
A Competition to Push the Dependability of Low-Power
Wireless Protocols to the Edge

Markus Schuß, Carlo Alberto Boano, Manuel Weber, and Kay Römer
Institute for Technical Informatics

Graz University of Technology, Austria

{markus.schuss, cboano, manuel.weber, roemer}@tugraz.at

Abstract
A large number of low-power wireless communication

protocols has been proposed in the last decade by both
academia and industry in an attempt to deliver information in
an increasingly reliable, timely, and energy-efficient manner.
However, their level of dependability has rarely been bench-
marked under the same settings and environmental condi-
tions. In this paper we present the execution and results of
a competition aimed to evaluate the dependability of state-
of-the-art low-power wireless protocols under the same set-
tings, and push their performance to the limit. We define
a scenario emulating the operation of a wireless sensor net-
work in industrial environments rich with radio interference
and compare the end-to-end dependability of systems based
on protocol strategies ranging from adaptive and time-slotted
frequency-hopping to multi-modal routing and flooding. To
increase fairness and realism, we allow the developers of
the competing protocols to interact with the benchmarking
infrastructure and optimize the protocol parameters for the
scenario at hand. We achieve this by designing, implement-
ing, and employing D-Cube, a low-cost tool that allows to
accurately measure key dependability metrics such as end-
to-end delay, reliability, and power consumption, as well as
to graphically visualize their evolution in real-time. This in-
teraction with the benchmarking infrastructure and the com-
petitiveness of the event have incited the developers to push
the performance of their protocols to the limit and reach im-
pressive results.
Categories and Subject Descriptors

B8.2 [Performance Analysis and Reliability]
General Terms

Design, Measurement, Performance, Reliability.
Keywords

Competition, Dependability, Performance, Testbeds.

1 Introduction
Low-power wireless sensor networks are becoming an in-

tegral part of the Internet of Things (IoT) and are envisioned
to be soon employed in safety-critical application domains
such as smart production, smart cities, and connected cars.
This class of applications imposes strict dependability re-
quirements on network performance and the employed com-
munication protocols are envisioned to deliver information in
a reliable, efficient, and timely manner, i.e., they are expected
to minimize packet loss and energy expenditure, as well as to
keep end-to-end delays below given bounds. To avoid major
system failures, it is very important to thoroughly compare
the end-to-end dependability of low-power wireless systems
and get deeper insights about their strengths and limits.

The research community traditionally validates new com-
munication protocols experimentally on publicly available
large-scale testbeds such as Indriya [12] or TWIST [27], and
compares their performance with the one of previously pub-
lished solutions. Although very common (new protocols reg-
ularly appear and are evaluated following this methodology),
this practice does not allow a fair and objective comparison
of protocol performance, and does not enable a proper un-
derstanding of the end-to-end dependability of a system.

Same testbed 6=⇒ comparable results. A first problem
is that comparing communication protocols to each other by
running experiments on the same testbed and quantitatively
juxtaposing the numbers is not sufficient to provide a fair
comparison. The wireless environment in the testbed can in-
deed change significantly even between consecutive exper-
iments. Minor variations in the link quality, channel con-
gestion, or temperature gradient across the testbed are suf-
ficient to affect protocol performance and cause differences
in the results that may lead to false conclusions [3]. This
problem is exacerbated by the fact that testbeds are often de-
ployed unattended in public buildings, and any disturbance
(e.g., doors being opened or closed, and Wi-Fi networks op-
erating in close proximity) may radically change the prop-
agation characteristics and the connectivity between nodes.
Also, testbeds are continuously evolving (i.e., subject to ar-
chitectural changes or replacement of nodes) and shared with
other researchers (i.e., other jobs may be scheduled in be-
tween the comparison of the same set of protocols), which
further affects the comparability of results.

Same setup 6=⇒ fair comparison. When experimenting
on public testbeds, researchers typically embed the specifica-



tions of an experiment directly into the application firmware.
They manually define themselves the traffic load and pattern,
specify which nodes are (in)active, generating information,
or collecting data, as well as select the transmission power
of the nodes to control network density or to enforce a spe-
cific network diameter. The same setup is then used to com-
pare the candidate protocol to the state-of-the-art. Although
necessary, running the exact same setup is not sufficient to
guarantee fair comparisons. On the one hand, an ill-suited
setup may accidentally favor the performance of a specific
protocol. On the other hand, each protocol has unique prop-
erties and its parameters need to be carefully tuned for the
scenario at hand, as tiny differences in the parametrization
may lead to quite different results. The common practice is
to rely on default settings – a problem that is amplified by
the lack of a central protocol repository. This often results in
comparisons of protocols running on different (versions of)
operating systems, which may further bias the results.

Detailed logs 6=⇒ accurate metrics. Several public
testbeds allow the collection of user data over a serial back-
channel. Researchers typically use this feature to log diag-
nostic messages and extract evaluation metrics used as a ba-
sis to compare protocol performance (e.g., the packet loss
ratio by counting the number of lost packets in the network).
The ability of creating detailed logs, however, does not im-
ply the extraction of metrics that can accurately characterize
protocol performance. On the one hand, log messages of
testbeds are typically not time-stamped at sub-millisecond
scales and therefore cannot be used to accurately profile de-
lays. On the other hand, log messages are generated using
printf instructions that may alter the timing behavior of
protocols and break their functionality. Recent feature-rich
testbeds such as FlockLab [36] are equipped with expensive
hardware and can help in unobtrusively and accurately pro-
file power and delays without the need of logs, although on
a limited number of nodes and hence not on a large scale.

Performing protocol 6=⇒ dependable system. Eval-
uating the performance of a communication protocol and
showing improvements on specific low-level metrics (e.g.,
number of parent switches, path length in hops, or commu-
nication overhead) does not allow to draw any conclusion on
the end-to-end dependability of a system. When it comes,
for example, to a safety-critical IoT application that moni-
tors events and reports them to a central unit (e.g., a health-
care application monitoring the vital signs of a patient), it is
fundamental to evaluate the end-to-end dependability of the
system from real-world event to back-end notification.

All these problems call for a proper benchmarking of the
dependability of IoT protocols under the same repeatable and
controlled settings. This benchmarking should be carried out
using objective and fair metrics, while allowing developers
to optimize their protocols by tuning their parameters, and
should include the repeatable generation of environmental
conditions that impact network performance.

Furthermore, there is also a need to push the performance
to the edge, as benchmarking protocols typically just con-
sists in mere comparisons of existing implementations and
does not encourage developers to optimize their solutions. In

this context, official competitions, such as the RoboCup [22]
and the Darpa Grand Challenge [11] are known to spur all
contestants into producing new and better results.

