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Abstract
The ubiquity of WiFi and its wide adoption in consumer

electronic devices is a major advantage of this technol-
ogy with regard to radio-frequency based localization. For
the distance estimation between devices, WiFi-based solu-
tions either make use of the Received Signal Strength In-
dicator (RSSI) or of the Channel State Information (CSI).
This work outlines the implementation of distance estima-
tion approaches based on both RSSI and CSI measure-
ments using the Nexmon CSI Extractor on Raspberry Pi 4
devices. Distances are estimated with the free-space attenua-
tion model for RSSI data and with the FILA method for CSI
data. We conducted preliminary experiments in the 2.4 GHz
band, which show that distances calculated from CSI values
have a smaller absolute median error than those calculated
from RSSI values and therefore corroborate further research
in this context. The gained results will serve as a benchmark
for future WiFi-based distance estimation studies.

1 Introduction
Indoor localization applications often make use of radio-

frequency based technologies, such as Radio-Frequency
Identification (RFID), Bluetooth, Ultra Wideband or IEEE
802.11 (WiFi). Especially WiFi’s ubiquity and availability
pose an important advantage and several WiFi-based indoor
localization approaches achieving a decimeter-level localiza-
tion accuracy have been proposed [11].

Early localization approaches used the Received Signal
Strength Indicator (RSSI), which is not very robust against
multipath propagation [7, 10] and limits the achievable ac-
curacy. To counter these drawbacks, current approaches use
time-of-flight [6], or angle-of-arrival measurements based on
Channel State Information (CSI) [8]. CSI replaced RSSI in
indoor localization research thanks to its finer-grained in-

formation and higher temporal stability, as it represents the
channel’s response in the frequency domain for each Orthog-
onal Frequency Division Multiplexing (OFDM) subcarrier,
instead of aggregated values like RSSI [9].

Access to CSI is only provided by certain WiFi chipsets
in combination with specific tools: at the time of this re-
search, only three commonly-used CSI extraction tools are
available (i.e., Nexmon CSI Extractor, Linux 802.11n CSI
Tool and Atheros CSI Tool). The main goal of this work is
to benchmark an RSSI-based distance estimation against a
simple CSI-based distance estimation method [7] on state-
of-the-art-hardware, that is supported by the newest CSI-
extraction tool, i.e., the Nexmon CSI Extractor released in
2019 [3]. The results of this benchmarking effort will be
used for the purpose of comparison with a re-implementation
of Chronos [6] (i.e., an approach for a single WiFi access
point localization) within the same hardware, which is cur-
rently work in progress.

2 Methods and Experiments
For RSSI-based distance estimation the free-space path

loss attenuation model was used. The parameters of this
model describing the relationship between the measured
RSSI and the distance need to be trained beforehand for a
specific environment with known data [10]. The CSI-based
distance estimation used in this work resembles the FILA
method proposed by Wu et al. [7], which achieved a me-
dian accuracy of 0.45 m in a research laboratory. Multi-
path mitigation in the time-domain and the compensation of
frequency-selective fading is also applied according to [7].
The effective CSI (CSIe f f ) denotes the weighted sum of CSI
amplitudes for the OFDM-subcarriers and is used to estab-
lish a model based on a modified version of the free-space
path loss model. As the CSI is extracted after the Automatic
Gain Control (AGC), leading to the loss of distance informa-
tion in the CSI amplitudes, the calibration of CSI values with
the received signal strength suggested by Gao et. al. [2] was
applied before calculating CSIe f f .

The experimental setup is illustrated in Fig. 1(a), whereas
Fig. 1(b) shows the data processing steps. The Nexmon CSI
tool is installed on the Raspberry Pi 4B working as receiver.
A second Raspberry Pi acts as access point (AP) and sender,
where the transmission of WiFi frames is controlled using
ping. Measurements are all taken outdoors for distances be-



Figure 1: Experimental Setup: (a) Hardware setup with
two Raspberry Pi 4B; (b) Schematic of the data processing,
where n is the path loss exponent and σ the environment fac-
tor (which represents other factors such as radio-frequency
gain, antenna gain or shadowing [7]) .

tween 1 and 10 m with a step size of 1 m, between 12 and
20 m with a step size of 2 m, as well as at 25, 30 and 40 m,
respectively. An outdoor environment was chosen deliber-
ately to reduce the influence of multipath propagation and
thus create a best case scenario. Indoor tests will be carried
out in future work. tcpdump was used to capture the UDP
packets containing the CSI data and to save them into pcap
files for further data processing. Per distance, all UDP pack-
ets received within a measurement time of 20 seconds were
used to estimate the distance.

Fig. 2 depicts the Cumulative Distribution Function
(CDF) of the ranging errors. The absolute median error for
all samples was 2.02 m with calibrated CSI data and 2.87 m
with RSSI data. The overall accuracy depends on the propa-
gation model trained for a certain scenario. As the measured
data did not fit the model perfectly, it results in relatively
high ranging errors. Measurement results for RF-based tech-
nologies are highly depending on different factors such as
the environment and the used frequency band, and also the
20 MHz bandwidth in 2.4 GHz channels leads to a too low
time resolution to distinguish individual multipath compo-
nents [5, 4]. A higher bandwidth and more advanced data
processing and distance estimation techniques should help
to decrease the ranging errors for the given hardware. Nev-
ertheless, the availability of CSI from just one embedded an-
tenna might limit the overall accuracy for the given setup and
would have to be investigated further, as the CSI extraction
on Raspberry Pis has recently become possible [1, 10].
3 Conclusion

This poster compared distance estimation methods based
on CSI and RSSI measurements in the IEEE 802.11n stan-
dard, using a new CSI extraction tool and cheap off-the-shelf

Figure 2: CDF of ranging errors for calibrated CSI using [2],
non-calibrated CSI, and RSSI-based distance estimation.

hardware. The comparison suggests that the median ranging
error of the CSI-based approach is smaller than the one of
the RSSI-based method, which corresponds to results of pre-
vious research. In the future the results will serve as base-
line benchmarks for other WiFi-based distance estimation
approaches which are currently under development.
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