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ABSTRACT
The ability of fine-tuning the performance of Bluetooth Low En-
ergy (BLE) communication is essential to create low-power wire-
less applications with heavy user interaction, such as smart ther-
mostats or door locks. One of the key challenges when designing
such applications is finding the right trade-off between a system’s
responsiveness and energy-efficiency. Although there exists re-
search works that improve the performance of BLE communication,
all these approaches focus on connection-based BLE. Most BLE-
based applications, however, spend the majority of their time in
connection-less device discovery, waiting for approaching users.
The energy-efficiency and timeliness in this state are defined by
parameters that are often statically set at compile time. Although
supported by the BLE specifications, how to dynamically adapt
these parameters to user behavior is still an open question. In this
paper, we tackle this challenge and design a strategy to improve
the energy-efficiency and responsiveness of BLE device discovery.
Towards this goal, we model the device discovery process and iden-
tify its key parameters. We further design an adaptive advertising
strategy that allows smart objects to adapt their device discovery
parameters to the user behavior. We implement this adaptive strat-
egy and measure its performance in a real-world application, the
Nuki Smart Door Lock. Our experiments show that a smart lock
using our strategy consumes 48% less energy while reducing the
device discovery time by up to 63% compared to the use of static pa-
rameters. Furthermore, we discuss how nearby BLE devices can be
used to inform the lock about approaching user devices and hence
to improve its responsiveness in low-power phases even further.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; De-
pendable and fault-tolerant systems and networks; • Networks→
Network protocols; • General and reference → Experimentation;
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1 INTRODUCTION
Since its release in 2010, Bluetooth Low Energy (BLE) has become an
increasingly popular wireless technology to connect smart objects
to the Internet of Things (IoT). Besides its low power consump-
tion and reliable communication, especially its wide adoption in
consumer electronic devices (such as smartphones and wearables)
makes BLE the wireless technology of choice to build IoT applica-
tions requiring heavy interaction with the end-users. Smartphones,
for example, are often used to interact with BLE-based smart objects
such as health and fitness monitors [8, 28], pet trackers [27], smart
thermostats [25], and smart door locks [12].
BLE efficiency vs. responsiveness. This increasing popularity of
Bluetooth Low Energy has led to a large body of research works
aiming to improve its communication performance, especially when
it comes to minimizing energy consumption and end-to-end de-
lays [16, 24, 29]. One of the key challenges in designing BLE-based
IoT applications is, indeed, the omnipresent trade-off between sys-
tem responsiveness and energy-efficiency. This trade-off makes pro-
tocol parametrization a catch-22 dilemma, whereby longer radio-on
times are required to increase the responsiveness of the system, but
extended radio-off times should be used to preserve the typically
limited energy budget of battery-powered devices. For instance,
some BLE-based applications such as health monitors [28] may
need to minimize energy consumption for economic viability, while
still ensuring a timely delivery of alarm messages as soon as the
vital signs of the user start to deteriorate. In this regard, the BLE
standard offers the possibility to fine-tune several communication
parameters in order to design a system that is more energy-efficient
or responsive depending on the application’s needs.
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BLE parameter adaptation. Spörk et al. have shown how to use
connection parameters as tuning knobs to adapt BLE’s connection-
based communication to changes in the observed traffic load at
runtime [29]. Mikhaylov has shown how to adjust the connection
interval to increase the responsiveness of a system based on BLE
during data transfer [24]. These and other BLE parameter adapta-
tion approaches [19, 20] can significantly increase the performance
of BLE systems, but only focus on adapting the communication pa-
rameters of an already-established BLE connection. Most BLE-based
applications, however, do not spend a significant portion of time
with an established connection. Instead, in several IoT applications,
the smart objects remain mostly inactive and only sporadically need
to timely react to user input. For example, a smart door lock only
interacts with the user when the latter approaches the front door
and wants to lock/unlock it. Similarly, a smart thermostat does not
need to interact with a user when the latter is outside the house.
In this class of IoT applications, the BLE smart objects spend most
of their time performing device discovery, i.e., they either scan for
other BLE devices in range, or advertise their presence so that other
devices can establish a connection.
Need for adaptive BLE device discovery. How often a BLE de-
vice advertises its presence or scans for other devices in range is
defined by a set of device discovery parameters. The latter are typ-
ically chosen during the development phase and statically set at
compile time [21, 22]. However, static parameters are often not suit-
able for BLE-based systems that need to interact with an end-user.
Most applications have indeed phases in which the smart objects
need to be as responsive as possible (e.g., when users want to inter-
act) and other phases where they can focus on conserving energy
in order to preserve the capacity of batteries (e.g., when no user
is nearby). The number and duration of these phases essentially
depend on user behavior. A developer designing a smart lock could,
for example, statically select the device discovery parameters of a
smart door lock to be responsive in the early morning and late af-
ternoon, when most people typically leave to work and arrive back
home, respectively, and to privilege energy-efficiency in the other
times of the day. This may work well in a typical family household,
but not in a single household where a user works mostly at night.

This dependency on user behavior makes it hard for developers
to select suitable static parameters for the BLE device discovery pro-
cess that result in a satisfactory usability of the system [15]. Hence,
there is a need to efficiently adapt the device discovery parameters
at run-time based on the user behavior. Despite the BLE specifica-
tions [2] actually support a run-time adaptation of device discovery
parameters, no prior work has – to the best of our knowledge –
yet studied how to efficiently adapt these parameters to increase
the performance of the device discovery process, nor proposed a
practical implementation on a real-world IoT application.
Contributions. In this paper, we focus on a BLE-based smart
door lock and design strategies to significantly improve its energy-
efficiency and responsiveness. After reviewing relatedwork (Sect. 2),
we first model the BLE device discovery process and gain a deep
understanding of which device discovery parameters significantly
influence the energy consumption and responsiveness of a BLE-
based IoT system (Sect. 3).