In this paper we present the execution and the results of
the EWSN 2016 dependability competition, a contest that
aims to benchmark the dependability of state-of-the-art IoT
protocols in environments rich with radio interference. We
define a scenario that emulates the operation of a sensor
network monitoring discrete events in an industrial setting
where several co-existing wireless devices are crowding the
RF spectrum, and evaluate how reliably, timely, and effi-
ciently, the competing protocols can report the occurrence of
these events to a sink node. The competing IoT protocols are
based on techniques ranging from adaptive and time-slotted
frequency-hopping to multi-modal routing and flooding, and
are selected among the state-of-the-art.

To increase fairness and realism, we allow the developers
of the competing protocols to interact with the benchmark-
ing infrastructure and optimize the protocol parameters for
the specific application scenario at hand. We achieve this
by designing, implementing, and employing D-Cube, a low-
cost tool that allows to accurately measure key dependability
metrics and graphically depict their evolution in real-time.
D-Cube is built using off-the-shelf components and allows to
accurately profile the power consumption of a device, mea-
sure end-to-end latency at sub-µs accuracy, and detect the
occurrence of specific events. We employ D-Cube to create
our benchmark scenario with minimal costs (up to a 10-fold
cost reduction w.r.t. the state-of-the-art [36]) and to allow
the contestants to monitor the performance of their protocols
live. As we will show in the paper, this interaction with the
benchmarking infrastructure and the competitiveness of the
event incite the developers to push the performance of their
protocols to the limit, and obtain high levels of dependability.

This paper proceeds as follows. Sect. 2 discusses related
works in the area. Sect. 3 gives an overview of the goals
of the competition and describes the evaluation metrics, as
well as the requirements of the necessary benchmarking in-
frastructure. We address these requirements by designing
D-Cube and describe its architecture and implementation in
Sect. 4 and evaluate its accuracy in Sect. 5. We describe the
execution of the EWSN 2016 dependability competition and
its results in Sect. 6, along with a discussion of the lessons
learned. We finally conclude the paper and briefly outline
the future work in Sect. 7.

2 Related Work
Although benchmarking the dependability of low-power

wireless networks is a well-known problem in the research
community, very few works related to benchmarking can be
found in the literature. Their focus is mostly on the perfor-
mance of operating systems [34, 50], processors [42, 33],
hardware platforms [29, 43], data processing techniques [30,
38], and protocol stack design verification [23, 31].

A few works have experimentally benchmarked the per-
formance of operating systems for low-power networked em-
bedded systems [34, 50]. Watfa et al. [50] have profiled the
performance of TinyOS, Contiki, and Mantis OS when run-
ning the same application, and compared the amount of time



spent in specific states. Lajara et al. [34] have carried out a
similar study, but focused instead on current consumption.

TinyBench [29] is a benchmark suite created to test wire-
less sensor network devices running TinyOS firmware. The
benchmark focuses solely on the internal metrics of a sin-
gle sensor node such as code size, execution time, or power
consumption, and the authors show an exemplary applica-
tion by using it to compare the power consumption of the
same TinyOS application on different mote platforms. Also
tailored to TinyOS is the work by Van Gerwen et al. [23],
who proposed a benchmark workflow to evaluate the inter-
action of communication protocols at different layers. This
framework allows the binding of a MAC and a routing pro-
tocol at compile time, and the authors show an application
of this framework by evaluating the performance of differ-
ent combinations of MAC and routing protocols under the
same settings [24]. Their performance comparison work is,
however, specific for TinyOS, employs the default settings of
the compared protocols, and does not focus on the impact of
environmental influences on network performance. Another
work aiming to benchmark the correctness of the protocol
stack design was presented by Kim et al. [31], who designed
a framework that verifies the correctness and interoperability
of a given protocol stack automatically. The authors propose
an XML schema to define test conditions and procedures in a
formal way and to generate source code for exchanging mes-
sages and commands between test application and driver.

When it comes to benchmarking protocol performance,
the research community still struggles to provide proper
comparisons, as it lacks a reference suite [46]. Develop-
ers often compare the performance of a newly proposed
protocol to the state-of-the-art employing large-scale public
testbeds such as MoteLab [52], Kansei [19], Indriya [12],
and TWIST [27]. They define an ad-hoc setup, extract the
metrics of interest from the logs collected using the serial
back-channel, and draw conclusions about the goodness of
the proposed solution [16, 18, 25]. As delays and power
consumption cannot be precisely extracted from logs, the
community started to develop more advanced infrastructures
that allow a fine-grained measurement of power consump-
tion [8, 9, 28] and timing-sensitive information [36, 37]. A
notable example of a public testbed with these advanced fea-
tures is FlockLab [36], which is increasingly used by the
community to evaluate protocol performance in a sparse net-
work [10, 20, 41]. However, a disadvantage of FlockLab is
the high cost per node (1000 USD), which makes it hard to
replicate the infrastructure on a large-scale.

All works benchmarking a newly proposed protocol
against the state-of-the-art, however, share the same limi-
tations: the different setup, the hardly-repeatable settings,
the use of different protocol parameters, and the lack of in-
formation about the end-to-end dependability that a system
employing that solution can offer. Differently from these
works, in this paper we run a competition and benchmark
the dependability of IoT protocols (i) under the same con-
trolled settings, (ii) by injecting environmental influences in
the evaluation, (iii) allowing developers to tailor protocol pa-
rameters, and (iv) with the goal of finding which solution
performs best in a specific application scenario. Another

competition similar in spirit to the one presented in this paper
is the Microsoft localization competition [39], which is co-
located with the IPSN conference since 2014 and compares
the performance of state-of-the-art localization algorithms.

A number of other works have studied the impact of en-
vironmental conditions on protocol performance. Boano et
al. [5] have designed JamLab, a tool that allows the repeat-
able generation of interference patterns using off-the-shelf
wireless sensor nodes. This tool has been used to generate re-
peatable interference patterns and evaluate the performance
of protocols in the presence of interference [7, 17, 44, 45].
The main limitation when using JamLab in public testbeds,
however, is the inability of controlling the background in-
terference in the testbed environment, which limits repro-
ducibility across experiments. Other researchers have fo-
cused on the impact of temperature variations on protocol
performance and designed testbeds that allow to control the
on-board temperature of nodes [6, 47]. These testbeds have
been used to study specific protocol problems [4, 48] and not
to benchmark protocols under the same settings.

3 Competition: Overview
In answer to the increasing need for dependable low-

power wireless systems, we organized the EWSN 2016 de-
pendability competition to benchmark the performance of
different protocols under the same settings and environmen-
tal conditions. In this section, we summarize the competition
goals (Sect. 3.1), the metrics used to evaluate the contending
protocols (Sect. 3.2), and derive from these the requirements
of the necessary benchmarking infrastructure (Sect. 3.3).

3.1 Goals
Differently from previous evaluations carried out in the

literature that focused on the goodness of a specific proto-
col in comparison to other solutions, our focal point is the
creation of an unbiased setup where any protocol can be run
under the same reproducible conditions.

