels than previous

values from Equation 1.

Figure 4 shows the results where we find a strong correlation

with PRR. The curves correspond to the median and the error

bars represent the interquartile range computed over the entire

set of traces. We compute CQ for bias (β) values 0, 0.3 and 0.7

to highlight that β = 0.3 linearises the curves. Notice, β = 0
is equivalent to average channel availability as described by

Equation 1. In this case CQ values grow faster than PRR which

indicates that despite channel been less occupied there are still

many collisions that hinder PRR values. As we increase β, this

selectively raises CQ favouring larger CV to have more weight

in the sum.

This is an interesting result, as been able to tune β and

maximize the correlation among PRR and CQ makes this

metric an accurate indicator of the channel condition. Similar

to the scanning time, an algorithm to find a value for β that

is optimum is left out of this paper.

D. Discussion

In this section we revisit some resource adaptation tech-

niques and discuss how they could be dynamically applied to

leverage our CQ metric for interference-aware communication

protocols.

Lin et al. demonstrated a novel pairwise transmission power

control for WSN that performs significantly better than node-

level or network-level power control methods [20]. They im-

prove PRR and energy consumption by dynamically adapting

the RF transmission power to maintain the minimum level

required to guarantee a good link. This is a clever approach

to compensate for the non-linear pathloss. However, it does

not account for two important aspects: a) the irreducible error

floor [21, Ch. 6] produced by fading can not be removed

by increasing transmission power and b) it does not address

external interference. A solution to both these problems is

dynamic frequency and power adaptation, simultaneously.

In this regard, one can augment such pairwise power control

mechanism with CQ, directly establishing a dynamic lower

bound for the RF power to use in the transmitter, previous

to actual transmissions. Besides, since maximum transmission

power can not be exceeded, an alternative such as a moving

to a different channel may be inferred immediately. Starting

from the RSSI samples in memory, we could ask the question:

which signal level would result in a CQ value that satisfies

a given requirement for channel usage under the current

interference level?

In general, protocols designed for multichannel operation

can maintain good links using a channel ranking with dis-

tributed CQ computations, among neighbour nodes, provided

a control channel among them is stable. Additionally, this

could aid topology changes when interferers spectral footprint

is very large, as in 802.11n, to take advantage of the irregular

coverage, common in some indoor environments.

Successful transmissions in the scenarios in Figure 1 also

depend on the packet size. Certain packet size would maximize

throughput or minimize the time to deliver a data object

over the channel, for a given interference level. Observe that

shorter packets have better chances of avoiding collisions (and

hence retransmissions) but also result in higher overhead due

to fixed packet headers and acknowledgement delays. One

could look into the relationship between these optimum packet

sizes and the CQ values computed on the channel. Similar

to the PRR correlation in Figure 4, there would be a value

of β that linearises such dependency. Based on observed CQ

values protocols can then tune packet size to transfer data in

a minimum time.

FEC techniques pose a trade-off between data recovery

capacity and its inherent payload and computation overhead.

Recently, Liang et al. demonstrated the Reed-Solomon (RS)

correcting codes performs well while recovering packets af-

fected by 802.11 interfering signals [8]. Since interference

levels may vary extensively it is interesting to see if this

solution can benefit from simple CQ based optimizations.

On the other hand, energy cost to compute the CQ metric

must be further explored in view of overall energy balance

in dynamic resource adaptation. In future work we plan to

extend our experiments and later implement the metric on

WSN hardware.

V. CONCLUSIONS

We introduced a new channel quality metric that is based

on the availability of the channel over time. The metric is

useful for interference aware protocols in WSN. We described

our experimental setup for collecting real-world interference

traces in the 2.4 GHz ISM band. Using this data, we showed

that our metric has strong correlation with PRR. Thus, our

metric’s characterization of a channel is reliable and applicable

in practice. We also discussed dynamic resource allocation

techniques for interference-aware protocols in WSN for which

our metric can prove to be useful. We are currently working

on a software implementation of CQ for WSN hardware to

further validate its performance in online experiments.
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