Using the derived model, we design and implement an adaptive
advertising strategy allowing a generic smart object to learn from
past activities, and adapt the BLE device discovery parameters at
run-time based on the observed user behavior (Sect. 4). In particular,
our adaptive advertising strategy learns the user habits and tries to
automatically find a compromise between the energy consumption
and responsiveness of the device discovery process.

We implement the proposed adaptive strategy on a Cypress
CY8C4248LQI-BL483 platform [6] – the same one used by the Nuki
Smart Lock [12] manufactured by Nuki Home Solutions (Sect. 5). We
then evaluate the performance of our adaptive advertising strategy
and show that it can successfully adapt the BLE device discovery
parameters on the smart lock depending on the user behavior, with
a decrease in energy consumption up to 48% and a reduction in the
average device discovery time by up to 63% compared to the use of
static BLE communication parameters (Sect. 6).

To improve the responsiveness of the smart object when it is
using BLE device discovery parameters that privilege energy ef-
ficiency to responsiveness, we propose the use of a BLE range
extender (Sect. 7). The latter is a second BLE device seamlessly in-
forming a smart object about other BLE devices approaching its
communication range. We show how the range extender can com-
plement the proposed adaptive advertising strategy to increase the
responsiveness and efficiency of a smart object even further.

We finally conclude the paper with a summary of our contribu-
tions and an outlook on future work (Sect. 8).

2 RELATEDWORK
A large body of works has focused on BLE technology, especially
on the provision of services such as neighbor discovery [16], in-
door localization [7], group management [11], and locality-based
authorization [10], as well as on the design of new platforms [3].
BLE modeling. A few works have modeled the energy-efficiency
and performance of BLE communication. Liu et al. [22] present an
analytical model showing the influence of the advertising interval,
scanning interval, and scanning window on the energy consump-
tion of BLE devices during device discovery. Similarily, Kamath
et al. [17] accurately measure the energy consumption of a BLE
device that exchanges data packets over a BLE connection. Jeon
et al. [15] model the performance of device discovery in BLE and
show the trade-off between discovery latency and energy consump-
tion. They conclude that the behavior of the device discovery de-
pends on the BLE parameters of the advertising and scanning device.
Cho et al. [4] show that, by increasing the number of BLE devices
that perform device discovery, the discovery latency of the devices
increases exponentially. The authors highlight that this contention
is mainly caused by parameters selected inappropriately. Likewise,
Julien et al. [16] present a protocol that calculates suitable BLE com-
munication parameters based on application metrics that minimize
collisions in the BLE device discovery. To evaluate the suitability
of parameters, Kindt et al. [18] have proposed an algorithm to com-
pute the discovery latency of BLE and ANT depending on their
selected parameters.

Unlike these works, in this paper we accurately model the energy
consumption of an advertiser as a function of the selected adver-
tising interval and the used advertising payload. Furthermore, we
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outline the influence of the advertising and scanning parameters
on the device discovery latency and show how to choose these
parameters appropriately to minimize device discovery time.
BLE parameter adaptation. Based on their analysis of BLE de-
vice discovery process, Liu et al. [21] identify that standardized BLE
parameters may be highly inefficient and propose to adaptively re-
duce the advertising interval when encountering a long discovery
latency. Once device discovery has been successfully performed,
the mechanism proposed by Mikhaylov [24] may be used to op-
timize the connection establishment process of BLE by adapting
the connection interval. Lee et al. [20] perform experiments show-
ing the influence of the connection interval on the packet delivery
rate of BLE connections . Likewise, Gomez et al. [13] evaluate the
performance of BLE connections and mention that the connection
interval and slave latency parameters could be adapted at runtime
to realize high-level application metrics. Spörk et al. [29] monitor
the traffic load of a BLE connection in the BLE slave and adapt the
connection parameters accordingly.

In contrast to these approaches, we adapt the advertising interval
depending on user behavior and, therefore, optimize the device
discovery process for each individual system.

3 BLE DEVICE DISCOVERY
To find BLE device discovery parameters that select a suitable trade-
off between energy-efficiency and responsiveness, we investigate
the BLE device discovery process. We first describe the latter in
detail and identify the key parameters that influence its energy
consumption and responsiveness in Sect. 3.1. Next, we discuss
how to select suitable parameters on a BLE scanner and derive
a lightweight mathematical model that allows us to estimate the
energy consumption of a BLE advertiser as a function of the used
advertising parameters in Sect. 3.2.