Realistic scenario. Such an unbiased setup should be de-
rived from a representative real-world wireless sensing appli-
cation that requires dependable performance. In our case, we
focus on an industrial control application in which a multi-
hop wireless sensor network observes and reports events to a
central unit. We also aim to reproduce environmental effects
that traditionally challenge network performance in indus-
trial real-world settings, and focus on the presence of other
wireless devices crowding the RF spectrum.

Reproducibility. All protocols need to run under the
same conditions. We hence focus on a benchmarking setup
where nodes are deployed in a static temperature-controlled
environment that is off-limits to people, in order to minimize
changes in wireless propagation and connectivity between
nodes. To generate repeatable interference patterns we use
JamLab [5], a tool that is well-known to the community, and
make sure that the generated jamming sequence starts syn-
chronously with every experiment. We further disable all
Wi-Fi access points in the surroundings of the benchmark-
ing setup, and monitor that no other interference source is
present in the competition area.

Hardware-neutral comparisons. The focus of the
competition is on protocol performance. As the latter is



strongly dependent on the capabilities of the underlying
hardware platform (e.g., processor speed, available mem-
ory, transceiver efficiency), we select one specific platform
and use it to benchmark all competing systems. This allows
hardware-neutral comparisons that maximize fairness. The
employed hardware platform can be arbitrary, but its choice
is practically driven by the number of protocol implementa-
tions available for that specific platform, which leads to the
selection of an off-the-shelf device such as the TelosB mote.

No limitation on competing solutions. Besides select-
ing a platform that maximizes the number of protocols for
which an implementation exists, it is also our goal to have
no constraint on the type of protocol that is benchmarked.
We indeed intend to find which protocols perform best in
a given scenario, regardless of the employed strategy. An-
other important goal is to attract solutions developed by both
academia and industry. To allow this, we cannot require the
contestants to disclose their source code, but only to provide
the final application firmware (e.g., as a .hex file).

Unobtrusive measurements. We aim to create a setup
free of probe effects, i.e, that does not alter in any way the
performance of a protocol. To this end, we need to disable
serial communication and avoid the reliance on printf in-
structions, as they may alter the timing behavior of a protocol
and break its functionality [36].

On-site protocol parametrization. As we are interested
in the best performance that a protocol can reach in the spec-
ified settings, we let contestants inspect the benchmarking
scenario in a two-days preparation phase during which they
are allowed to optimize the parameters of their protocol. We
hence need to graphically show to the contestants the pro-
tocol performance in real-time. After this preparatory phase,
the contestants need to provide a final version of the protocol
that will be used for the actual competition.
3.2 Evaluation Metrics

We focus on three dependability attributes that are highly
relevant for low-power wireless protocols employed in safety
critical settings: reliability, timeliness, and availability.

The reliability of a protocol is traditionally measured in
terms of packet reception rate. As we intentionally gener-
ate interference and focus on an industrial control scenario
where nodes observe and report events to a central device,
we do not aim to measure the fraction of packets that are re-
ceived or lost, but rather the number of events that are missed
or incorrectly reported.

The timeliness attribute is captured as the end-to-end de-
lay with which every event is communicated to the back-end
infrastructure. In order to let contestants push the perfor-
mance of their protocol to the limit and prevent excessive
optimization for a specific metric, we do not specify a maxi-
mum delay by which an event needs to be reported.

The availability attribute can be expressed in terms of
power efficiency, as wireless devices are typically battery-
powered and their power consumption affects the overall sys-
tem lifetime and hence its availability. Minimizing power
consumption while maximizing reliability and timeliness is,
however, a catch-22 dilemma, as methods to increase relia-
bility and timeliness such as retransmissions and higher duty
cycle cause a drastic increase in the power consumption.

3.3 Requirements for the Benchmarking
Infrastructure

In order to benchmark protocols according to these spec-
ifications, we need to build a facility that allows us to cre-
ate the desired scenario and profile the desired metrics accu-
rately while showing their evolution in real-time. This facil-
ity is essentially an augmented testbed that, besides common
features such as easy reprogramming of nodes and persistent
logging of serial output, should satisfy a number of technical
and non-technical requirements that we summarize below.

Accurate power profiling. A first requirement for the
benchmarking infrastructure is the ability to accurately mea-
sure the voltage and especially the current draw of each sen-
sor node over a large range (from sleep currents of a few
µA to active current draws up to tens mA). As software-
based power estimation requires changes in the contestants
firmware and is not highly accurate, the measurement needs
to be carried out using external hardware. To properly cap-
ture short events such as radio channel switching, clear chan-
nel assessments, and processor sleeping times, the infrastruc-
ture needs to sample both current and voltage at a high fre-
quency (56 kHz as in [36] can be taken as a reference).

Latency profiling. The benchmarking infrastructure also
needs to provide means to measure end-to-end delays be-
tween nodes at microsecond-scale, given that tiny differ-
ences in the payload size or processor usage may result in
differences in the order of a few µs. Another requirement is a
common time reference over a large scale, as the infrastruc-
ture can span across different floors of a building and over
large distances (e.g., when used in conjunction with IoT plat-
forms equipped with long-range radios). Furthermore, the
common time reference should be obtained without generat-
ing traffic in a frequency band that is used by the contestants.

Event detection. The benchmarking infrastructure needs
the ability to start and terminate an experiment automatically
and read some of the GPIO pins of the target platform in
order to associate logic-level changes to specific events.

Real-time visualization. In order to give rapid feedback
about the performance of the different protocols to the con-
testants, the benchmarking infrastructure needs the ability to
graphically summarize and depict the performance of a pro-
tocol w.r.t. each of the evaluation metrics in real-time.

Open-source design. Although the competition is a sin-
gle event and focuses on a specific scenario, it is intended
to be the first of a series, as well as an initial spark towards
a comprehensive standardized benchmarking suite for low-
power wireless protocols. Therefore, we aim to develop
a generic reusable infrastructure and keep its design open-
source, so that it can serve as a reference to the community.

Hardware agnostic. The developed infrastructure should
be agnostic to the target hardware platform. Any IoT plat-
form available on the market should ideally be pluggable in
the benchmarking infrastructure with minimal effort.

Evolvability. As technology evolves continuously and
components may need to be upgraded, it is important that the
testbed is conceived as a modular design and that the soft-
ware components are decoupled from the underlying hard-
ware. This allows easier upgrades by only replacing obsolete
components without affecting the rest of the system.



User Interface
Grafana

Time Series Database 
InfluxDB

Observer 
Module 2

Observer 
Module 1

Observer 
Module n...

Target 
Node 2

Target 
Node 1

Target 
Node n

D-Cube

Underlying Testbed Infrastructure (Power + Reprogramming)

00011011 00000100 00100000 01000001 
00010011 01111010 00001001 00101011 
11001111 01000100 11001001 10001011 
01011001 01000101 10011010 10001001 
00011101 01111101 11000001 11111011 
10000101 01101110 11110001 01001000 
10111010 10001110 10011110 11000100 
11000010 01100110 11000000 10000111 
10100110 01001110 01111001 11000001

...

...

(a) D-Cube’s general architecture

Opto-Couplers

Processing Unit
Raspberry Pi 2 Model B

Edge Detector TI LMP92064

G
PI

O
G

PI
O

Opto-Coupler

G
P

IO

Navspark-GL

SP
I

Observer Module

GPIO Tracing 
Process

Latency Profiling 
Process

Power Profiling 
Process

GPIO Tracing Unit Latency Profiling 
Unit

Power Profiling 
Unit

U
A

R
T

(b) Structure of the observer module (c) Prototype of the observer module

Figure 1. D-Cube’s general architecture (a) with sketch of the observer module structure (b) and prototype (c).

Affordability. When creating a feature-rich benchmark-
ing infrastructure on a large-scale, costs may grow exponen-
tially. In order to design a solution that can be reused by
other research institutions and make it applicable on a large-
scale, it is imperative to satisfy all the above requirements
with minimal costs.

4 D-Cube: Design and Implementation
Existing testbeds infrastructures, unfortunately, do not

satisfy the requirements outlined in Sect. 3.3. Common
testbeds typically allow developers to record the serial output
from each node and browse the logs (to extract the metrics
of interest) only after an experiment has completed. To host
a competition, we need instead an infrastructure that allows
to log timestamped events at high speed, and that offers real-
time visualization of custom performance metrics.

Furthermore, the required infrastructure also needs to ac-
curately profile power and latency. Whilst a few feature-rich
testbeds such as Flocklab embed these features, the high cost
per node (FlockLab’s observers cost approximately 1000
USD each [36]) makes it impossible to replicate these infras-
tructure on a large-scale. We hence need to find an afford-
able solution that offers comparable features to FlockLab,
but shrinks down the costs by a factor of at least 10.

To address these problems, we design D-Cube1, a tool
that unobtrusively measures the three dependability metrics
of interest with high accuracy, visualizes the results in real
time, and shrinks the hardware costs down to 50 EUR per
monitored node. In this section, we sketch D-Cube’s archi-
tectural components (Sect. 4.1), the design and implemen-
tation choices allowing to extract the desired dependability
metrics (Sect. 4.2 – 4.4), and outline how D-Cube’s modular
design allows to limit the hardware costs (Sect. 4.5).
4.1 Architecture

Fig. 1(a) summarizes D-Cube’s architecture. D-Cube sits
on top of an existing testbed infrastructure that provides
power and easy reprogramming to the wireless sensor nodes
used as target to test protocol performance.

1D-Cube (D3) takes his name from the three dependability metrics that
are observed: reliability, timeliness, and availability.

Target nodes. The wireless sensor nodes running the
code of the contestants are the target nodes. D-Cube is com-
pletely agnostic to the hardware platform chosen as a tar-
get node and to the underlying testbed infrastructure. Be-
sides powering and reprogramming the nodes, the latter ide-
ally allows to capture log messages for debugging purposes
and to disable the UART interface of all target nodes to en-
sure fair comparisons2. For the competition, we use Advan-
ticsys MTM-CM5000-MSP nodes (TelosB replicas) as tar-
get. These are connected to an existing testbed infrastructure
powering and programming the nodes via USB active cables
from a central control station.

Observer modules. Each target node is associated to
one observer module that carries out latency profiling, power
profiling, and GPIO tracing. The observer module consists
of several components, as shown in Fig. 1(b). At the heart
of an observer module lies the processing unit, which is used
to schedule the measurements, aggregate data, and forward
the collected information to a database for persistent storage.
The observer module does not interact directly with its asso-
ciated target node: it only monitors the GPIO and reset pins,
and passively measures power consumption. In our proto-
type implementation, we employ a Raspberry Pi 2 (RPi2),
model B, and use its on-board 100 Mb/s Ethernet interface
to connect to the network for NTP synchronization and to
access the time series database server (see Fig. 1(a)).
To accurately profile latency, the observer embeds a GPS
unit to generate precise timestamps for externally triggered
events. In our prototype implementation, this task is carried
out by a Navspark-GL device [1]. The latter has an external
trigger input that supports accurate timestamping of either
rising or falling edges. To detect both of them, we use the
Navspark-GL in conjunction with an edge detector.
To accurately profile power, the observer module needs to
capture voltage and current at the same time. The captur-
ing unit of the observer module consists of an ADC con-
nected via SPI to the processing unit. In our prototype im-

2These are typical features of almost any testbed infrastructure. In case
these are not available, the observer module’s processing unit of D-Cube
can be used to accomplish these extra-tasks.



plementation, we employ the Texas Instruments LMP92064,
a simultaneous-sampling 125 kSps 12-bit current and volt-
age monitor. A real-time process on the observer’s process-
ing unit reads the ADC values via SPI and writes them into
a FIFO queue for further processing by a user space task.
The real-time task also takes care of GPIO tracing by record-
ing the state of the GPIO pins from the target node. The
GPIO tracing unit is used to also determine the start and ter-
mination of a measurement by monitoring the reset pin of
the target node. The use of optocouplers as isolation layer
between the GPIO pins of the target node and the ones of the
observer module ensures unbiased energy measurements.
A key advantage of the observer design is that measurement
units are kept independent from each other. This implies that
modules can be disconnected (e.g., the GPS unit for latency
profiling can be omitted if a target node does not generate or
capture any event) and that the additional measurement units
(e.g., to sample temperature) can be added without affecting
the observer software. Each measurement unit, indeed, can
be split into individual user space processes.

Time series database. The data collected by all observers
is persistently stored on a time series database. Unlike tra-
ditional SQL databases, the latter does not have tables and
keys, but uses series consisting of measurements. These are
made up of fields containing the measured values (e.g., ADC
voltage) and tags marking a given measurement as belonging
to a specific category (hence enhancing and simplifying sta-
tistical analysis). As GPS modules return timestamps with
nanoseconds precision, the database requires the ability of
handling nanosecond time series. In our prototype imple-
mentation, we employ InfluxDB, an open-source time series
database that is optimized for fast, high-availability storage
and retrieval of time series data.