3.1 BLE Primer
BLE supports two modes of communication: a connection-less and
a connection-based mode. When using the connection-based com-
munication mode, two BLE devices bidirectionally exchange data
over an established BLE connection. In this mode, the two devices
use one of 37 BLE data channels selected by the Adaptive Fre-
quency Hopping (AFH) algorithm. To use the connection-based
mode, however, two BLE devices need to perform device discovery
first to synchronize and establish a connection. During the device
discovery process, a BLE device is either an advertiser that periodi-
cally broadcasts its BLE capabilities or a scanner that is listening to
nearby BLE devices and initiates a connection if necessary.
Advertising. A BLE advertiser periodically broadcasts short data
packets during so called advertising events, as shown in Fig. 1. These
advertising events are non-overlapping time-slots that are equally
spaced-out over time. The time between the start of two consecutive
advertising events is defined by the advertising interval tADV _I NT ,
which can be configured to a value between 20ms and 10.24 seconds.
To avoid persisting collisions with other BLE devices, a random
delay tDELAY between 0 and 10ms is added at the end of each adver-
tising event. During each advertising event, the advertiser transmits
its advertising payload on up to three advertising channels, with

ADV37 ADV38 ADV39 ADV37 t

tADV_INT tDELAY

tTXtTXtTX tIFStIFS

Figure 1: A BLE advertising event on channels 37, 38, and 39.

a mandatory Inter Frame Spacing (tI F S ) of 150µs [2]. These adver-
tising channels (BLE channels 37, 38, and 39) are dedicated BLE
radio channels that are only used for device discovery and data
broadcasting and were choosen to have minimum overlap with
other wireless technologies in the 2.4 GHz band, such as Wi-Fi.

The time spent on each of the advertising channels tTX is deter-
mined by the advertising payload length. After sending the payload
on a channel, the BLE device may receive a scan or connection
request from a scanning device. A scan request is used to request
further broadcast information, while a connection request is sent
to establish a BLE connection. At the end of an advertising interval,
the BLE radio is powered-off until the start of the next advertising
event in order to conserve energy.
Scanning. A BLE scanner periodically listens for nearby adver-
tisers to scan for further information or to initiate a connection.
The timing of BLE scanning is defined by two parameters: the scan
interval and the scan window, as shows in Fig. 2. The scan interval
tSCAN _I NT defines the time between the start of two consecutive
scanning phases; the scan window tSCAN _W IN determines the time
the radio scans during a scanning phase. When the scan window
is equal to the scan interval, the scanner is never turned off and
the device performs continuous scanning. During such a scanning
phase, the device is only able to listen on one of the three advertis-
ing channels, using a different advertising channel for each event.
Once a nearby advertiser broadcasts on the same channel on which
the scanner is currently listening, an advertising packet can be
successfully received, as shown in Fig. 2.

If the advertising packet has been successfully received, the scan-
ner is aware of the advertiser and the device discovery process was
successful. In this case, the scanner may choose one of three options:
(i) continue listening, (ii) sending a scan request, or (iii) initiating
a connection. By continuing to listen, the scanner is performing
so called passive scanning and is passively observing its environ-
ment without disclosing its presence. In case the scanner wants to
request more information from the advertiser, it performs active
scanning by sending a scan request. After receiving a scan request
(SCAN_REQ), an advertiser sends additional broadcast information
using a scan response (SCAN_RSP), as shown in Fig. 2. To initiate a
connection, the scanner sends a connection request carrying all the
necessary connection parameters, such as the connection interval
and the data channel map. After a connection has been success-
fully established, both advertiser and scanner stop device discovery
operations and use the BLE connection to exchange data.

3.2 Lightweight Model
In this work, we are interested in how the device discovery pa-
rameters influence the responsiveness of device discovery and the
energy consumption of a BLE advertiser. We focus on modeling the
behavior of the BLE advertiser, because these devices are usually
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Figure 2: BLE device discovery: BLE advertising (A) and ac-
tive scanning (S) on three advertising channels with success-
ful discovery (scan request & response) on channel 38.

battery-powered and thus have a limited energy budget. These ad-
vertisers also allow a fine-grained control of the used advertising in-
terval. The scanning devices, such as smartphones, instead, usually
have a continuous power supply or are frequently recharged. Be-
cause these devices run a complex operating system (e.g., Android),
a developer has limited control over the used scanning parameters.
Responsiveness. To decrease the discovery time of a system, a
developer has the possibility to change the device discovery pa-
rameters on the BLE advertiser device and on the BLE scanner. As
shown in [15, 22], a short advertising interval directly leads to a
short device discovery latency, but also to a high power consump-
tion on the advertiser. To decrease the discovery time, however, a
developer could also adapt the scan parameters (scan window and
scan interval). We therefore suggest the following scan parameters
that minimize the device discovery latency of the application:

• A scanner should scan on all three advertising channels to
minimize the effect of radio interference and avoid not de-
tecting advertisers using only specific advertising channels.

• The scanner should use continuous scanning, where the
scan window is equal to the scan interval and therefore the
scanner’s radio is always listening for nearby advertisers.

• The scan interval of the scanner should be set to
tSCAN _I NT = tADV _I NT + tDELAY + 3tTX + 2tI F S .
This ensures the shortest possible scan window that is still
able to receive at least one advertising packet successfully.

Energy consumption. The overall energy consumption of a BLE
advertiser mainly depends on the used advertising interval [15, 22].
A BLE-based smart object may use n different advertising intervals
over time (tADV _I NT 1, . . . , tADV _I NTn ), which result in n differ-
ent power consumptions of the system (P1, . . . , Pn ). The energy
consumed by the smart object over any given period is

E =
n∑
i=1

Pi · ti (1)

where Pi is the system’s power consumption when using an adver-
tising interval tADV _I NT i , and ti the amount of time during which
tADV _I NT i is used.

The power consumption of the system is calculated as:

Pi = PDS + ETX · fADV i (2)

where PDS is the power consumption of the smart object when the
system is in deep sleep mode (e.g., the radio is not used), and ETX
is the energy spent during a single advertising event for sending
the advertising payload on all advertising channels. fADV i is the
number of advertising events per second, calculated as:

fADV i =
1

tADV _I NT i + tDELAY
(3)

Table 1: Measured power consumption for different adver-
tising payload length on the CY8C4248LQI-BL583 platform.