User interface. In order to support developers with real-
time information about the performance of their protocols, a
user interface extracts information from the database and dis-
plays it graphically. Detailed information can be displayed
for each target node and statistics can be computed to sum-
marize the performance of the running system. Users can
autonomously combine and visualize the measurements of
all sensors with a specific characteristic. In our prototype
implementation, we employ Grafana, an open-source, gen-
eral purpose dashboard and graph composer that is built on
top of JavaScript and runs as a Web application. Grafana al-
lows client-side rendering and embeds a full suite for user
management including Lightweight Directory Access Proto-
col (LDAP) integration. Among others, it also acts as a proxy
preventing unauthorized access to the underlying database.
4.2 Profiling Power Consumption

In order to profile the power consumption of a target node
at a speed sufficiently high to detect short ephemeral ra-
dio events such as clear channel assessments and switches
between low-power and active CPU mode, we use a high-
precision dual channel ADC that allows simultaneous sam-
pling of voltage and current. For the current channel an am-
plifier is required, as the voltage drop over a typical current
shunt (≤ 1 Ω) is very small (≤ 100 mV). For this task, cur-
rent sense amplifiers – specialized amplifiers with either a
fixed or variable gain – are typically used. In our prototype,

we select an off-the-shelf component, namely the Texas In-
struments LMP92064EVM. This consists of a 12-bit ADC
with one voltage and one current channel with integrated
current sense amplifier at a fixed gain of 25. This compo-
nent also embeds two level translators and isolators, as the
integrated circuit operates at 5V, whilst the processing unit
(RPi2) has 3.3V logic levels. We configured the voltage di-
vider and the current shunt to values that are suitable for our
target nodes. We limit the maximum current to 150mA and
the maximum voltage to 10V, which allows us to measure
tiny differences in voltage and current. We sample voltage
and current at high frequency (62.5 kHz) using the RPi2 pro-
cessing unit. In order to perform the measurement tasks at
a constant period, we employ the real-time patch-set for the
Linux Kernel, which allows to isolate a core solely for the
data acquisition.

4.3 Profiling End-to-End Latency
In order to profile latency, a highly accurate and synchro-

nized timestamp is required. While there are many options
to achieve this, only a few are viable for large scale installa-
tions. A conventional synchronization pulse transmitted over
a network of coax cables is impractical and expensive, as it
requires calibration. Also the use of a radio module and a
PLL implemented on an FPGA as in [37] is not a viable op-
tion. As D-Cube is agnostic to the employed target node by
design, it must not employ a frequency band that may be used
by the target nodes for their communications, as this would
bias the benchmarking results. In D-Cube we hence make
use of GPS to measure the timing of events, as little to no
infrastructure is required to obtain sub-µs synchronization.

In our prototype, we select the Navspark-GL, an off-the-
shelf component priced 25 USD that provides an external
trigger input supporting timestamping. As the Navspark-
GL can only create timestamps for rising or falling edges,
we run it in conjunction with an edge detector (consisting
of an XOR gate and an RC low-pass filter) that creates a
short pulse whenever the input signal changes. An interrupt
service routine on the Leon3 processor of the Navspark-GL
checks for the level of the GPIO pin before the edge detector
and writes the logical level and timestamp into a FIFO queue
that is transmitted via UART to the RPi2.

A limitation of using GPS is that it requires a clear view of
the sky to operate properly. This is typically possible also in-
doors, if the GPS module is placed in proximity of windows
(this was the case in our competition setup, where the nodes
generating and capturing events were close to windows and
could receive proper GPS signal). Alternatively, one can de-
ploy GPS re-radiators as done in the IoT-LAB testbed [9].

4.4 Capturing GPIO Events
In our implementation, for convenience, the observer

module checks and resets the edge detection flags of the RPi2
at the same speed of the real-time process used to carry out
the power profiling, i.e., it samples GPIO events at a fre-
quency of 62.5 kHz (one sample every 16µs). This is more
than sufficient to detect the events in our envisioned scenario
at high speed. If necessary, the sampling rate can be further
increased by two orders of magnitude by using one dedicated
CPU core for this task.



4.5 Minimizing the Observer Costs
We built prototypes of the observer module using off-

the-shelf components available at our institution or readily
purchasable from standard retailers. Overall, the price for
a single observer module amounts to 135 EUR. While this
amount is already quite low (at least if compared to the 1000
USD of FlockLab’s observers [36]), the price can be pushed
down even further. Out of the 135 EUR, indeed, 65 are due
to the LMP92064EVM evaluation module provided by Texas
Instruments. The latter costs ten times more than its corre-
sponding integrated circuit (IC) alone. When embedding the
LMP92064 IC with level translator and edge detector cir-
cuit in a 2-layer PCB, the price of the observer module can
be pushed down significantly, with the additional benefit of
having a layer that shields the SPI traces (this would allow
an even faster sampling rate of the ADC). The costs of D-
Cube’s observer module can further be reduced by using a
cheaper processing unit such as an Allwinner H3 (Orange Pi
One or NanoPi Neo) board. The latter costs approximately
10 EUR and has a comparable performance to the RPi2 that
we employed. Altogether, these improvements would mini-
mize the hardware costs down to roughly 50 EUR.

It is worth mentioning that all the individual components
that we used to build D-Cube will be published open-source
on-line3 and will hence be available to the research commu-
nity. We expect other contributors to make modifications and
improve D-Cube towards a standardized benchmarking suite
that increases the rigor of experimental validation.
5 D-Cube Validation

In this section, we experimentally evaluate how accu-
rately D-Cube can measure the three evaluation metrics of
interest and its suitability as benchmarking infrastructure for
the competition. In particular, we evaluate the accuracy of
D-Cube’s observer modules when profiling power and la-
tency in Sect. 5.1 and 5.2, respectively. We then evaluate
the responsiveness of the real-time visualization component
of D-Cube in Sect. 5.3.
5.1 Profiling End-to-End Latency

To evaluate how accurately D-Cube can measure end-to-
end latency over large distances, we connect the input trig-
ger of the Navspark-GL of different observer modules to the
same trigger event and measure the timing deviation.

Experimental setup. We set up an experiment in which
the input trigger pin of the Navspark-GL of three observer
modules is connected in parallel to the same output of a
STM32F103 microcontroller. We then configure the latter
to produce a PWM signal with a frequency of 1 Hz and let
each Navspark exploit the in-built timestamping function to
print out the full timestamp in nanoseconds over the UART.
We log the output from each observer module until several
thousands of “rising-edge” timestamped events are collected,
and repeat the experiment multiple times.

Accuracy of synchronization. Fig. 2 shows the pairwise
error of the three observer modules. As expected, the time
synchronization of the GPS modules is at a sub-µs scale. Ap-
proximately 95% of the timestamped events differ by only
±250ns (shown as gray overlay in the figure).

3http://www.iti.tugraz.at/D-Cube

0

20

40

60

80

100

-750 -500 -250 0 250 500 750

Sy
nc

hr
on

iz
at

io
n 

ac
cu

ra
cy

 (
%

)

Timing Error (ns)

Figure 2. Accuracy of D-Cube’s observer modules when
profiling latency. GPS allows to keep time synchroniza-
tion across different modules at a sub-µs scale.

5.2 Profiling Power Consumption
We measure how accurately D-Cube’s observer modules

can profile power consumption by comparing its measure-
ments with the ones obtained using professional equipment,
as well as evaluate the achievable sampling rate.

Experimental setup. We employ an Advanticsys MTM-
CM5000-MSP node (TelosB replica) as target and measure
its power consumption using D-Cube’s observer modules
and a Keysight MSO-S 254A mixed signal oscilloscope as
ground truth. We create an experimental setup as sketched in
Fig. 3(a), where using the oscilloscope we measure the cur-
rent of the target node with a N2821A 3MHz/50uA high sen-
sitivity AC/DC current probe on one channel, and the volt-
age using a regular probe on another channel. At the same
time, we connect the target node to D-Cube’s observer mod-
ule and sample the current and voltage at a frequency of 62.5
kHz. We then create a test application using Contiki [14] that
turns on and off individual components of the target node
for a pre-defined period of time (e.g., LED, GPIO pin, ra-
dio in receiving mode, and CPU in active mode). Fig. 3(b)
shows the employed pattern: each component is turned on
for one second and an idle state (during which the CPU runs
in low-power mode) interleaves each change. The pattern re-
peats periodically over time. To be able to precisely measure
the power consumption of the node in the different states of
the test pattern, we disable the FTDI, as its power draw was
found not to be constant. In addition to this setup, we repeat
the experiment enabling the FTDI using Energest (Contiki’s
software-based energy estimation [15]) to print the estimated
power consumption.

Accuracy of power measurements. Fig. 4 shows the
power and current consumption measured using the different
tools. Compared to our reference oscilloscope, Energest un-
derestimates the current consumption by about 9.9%, whilst
D-Cube’s observers overestimate it by 3.6%. Please notice
that all currents measured by oscilloscope and observer mod-
ule have been offset by 1.6 mA to compensate the constant
consumption of the on-board optocouplers and provide a
more fair comparison with Energest. The voltage measured
by the observer module differs from the one obtained with
the oscilloscope by only -0.84%. The voltage is also suf-
ficiently stable to observe a drop of 50mV when the radio



V_USB

GND

Z

GNDGND GND

A

V

V

A

Ground Truth
Keysight

MSO-S254A

Observer 
Module
LMP92064

Target 
Node
MTM-CM5000-MSP

(a) Experimental setup

Idle Idle Idle Idle Idle

1s

8s

Es
ti

m
at

ed
 c

u
rr

en
t

time

Radio
RX

CPU
active

Green
LED

GPIO
high

Radio
RX

(b) Pattern of the test application

Figure 3. Experimental setup to measure the accuracy of D-Cube’s power profiling (a) and test pattern used on target
node when measuring current and voltage (b).

0

5

10

15

20

25

30

35

40

Po
w

er
 c

on
su

m
pt

io
n 

(m
W

)

Measurement tool

D-Cube Observer
Oscilloscope

Energest

+2.50%

-8.91%

0

1

2

3

4

5

6

7

8

Cu
rr

en
t 

co
ns

um
pt

io
n 

(m
A)

Measurement tool

D-Cube Observer
Oscilloscope

Energest

+3.66%

-9.93%

(a) Average power and current consumption

0

4

8

12

16

20

24

Radio RX CPU active GPIO high Green LED Idle

Cu
rr

en
t 

co
ns

um
pt

io
n 

(m
A)

State of target node

D-Cube Observer
Oscilloscope

Energest

(b) Breakdown of current consumption per state

Figure 4. Power and current consumption measured using different tools. (a) shows the average consumption of the test
application, whilst (b) shows a breakdown of current consumption when only selected components are active.

10-3

10-2

10-1

100

101

102

10 15 20 25 30 35 40 45 50

N
um

be
r 

of
 s

am
pl

es
 (

%
)

Sample Interval (us)

99.14%

0.371%
0.243%

0.049%

0.009%

Figure 5. Stability of the sampling rate using D-Cube’s
observer modules. Please notice the logarithmic y-scale.

device is turned on and variations below 10mV in the re-
maining states. The resulting power consumption shown in
Fig. 4 using Energest is computed by multiplying the esti-
mated current consumption by 5V (constant USB voltage).
Fig. 4(b) shows a breakdown of the power consumption in
each state. The most significant difference can be observed
when the GPIO pin is active, as the current implementation
of Energest is unable to account for its consumption.

Sampling frequency. Using the same setup described
above, we also evaluate the stability of the sampling rate
of the observer modules. We use the Linux timestamps
recorded by the RPi2 at nanosecond precision whenever a
new sample is retrieved from the ADC, and compute the de-

lay between consecutive samples. For this experiment we
configure a sampling rate of 62.5 kHz and we hence expect
two samples to be spaced by 16µs. Fig. 5 shows the stability
of the sampling rate: in 99.14% of the cases, two consecu-
tive ADC samples are indeed spaced by 16 µs. This means
that our prototype with a single sided PCB and no shielding
on the SPI lines is indeed capable of accurately sampling the
power consumption at a frequency of up to 62.5 kHz (voltage
and current are sampled simultaneously).

5.3 Timeliness of the GUI
The responsiveness of D-Cube’s user interface display-

ing the performance of the system being tested is limited by
two factors: (i) the speed of the selected time series database
in providing queries, and (ii) the refresh rate of the GUI.
In our case, InfluxDB answers queries in real-time with ev-
ery data point being indexed as it comes in and immediately
available in less than 100ms. The real-time visualization in
Grafana, instead, is implemented by default using a periodic
refresh interval of one second, i.e., the software automati-
cally reloads the data from InfluxDB every second.

6 Competition: Results and Lessons Learned
We use D-Cube to setup the desired benchmarking infras-

tructure and run the EWSN 2016 dependability competition.
After describing the competition setup (Sect. 6.1), we list
the competing protocols (Sect. 6.2) study their performance
(Sect. 6.3), and discuss the lessons learned in Sect. 6.4.



(a) Competition setup (b) D-Cube’s user interface

Figure 6. Competition setup (a) and user interface shown to the contestants (b).

6.1 Setup
We host the competition in a building of Graz University

of Technology, where 45 wireless sensor nodes are deployed
over an area of approximately 150 m2. We select Advan-
ticsys MTM-5000 sensor nodes (TelosB replicas) as target
and select a portion of them to generate RF interference on
multiple channels using JamLab [5]. All remaining nodes
are monitored by D-Cube’s observers that profile their power
consumption over time.

One of the target nodes is placed in proximity of a light
source and monitors its brightness using the embedded light
sensors. Any sudden variation in the lighting condition needs
to be promptly communicated to a sink node that will trig-
ger one of its I/O pins accordingly. The sink node is not
in the communication range of the sensing node, and addi-
tional forwarding nodes are available in the surroundings to
reach the sink in a multi-hop fashion (at least three hops are
necessary). The light source is a target node connected to
a bright LED that is turned off and on according to a secret
schedule (the same for all contestants). Node identities and
positions are not disclosed to avoid engineered solutions, but
the unique ID of the nodes can be read from flash. Fig. 6(a)
sketches the competition setup at a glance.