Adv. interval [ms] nBytes [bytes] Power [mW]
152.5 30 1.1615 ± 0.0030
152.5 3 0.8581 ± 0.0029

Deep sleep 0 0.0546 ± 0.0027

where the advertising interval is represented by tADV _I NT i and
tDELAY defines the average delay that is added after every advertis-
ing event by the BLE radio. Because the individual tDELAY values
are randomly and equally distributed between 0 and 10milliseconds,
we use an average of tDELAY = 5ms for our model (see Fig. 1).

The energy ETX spent during an advertising event depends on
the application-specific advertising payload length (nBytes ) and is:

ETX = ETX ,Base + ETX ,Byte · nBytes (4)

where ETX ,Base is the hardware-specific base energy consumed by
the system during an advertising event (e.g., for powering the radio
and processing BLE advertisement data). ETX ,Byte is the hardware-
specific energy cost for sending a single byte of advertising payload
on all three advertising channels.

To calibrate our model for a specific platform, we only need to
measure the system’s power consumption during: (i) deep sleep,
(ii) advertising with a fixed interval TADV _I NT and a long payload,
and (iii) advertising with the same interval TADV _I NT and a short
payload. We use an advertising inverval of 152.5ms, but the cal-
ibration can be done with an arbitrary TADV _I NT value. Table 1
shows all necessary measurements that need to be performed in
order to calibrate our model. Based on these measurements and us-
ing Equations 2 to 4, we derive ETX ,Base to be 121.2472570 µJ and
ETX ,Byte to be 1.7696481 µJ on the CY8C4248LQI-BL583 platform.

4 ADAPTIVE ADVERTISING
Based on the investigation of BLE advertising and the resulting
model presented in Sect. 3, we introduce next an adaptive advertis-
ing strategy. Using the latter, a smart object is able to learn from
past user behavior, identify different interaction phases, and find
an appropriate trade-off between the system’s energy consumption
and responsiveness for each phase by adapting the advertising in-
terval at runtime. In phases where a user is likely to interact with
the smart object, a short advertising interval is used to increase
responsiveness. During phases where user interaction is unlikely,
the strategy uses a long advertising interval to minimize energy
consumption. Every smart object that uses our adaptive strategy
calculates its own individual schedule based on its user behavior.

Our adaptive advertising strategy is split into three parts. First,
the smart object needs to log information about its recent device
discovery activities (Sect. 4.1). Second, our strategy identifies differ-
ent user interaction phases in the logged data (Sect. 4.2). Third, the
advertising interval of the system is adapted at runtime according
to the requirements of each individual phase (Sect. 4.3).

4.1 Logging Device Discovery Activities
Our strategy adapts the advertising interval of a device based on its
observed past user behavior. Therefore, the device needs to store
the timestamps when it interacted with its users (e.g., when it has
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Figure 3: Progress of advertising levels during a single day
(bottom) for three different advertising levels and clusters
based on 300 recent user interactions (top).

received a scan or connection request). In principle, there are no
limitations on the number of logged timestamps. However, large
databases may be needed when the advertising should be adapted
over long time periods, such as several months or a whole year.
Because all calculations on the timestamps require little computa-
tional effort, they can be performed on the smart object and the
data does not need to leave the system, which ensures user privacy.

4.2 Identifying User Interaction Phases
Using the stored timestamps, our adaptive advertising strategy
analyzes the past user behavior by clustering time values and iden-
tifying individual interaction phases with different device discovery
requirements. All logged timestamps are mapped to an adaptation
period P on which basis the advertising schedule is calculated. For
example, Fig. 3 shows a mapping of 300 timestamps to a period
P of 24 hours, resulting in a schedule that adapts the advertising
interval on a daily basis. We use a 24-hour adaptation period, but
our strategy is able to calculate hourly or even yearly schedules.

To identify the different user interaction phases over time, we use
the algorithm k-means [23]. Using this algorithm, the mapped times-
tamps are categorized in k different clusters on the one-dimensional
time axis. Because the initial cluster center positions used by k-
means have an influence on the algorithms performance and its
result, we use a simplified version of the k-means++ initialization
algorithm [1]. The first initial cluster center is set to a randomly
selected timestamp from our log data. All other initial cluster cen-
ters are then placed to maximize the distance between all starting
positions. Although this placement of the initial cluster centers re-
quires more computation time than placing the centers at random
positions, this approach ensures a fast convergence of k-means and
therefore results in a lower overall energy consumption.

After the k-means algorithm has identified k different clusters
with a high user interaction density, our adaptation strategy cal-
culates the different interaction phases. First, it takes each cluster
center Ci and calculates the individual standard deviation δi of
the cluster’s data points. Then, our adaptation algorithm identifies

the time periods from one standard deviation δi before the cluster
center to one standard deviation δi after the cluster center (Ci ± δi )
as the phases where the fastest possible advertising level should be
used, as shown in Fig. 3. The standard deviation δi of each cluster
(and therefore its duration) depends on the cluster’s individual data
points. To calculate the next application phases, our strategy identi-
fies the period of δi before and after the fastest interaction phase as
the phase where the second fastest advertising level should be used.
This calculation continues until the slowest possible advertising
level is reached, resulting in a stair-shaped advertising schedule.

Our adaptive advertising strategy is configurable and supports a
wide range of different smart object applications. By changing its
parameters, it can be tailored to specific application needs.
Advertising levels. Instead of using concrete advertising interval
values, our strategy calculates the advertising schedule based on
different advertising levels. This makes our strategy independent
from any specific hardware platform and its supported advertising
interval values. Each advertising level can be mapped to a certain
advertising interval on the used device. Higher adverting level
values indicate longer advertising intervals and hence a low re-
sponsiveness of the system; advertising level 0 is the level with the
highest possible responsiveness. The parameter ADV_LEVEL is used
to configure the lowest supported advertising level used by our
adaptation strategy, resulting in ADV_LEVEL + 1 possible levels.
Number of clusters. The NUMBER_OF_CLUSTERS parameter de-
fines the number of clusters that are identified by k-means. While
choosing a high number of clusters generally leads to a finer adapta-
tion schedule, it may also cause problems when the user interaction
timestamps are widely spread over time. In such scenarios, our
strategy may detect many different clusters during the whole adap-
tation period P and the resulting advertising schedule may never
use the high advertising levels where energy would be conserved.
Phase durations. By changing the WIDTH parameter of our strat-
egy, one can increase or decrease the duration spent in higher
advertising levels. When WIDTH is set, it is used as a divisor of the
individual phase lengths. Then, the fastest phases around each clus-
ter range from Ci −

δi
W IDTH to Ci +

δi
W IDTH . A WIDTH above 1

reduces the time spent in each level making it possible to enter low-
power states faster, but may impact the system’s responsiveness.
Cluster weighting. Depending on the user behavior, the k-means
algorithm may identify clusters that only consist of very few times-
tamps. Such clusters are likely outliers and entering the fastest
advertising level in such cases would reduce the battery lifetime of
the system without any user benefit. To tackle this issue, we use a
two stage cluster weighting that helps mitigating unnecessary ad-
vertising using the fastest advertising level due to data outliers. The
weighting is defined by two parameters. The IGNORED_THRESHOLD
defines the minimum percentage of timestamps a used cluster needs
to hold. The FASTEST_LEVEL_THRESHOLD defines the minimum per-
centage of timestamps a cluster needs to hold to use the fastest
advertising level. For example, with an IGNORED_THRESHOLD of 5,
a cluster needs to hold as least 5% of the timestamps to not be
ignored by our strategy. With a FASTEST_LEVEL_THRESHOLD of 10,
a cluster needs to hold at least 10% of the timestamps to use the
fastest advertising level. Using this cluster weighting, the number
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of active clusters may be reduced and outlying data points may
be filtered. As a consequence, however, the responsiveness of the
system may be decreased for certain scenarios.

4.3 Adapting the Advertising Interval
Using the detected user interaction phases, we define an advertising
schedule that defines when an adaptation of the advertising interval
has to be performed.
From phases to a schedule. Based on the calculated phases, we
extract points in time, so called wake-up points, where the system
needs to wake-up and change its advertising interval. Here, we only
consider the application phases that remain after cluster weighting
has been performed. Using our strategy, the advertising level is a
function that only increases or decreases by one level at a time. De-
pending on the actual distribution of user data, however, there may
be two different types of inconsistencies that need to be resolved be-
fore creating the final advertising schedule. First, an inconsistency
may occur when the phases of two different clusters overlap in
time. For example, one cluster may suggest the fastest advertising
level, while another cluster suggests advertising level 2. Second,
the advertising level used at the start of the adaptation period P
may be different than the level used at the end of the period. This
causes a problem when the system enters a new period.

We tackle these problems by using a scan line principle that we
apply to two consecutive adaptation periods of our schedule (two
days in a row). Using this scan line, we scan over the whole schedule
and consider all proposed changes in the advertising levels from
the active clusters. If, at any point in time, multiple different levels
are suggested, the highest advertising level is used.
Adaptation at runtime. In order to conserve energy, all unused
system components are switched off whenever possible: including
entering the low-power state of the CPU. With the calculated ad-
vertising schedule, it is possible to wake-up the CPU only when
an adaptation of the advertising interval is necessary. We use the
alarm functionality of the CPU, a timer interrupt that occurs at a
configurable real-time clock value, to trigger a wake-up and adapta-
tion when needed. Therefore, we sort all necessary wake-up points
in ascending order and set the alarm to the earliest wake-up point.
Once an alarm is triggered and the advertising interval is set, the
subsequent alarm is set until the adaptation period end is reached.
Recalculation.We trigger a recalculation of the advertising sched-
ule at the end of each adaptation period. When performing a recal-
culation, all the steps of our adaptation strategy (k-means cluster-
ing, phase calculation and weighting, calculating the advertising
schedule, and setting the wake-up times) are performed.

5 IMPLEMENTATION
We use our adaptive advertising strategy in a real-world smart
lock application, the Nuki Smart Lock [12]. This smart lock uses
the CY8C4248LQI-BL583 BLE chip by Cypress Semiconductor [6],
which features an ARM Cortex-M0 core with 32kB of memory and
support for BLE v4.2 [2]. We implement our strategy using the
CY8CKIT-042-BLE Development Kit (shown in Fig. 4) that features
the CY8C4248LQI-BL583 chip and program the chip with the freely
available PSoC Creator that provides a full BLE stack [5].

Figure 4: CY8CKIT-042-BLE development kit with the
CY8C4248LQI-BL583 BLE chip used in our implementation.

In this application, our smart lock acts as BLE advertiser periodi-
cally broadcasting advertising packets in order to show its presence.
A user of the smart lock can interact with the lock using a smart-
phone or a special Nuki Key Fob. Both devices act as a BLE scanner
and initiate a connection with the lock when communication is
needed. As mentioned in Sect. 3, the BLE advertiser consumes less
energy than scanning devices as its radio is mostly off. This allows
the smart lock to conserve energy, only communicating when a
user wants to use the smart lock to open its door from outside.