Evaluation metrics. Employing D-Cube, the first de-
pendability metric, timeliness, is measured as the delay with
which each change in the lighting condition is reported to
the sink. To this end, we use D-Cube’s observer modules to
timestamp the light changes on the node controlling the light
source and the changes in the GIO2 pin of the sink node. The
availability is inversely proportional to the power consump-
tion measured across the network by all observer modules.
Finally, the reliability is computed as the percentage of light
changes that are correctly reported to the sink.

User interface. During a two-days preparation phase, the
developers of the competing protocols have the possibility
to monitor the performance of their protocols and optimize
their parameters by connecting remotely to D-Cube’s user
interface. Contestants can see each other’s performance live,
which – as we will see in the next sections – helps significan-
tly in pushing the dependability of their solutions to the limit.
Fig. 6(b) shows a screenshot of the user interface displaying
the performance of a protocol in real-time.

Final benchmarking. After the two preparation days,
all contestants are asked to provide a final firmware to be

used for the benchmarking on the competition day. The latter
consists in a series of experiments of 35 minutes each, during
which JamLab increasingly generates interference across the
whole 2.4 GHz band, emulating the presence of several co-
existing Wi-Fi networks. All Wi-Fi access points in the area
are disabled and we make sure using an RF scanner that no
other interfering device is present in the area.
6.2 Benchmarked Protocols

Using this setup, we benchmark the performance of the
protocols developed by 11 teams that answered to an open
call for competitors. Their solutions range from adaptive and
time-slotted frequency-hopping to multi-modal routing and
flooding. Due to space constraints we focus our study on
six representative protocols, chosen among the ones having a
detailed technical description available and performing best
during the competition.

Enhanced ContikiMAC. ContikiMAC [13] is Contiki’s
default duty-cycling MAC protocol. We benchmark a ver-
sion of ContikiMAC that uses a sophisticated CCA mecha-
nism reducing the number of false wake-ups and maximizes
energy-efficiency [32]. Differently from enhanced Contiki-
MAC versions such as MiCMAC [44], this version runs on a
single channel.

Thompson-sampling based channel selection. This
protocol implements in Contiki a solution that dynamically
selects the best out of three channels. The channel to be
used is chosen by solving a multi-arm bandit problem using
Thompson sampling, which allows to minimize the number
of samples necessary to obtain a good estimation [40].

Glossy. Glossy [21] has been an influential flooding ar-
chitecture for wireless sensor networks that exploits con-
structive interference of IEEE 802.15.4 symbols for fast
network flooding and implicit time synchronization. The
benchmarked protocol is an extended version of Glossy with
channel-hopping, where the channel used for each commu-
nication slot is derived from the relay counter and the packet
sequence number [49].

Chaos. Chaos [35] is a primitive for all-to-all data shar-
ing of different packets. Inspired from Glossy’s one-to-all
flooding, Chaos parallelizes collection, processing, and dis-
semination inside a network by building on synchronous
transmissions and user-defined merge operators. The bench-
marked protocol is an extended version of Chaos that adds
frequency-hopping and blacklisting of poor channels [2].



Th
om

ps
on

Co
nt

iki
M
AC

Sp
ar

kle

Ch
ao

s

Glo
ss

y
TS

CH
0

200

400

600

800

1000

1200

1400

1600
E
n
e
rg

y 
[J
]

Th
om

ps
on

Co
nt

iki
M
AC

Sp
ar

kle

Ch
ao

s

Glo
ss

y
TS

CH
0

200

400

600

800

1000

1200

1400

1600
E
n
e
rg

y 
[J
]

(a) Energy consumption

Th
om

ps
on

Co
nt

iki
M
AC

Sp
ar

kle

Ch
ao

s

Glo
ss

y
TS

CH
0

200

400

600

800

1000

1200

1400

1600

La
te

n
cy

 [
m

s]

(b) End-to-end delay

Th
om

ps
on

Co
nt

iki
M
AC

Sp
ar

kle

Ch
ao

s

Glo
ss

y
TS

CH
0

20

40

60

80

100

R
e
lia

b
ili

ty
 [

%
]

(c) Reliability

Figure 7. Performance of the competing protocols during the competition day.

Ch
ao

s

Glo
ss

y

Sp
ar

kle
TS

CH
0

50

100

150

200

250

300

350

E
n
e
rg

y 
[J
]

(a) Energy consumption

Ch
ao

s

Glo
ss

y

Sp
ar

kle
TS

CH
0

20

40

60

80

100

120

140

160

180

La
te

n
cy

 [
m

s]

(b) End-to-end delay

Ch
ao

s

Glo
ss

y

Sp
ar

kle
TS

CH
0

20

40

60

80

100

R
e
lia

b
ili

ty
 [

%
]

(c) Reliability

Figure 8. Best performance obtained by the competing protocols during the preparation days.

Sparkle. Built upon Glossy, Sparkle [54] builds a multi-
loop control network that controls each end-to-end flow
based on run-time feedback. It employs capture effect to find
a number of reliable paths between the source and the desti-
nation and activate nodes on one or more of these paths [53].

Time-slotted Channel Hopping. We also bench-
mark the OpenWSN open-source implementation of
TSCH/6TiSCH [26], which employs time-slotted channel
hopping at a medium access control level [51], and RPL with
controlled flooding at the routing level.

6.3 Results
Fig. 7 shows the reliability, timeliness, and availability of

the benchmarked protocols during the competition day.
Flooding pays off. A clear result is that solutions em-

ploying flooding are the ones that perform best across all
three metrics. Whilst it is expected that flooding minimizes
the end-to-end latency, it is usually naı̈vely assumed that this
comes at a significantly higher energy-expenditure across the
network, due to the higher number of transmissions and in-
creased radio activity. The competition results show instead
that flooding protocols have a comparable energy consump-
tion to standard routing approaches.

Hopping is a necessity. While none of the competing
protocols could achieve a perfect 100% end-to-end reliabil-
ity, there is a clear cut between solutions relying on chan-
nel hopping across the whole frequency band and other so-
lutions. Out of the six protocols that we benchmark, in-
deed, Sparkle, Chaos, Glossy, and TSCH achieve a signifi-
cantly higher reliability and timeliness. ContikiMAC, which
operates on a single-channel, exhibits the lowest reliability
(69.1%) and highest average end-to-end delay (1.4 seconds),
probably due to the high number of failed attempts to access
the medium. The Thompson-sampling based channel selec-
tion, which uses a pool of three channels, improves reliability

by 7% and reduces end-to-end delay by 200 ms. The other
four protocols, which hop across the whole frequency band,
instead, are able to push the reliability up to 99.2%.