Using this platform, we are able to store up to 300 user interac-
tions on the lock before it runs out of memory. Each stored user
interaction contains a timestamp measuring when it occurred and
stores if the user issued a locking or an unlocking request. Once
300 interactions have been stored in the device memory, the system
overrides the oldest entry, so that the lock always works with the
300 most recent values. Due to the limited number of user inter-
action entries, we make use of an adaptation period P = 24 hours,
meaning that our strategy computes the advertising schedule for a
whole day. In this work, we do not distinguish between the days of
the week and recalculate the advertising schedule daily.

The Nuki Smart Lock supports a wide range of customers starting
from single households with only one daily locking and unlocking
action up to office buildings with many people doing different shifts.
To support such a range of user behavior, we select the following
parameters of our adaptation strategy. The smart lock is using an
advertising payload length of 30 bytes. We configure our adaptation
strategy to use five different advertising levels (ADV_LEVEL = 4).
The mapping of the advertising levels to the actual advertising
intervals is shown in Table 2. For identifying the different phases
of user interactions, we use ten different clusters in our k-means
algorithm (NUMBER_OF_CLUSTERS = 10). We use the unmodified
standard deviation as our phase lengths (WIDTH = 1) and configure
our cluster weighting to ignore clusters that contain less than 5%
of the timestamps (IGNORED_THRESHOLD = 5), as well as to only use
the fastest advertising level on clusters that contain at least 10 % of
the timestamps (FASTEST_LEVEL_THRESHOLD = 10).

All user interaction phases are stored in fixed-sized arrays on
the lock. The wake-up points are managed in a sorted array with
the earliest wake-up point at the start. The first alarm is set to be
issued when the first adaptation of the advertising interval needs
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Table 2: Mapping of the advertising levels to the advertising
intervals (TADV _I NT ) used by our smart lock application and
the resulting measured average device discovery time.

Advertising level TADV_INT [ms] Discovery time [ms]
0 152.5 172.4
1 417.5 408.3
2 1022.5 1078.7
3 2000.0 1992.1
4 4000.0 4145.8

to be performed. Once an alarm goes off, the advertising interval is
adapted and the next wakeup time is configured. At the end of the
day, a full recalculation of the advertising schedule takes place.

6 EVALUATION
Our experimental evaluation uses three different smart lock use
cases (Sect. 6.2) and answers the following questions:

• What is the latency of the used advertising intervals?(Sect. 6.1)
• Does our adaptive advertising strategy improve the average
responsiveness of a real-world smart object? (Sect. 6.3)

• How does the energy consumption of a smart object differ
when using our adaptive advertising strategy? (Sect. 6.4)

• Is our lightweight advertisingmodel accurate so that it can be
used to predict the energy consumption of a BLE advertiser
using different advertising intervals? (Sect. 6.5).

6.1 Measuring the Device Discovery Latency
We start by measuring the average device discovery time when us-
ing the different advertising levels presented in Table 2. To evaluate
the device discovery time, we use the CY8CKIT-042-BLE platform
as an advertiser as described in Sect. 5. Additionally, we use an
nRF52 [26] BLE device from Nordic Semiconductor as a scanner to
accurately measure the time a scanner takes to detect the smart lock
using different advertising intervals. The scanner runs the Zephyr
OS [9] and performs passive continuous scanning with a scan in-
terval of 5 seconds using all three advertising channels. These scan
parameters are one of the possible scan settings on modern Android
smartphones, therefore our setup provides measurements that are
comparable to the real world use case in which a user interacts
with the smart lock using a smartphone. We measure the device
discovery time on the nRF52 by using a timer that starts when
the device begins to scan. The timer stops when the scanner has
successfully received an advertising packet from the smart lock.
After a successful discovery, the scanner stops for a random value
between 0 and 5 seconds before it starts scanning again.

Table 2 shows the average measured device discovery time for
every used advertising interval. The measurements were performed
100 times for every used interval. As discussed in Sect. 3, we see that
the advertising interval has a direct impact on the device discovery
latency. While the discovery time is only 172.4 ms with advertising
level 0, it increases by a factor of 24 when using advertising level 4.
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Figure 5: Timestamp distribution (top) and calculated adver-
tising schedule (bottom) for a single household use case.
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Figure 6: Timestamp distribution (top) and calculated adver-
tising schedule (bottom) of an office building use case.

6.2 Evaluation Scenarios
To evaluate the performance of our adaptive advertising strategy,
we simulate three different user scenarios: (i) a single household,
(ii) an office building, and (iii) a completely random user behavior.
Single household. In this use case, we simulate a household with
a single person with predictable behavior. We create timestamp
logs where 90% of the values are spread over the interval between
15:00:00 and 19:00:00. This simulates the user returning from work
every day in the afternoon. The remaining 10% of the timestamps
are randomly spread over the 24 hour period. Fig. 5 shows the
timestamp distribution and the resulting advertising schedule of
this scenario calculated by our strategy.
Office building. As shown in Fig. 6, this use case simulates an
office building with three user groups behaving differently. 30% of
the timestamps are spread between 08:00:00 and 17:00:00 to simulate
regular employees that arrive and leave from work (red). Another
30% of the timestamps are distributed between 16:00:00 and 18:00:00
and represent night shift workers entering the building (green). The
office cleaning crew is simulated by another 30% of the timestamps
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Figure 7: Timestamp distribution (top) and calculated adver-
tising schedule (bottom) for a random user behavior.

spread between 21:00:00 and 23:00:00 (magenta). The remaining
timestamps are randomly distributed over 24 hours.
Random behavior. With this use case, we simulate the worst
case for our strategy, where no predictable user behavior can be
extracted from the logged timestamps. All timestamp values are
randomly distributed over the 24 hour period, as shows in Fig. 7.

6.3 Responsiveness
With the measured device discovery latencies shown in Table 2 and
the advertising schedules calculated by our strategy in Sect. 6.2,
we can evaluate the responsiveness of the smart lock in all three
use cases. Without using our strategy, the smart lock uses a fixed
advertising interval of 417.5 ms. To evaluate the responsiveness
improvements for each scenario, we take the individual timestamp
logs and identify the percentage of timestamp values that have
a better, equal, or worse responsiveness compared to the fixed
advertising interval.

Table 3 shows the resulting timestamp percentage (better, equal,
or worse device discovery latency) for the three use cases. We see
that the benefit of using our strategy differs for the individual use
cases. The more predictable a user is, the better the resulting re-
sponsiveness of the smart lock in phases where a user wants to
interact. For the single household and the office building, our strat-
egy significantly reduces the average device discovery time in over
50% of the user interactions from 408.3 ms to 172.4 ms. Although
these two scenarios had 10% interactions randomly distributed,
our strategy leads to only 8.7% and 14.3% of user interactions that
have a higher average device discovery. With a lower percentage
of randomly distributed user interactions, the performance of our
adaptive strategy would improve even more. Even when the user
behavior is completely random, our strategy leads to a better or
equal device discovery latency in 64.4% of user interactions.

6.4 Energy Consumption
Next, we measure the energy efficiency of our adaptive advertis-
ing strategy. Therefore, we use our smart lock application on the
CY8CKIT-42-BLE platform as described in Sect. 5. To evaluate the

Table 3: Improvements in responsiveness in the three differ-
ent use cases when using our adaptive advertising strategy
compared to a fixed advertising interval of 417.5 ms.

Scenario Better[%] Equal[%] Worse[%]
Single household 57.0 34.3 8.7
Office building 51.0 34.7 14.3

Random behavior 35.7 28.7 35.6

Table 4: Measured energy consumption of a smart lock us-
ing a fixed advertising interval EF ixed compared to using our
adaptive advertising strategy EAdapt over a 24 hour period.

Scenario EFixed [J] EAdapt [J] Savings [%]
Single household 40.513 20.857 48.52
Office building 40.513 31.804 21.50

Random behavior 40.513 50.933 -23.33

Table 5: Estimated energy consumption EModel compared
to the measured energy consumption EMeasured of a smart
lock using our adaptive advertising strategy over 24 hours.

Scenario EModel [J] EMeasured [J] ∆Est [%]
Single household 21.219 20.857 -1.90
Office building 31.355 31.804 +1.74

Random behavior 49.965 50.933 -1.41

energy efficiency of our strategy, we first measure the energy con-
sumption of the smart lock using the default and fixed advertising
interval of 417.5 ms over 24 hours. Next, we use the same device
to run the advertising schedules calculated by our strategy and
measure the energy consumed over 24 hours. The measurements
were performed using the Monsoon Power Monitor [14].

Table 4 shows the energy consumption of the smart lock for all
three use cases when using a fixed advertising interval compared
to using our adaptive advertising strategy. We can see that a smart
lock using our adaptation strategy is able to reduce its energy
consumption by more than 48% when used in a single household
use case. When used in an office building, our strategy is able
to reduce the consumed energy by over 20% compared to a fixed
advertising interval. Even in the worst case, when the user behavior
is completely random over the 24 hour period, our strategy only
consumes 23.33% more energy than the existing static solution.

6.5 Model Validation
Finally, we evaluate the accuracy of our energy consumption model
of BLE advertising from Sect. 3. In particular, we use our model
to estimate the energy consumption of the different advertising
schedules from Sect. 6.2 over 24 hours using a payload of 30 bytes.

Table 5 shows the energy consumption estimated by our model
compared to the actual measured energy consumption of the device
for all three application scenarios over a whole day. We can see that
our model is able to accurately estimate the energy consumption
of the BLE device based on its daily advertising schedule. The
maximum estimation inaccuracy of our model ∆Est is below 2%.
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6.6 Limitations
To conserve energy, our adaptive advertising strategy increases the
advertising interval during phases with low user interaction (e.g.,
during night time). As mentioned above, our strategy re-calculates
the advertising schedule on a daily basis. This introduces an issue
when user behavior drastically changes from one day to the next.
In such cases, users may experience a high latency and energy
may be wasted in periods in which it would not be needed. Once
interactions occur in periods where a high advertising level is used,
the user may suffer from a long device discovery time. To mitigate
this problem, we introduce the range extender concept in the next
section.

7 RANGE EXTENDER
The range extender improves the performance of adaptive adver-
tising when a user interacts with a smart object outside of his
predicted behavior. We use other BLE devices to inform a smart
object about approaching users and therefore extend its range, re-
sulting in a better responsiveness. For example, a smart lock may
use a BLE temperature sensor outside the house as a range extender
to extend its communication range and detect approaching users in
advance. Once a range extender device detects a new approaching
BLE device, it informs the smart lock and the latter may intermit-
tently enter a faster advertising state to limit the discovery time
for the approaching user, therefore improving user experience. We
shortly outline the main design principles of the range extender
and illustrate the concept in Fig. 8.

Any standard compliant BLE device that is able to support at
least two simultaneous BLE connections can be used as a range
extender. The range extender is implemented using a custom BLE
GATT service [2] and needs to be places in communication range
to the smart object, whose range it needs to extend. A smart object
may use multiple range extenders. Even a device implementing
the range extender service can receive information about nearby
devices from other range extenders.

7.1 Detecting Approaching Devices
To inform smart objects about approaching users, a range exten-
der first needs to detect BLE devices, such as smartphones and
wearables. A challenge in detecting these devices is that current
smartphones andwearables only support BLE scanning, but not BLE
advertising. Hence, instead of just scanning for nearby smartphones,
a range extender needs to use BLE advertising to detect devices in its
proximity. This is a very different, yet standard compliant, approach
to the device discovery proposed by the BLE specification [2].

To detect nearby smartphones, the range extender performs
undirected scannable BLE advertising (ADV_SCAN_IND) with a fixed
advertising interval to broadcast its presence. Nearby smartphones
that perform active scanning, are able to detect the range extender,
and issue a scan request (SCAN_REQ) to get further information.
According to the BLE specifications, these scan request messages
contain the BLE device address of the scanning device. By extracting
the BLE address from the received request, the range extender
knows all the necessary information about the approaching user
device. This device discovery process is shown in step II in Fig. 8.

BD_ADDRA | IRKA
 ...BLE pairing with IRKA exchange

A B

ADV_SCAN_IND

SCAN_REQ

 addr_randresA
 ...

subscribe to 
custom service

notify

Address resolution:
IRKA(addr_randresA) = BD_ADDRA

I

II III

IV

Figure 8: Based on a one-time BLE bonding procedure (I),
the smart lock performs address resolution (IV) using the
received private addresses of the range extender (III) to de-
cide which devices are relevant. The range extender is using
BLE advertising to detect nearby BLE scanning devices (II).

7.2 Notifying the Smart Object
The range extender stores a list of nearby BLE devices sorted by
their most recent interaction. BLE devices that were longer inactive
are likely to be out of range and therefore are removed from this
list. When a new nearby device is detected, its BLE address is added
to the range extender’s list and any subscribed smart object is
notified. This notification is performed using a custom BLE GATT
service on the range extender. A smart object may subscribe to this
service to get notified when the list of nearby devices changes. This
subscription and notification process is shown in step III in Fig. 8.

Using BLE mesh, it is also possible that list update messages are
transmitted over multiple hops to reach their destination.

7.3 Resolving Device Addresses
When a smart object is informed about an approaching BLE device,
it needs to decide if this device is relevant for its application based
on the BLE device address. Smartphones of nearby pedestrians, for
example, are not relevant for a smart lock and adapting the BLE
advertising due to these devices would only lead to wasted energy.

When identifying relevant devices, we need to distinguish be-
tween public and private BLE addresses. Public addresses uniquely
identify a BLE device and one can directly check if they are relevant
for the smart object. Private addresses, however, are frequently
changed to avoid user tracking and can only be resolved by other
trusted BLE devices. Almost all smartphones use private BLE ad-
dresses, thus the smart object needs to perform address resolution
to retrieve the public BLE address. According to the BLE specifi-
cation [2], a trusted BLE device uses the Identity Resolution Key
(IRK) of its peer device (e.g., a smartphone) to translate the private
into a public address. Therefore, every user device needs to initially
share its IRK and public device address with the smart object using
the standardized BLE bonding procedure during setup (see step I
in Fig. 8). Once the IRK and public device address of a user device
are known by the smart object, any private BLE address that the
device uses can be resolved, as shown in step IV in Fig. 8.

Performing address resolution on the smart object makes it pos-
sible to use multiple simple range extender devices that do not need
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to individually establish trust with every supported smartphone.
Furthermore, with this approach, the private and sensitive user
information never needs to leave the smart object.

7.4 Adapting the Advertising Interval
Once a relevant nearby BLE device is identified, the smart object
can intermittently decrease the used advertising level overriding
the advertising schedule of our adaptive advertising strategy. This
allows the smart object to reduce the device discovery time when a
user is nearby for a short period, hence improving user experience.

8 CONCLUSION AND FUTUREWORK
Our adaptive advertisement strategy for connection-less BLE al-
lows BLE devices to learn from recent user behavior and adapt their
application requirements accordingly. This strategy can be imple-
mented on any smart object that supports BLE advertising with
multiple advertising intervals. By using our adaptation strategy,
BLE-based smart objects are able to reduce their power consump-
tion by up to 50% while reducing user experienced latency by up
to 95% in most cases. To handle unexpected user interactions, we
introduce the concept of range extender, which improves a smart
object’s performance while allowing to preserve its energy budget.

Our strategy can be used to significantly improve the perfor-
mance of other constrained BLE applications that require user
interaction. Google Nearby beacons 1 could conserve energy when
no potential users are nearby and could increase responsiveness in
times of high user interaction. Other applications, such as Tile2 and
PitPatPet3, could also use our strategy to significantly improve their
battery lifetime without increasing the user experienced latency.

Depending on their requirements, smart objects may modify our
adaptive advertising strategy to best suit their application needs:
Weekday Distinction. If device memory is not limited, the adver-
tising schedule may be calculated on a weekly basis. This would
allow to distinguish between individual days of the week.
Amount of users. A smart object may extract the individual users
from its interaction logs. For example, a smart lock that has three
users may detect that all of its users have already entered the house.
Therefore, it can disregard the advertising schedule and enter a
low-power mode because no user will open the door from outside.
Parameter adaptation. By applying extended data analysis, the
parameters of our adaptive advertising strategy (such as the number
of time clusters or advertising levels) could be dynamically selected
at runtime in order to achieve the best possible performance.
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