New-generation protocols are reliable and timely. An-
other clear result is that new-generation protocols combining
state-of-the-art techniques such as constructive interference,
flooding, and (time-slotted) frequency-hopping, can sustain
a reliability above 95% even in the presence of high inter-
ference and push down the end-to-end delay well below 150
ms for a network with at least 3 hops – a performance that
approaches the requirements of safety-critical applications.

Over-optimizing may be fatal. Choosing how much en-
ergy to sacrifice for privileging timeliness and reliability is
a well-known catch-22 dilemma. The contestants had to
face this problem, which was exacerbated by the fact that
they were aware of the performance of each other and strove
for victory. This led to a situation in which contestants
pushed the performance of their protocol to the edge, try-
ing to achieve even the smallest gain that would allow them
to beat another solution. The competition has clearly shown,
however, that a minimal improvement in a metric can worsen
the performance in another metric by almost a factor of two.
An example is shown by comparing Fig. 7 and 8: TSCH
exhibited a comparable performance to the other top three
protocols during the preparation days, and tried to aggres-
sively optimize its weakest point (timeliness). This resulted,
however, during the competition day, in a drastic increase of
energy consumption in comparison to all other protocols.

6.4 Lessons Learned
We summarize next the lessons learned during the prepa-

ration and execution of the competition.
Competitions trigger major advances. The best-

performing solutions in the competition correctly captured
more than 95% of the events with an end-to-end delay be-



200

300

400

500

600

E
n
e
rg

y 
[J
]

-44.21%

0

20

40

60

80

100

R
e
lia

b
ili

ty
 [

%
]

ru
n 
1

ru
n 
2

ru
n 
3

ru
n 
4

ru
n 
5

ru
n 
6

ru
n 
7

60

80

100

120

La
te

n
cy

 [
m

s]

-20.01%

Figure 9. By only optimizing the parameters, contes-
tants could significantly improve the dependability of
their protocols. In this figure, the improvements of TSCH
across multiple runs on the preparation day are shown.

low 75 ms within a network of at least three hops. Given
the extreme environmental conditions that were created (se-
vere radio interference across all frequency channels), this
is a remarkable result that approaches the requirements of
safety-critical applications. Undoubtedly, the essence of the
competition contributed to this result, with people competing
until late at night striving for victory.

Live feedback to participants. One of the aspects that
contributed to the success of the competition was undoubt-
edly also the ability of D-Cube to graphically visualize the
performance of protocols in real-time. We expect this fea-
ture to become a standard feature in public testbeds and fu-
ture benchmarking suites.

The importance of proper parametrization. As men-
tioned in Sect. 1, a common practice when benchmarking
different protocols is to rely on the default settings. The com-
petition has shown that by only optimizing protocol param-
eters to the scenario at hand, the performance of some sys-
tems could significantly be improved without affecting any
of the three dependability metrics. An example is shown in
Fig. 9, which depicts the performance of TSCH during the
competition day and the evolution of the three dependabil-
ity metrics over consecutive experiments. In only seven test
runs, the TSCH developers could decrease latency by 20%
and energy-consumption by 45%, without affecting the end-
to-end reliability of their system.

Impact of the operating system. Another important ob-
servation that stems from the competition is that the perfor-
mance of a protocol competing in these settings is typically
only minimally affected by the underlying operating system.
Nevertheless, we have also learned that it is very important
to benchmark the default settings of an operating system and
look for any large discrepancy w.r.t. the expected values.
While comparing the performance of the same application
using the two most popular operating systems for IoT de-
vices, Contiki and TinyOS, we indeed observed a large dif-
ference in the energy consumption. As shown in Fig. 10,

0

10

20

30

40

50

60

Radio RX CPU active GPIO high Green LED Idle

Cu
rr

en
t 

co
ns

um
pt

io
n 

(m
A)

State of target node

Contiki
TinyOS (patched)
TinyOS (default)

Figure 10. Current consumption on different operating
systems. Due to misconfigured GPIO pins, large differ-
ences were observed between TinyOS and Contiki.

TinyOS exhibited a much higher energy consumption than
Contiki when running the same application (≈ 37mA more).
The reason for such discrepancy turned out to be due to the
default configuration of the GPIO pins. The latest version
of TinyOS, indeed, configured by default the GPIO pins not
as inputs (as the comment above the initialization section of
the code suggested) but rather as outputs. Once the problem
was fixed, the performance of the two operating systems was
comparable, with Contiki consuming on average about only
0.5 mA more than TinyOS (see Fig. 10).

7 Conclusions and Future Work
In this paper we present the execution and results of a

competition aimed at benchmarking the end-to-end depend-
ability of state-of-the-art low-power wireless protocols under
the same settings and environmental conditions. We focus on
an exemplary industrial control scenario where several wire-
less devices crowd the RF spectrum and evaluate the reliabil-
ity, timeliness, and energy-efficiency of the competing pro-
tocols. To create the benchmarking infrastructure, we have
designed and implemented D-Cube, a tool that allows us to
accurately measure end-to-end delays and power consump-
tion with minimal hardware costs. Future work includes a
complete automation of the benchmarking procedure with
the ability to allow people to remotely contend without the
need of physically hosting a competition.

Acknowledgments
The authors would like to thank Engelbert Meissl for his

help while setting up the competition infrastructure. This
work was performed within the LEAD-Project “Dependable
Internet of Things in Adverse Environments”, funded by
Graz University of Technology.

8 References
[1] NavSpark User Guide, Rev. 0.9, 2016.
[2] B. Al Nahas and O. Landsiedel. Towards low-latency, low-power

wireless networking under interference. In Proc. of the 13th EWSN
Conf., competition session, 2016.

[3] N. Baccour, A. Koubâa, L. Mottola, H. Youssef, M. A. Zúñiga, C. A.
Boano, and M. Alves. Radio link quality estimation in wireless sensor
networks: a survey. ACM (TOSN), 8(4), 2012.

[4] C. A. Boano, K. Römer, and N. Tsiftes. Mitigating the adverse effects
of temperature on low-power wireless protocols. In Proc. of the 11th

IEEE MASS Conf., 2014.



[5] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. A. Zúñiga. JamLab:
Augmenting sensornet testbeds with realistic and controlled interfer-
ence generation. In Proc. of the 10th IPSN Conf., 2011.

[6] C. A. Boano, M. A. Zúñiga, J. Brown, U. Roedig, C. Keppitiyagama,
and K. Römer. TempLab: A testbed infrastructure to study the impact
of temperature on wireless sensor networks. In Proc. of IPSN, 2014.

[7] C. A. Boano, M. A. Zúñiga, K. Römer, and T. Voigt. JAG: Reliable
and predictable wireless agreement under external radio interference.
In Proc. of the 33rd RTSS Conf., 2012.

[8] S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, and P. De-
meester. The w-ilab.t testbed. In Proc. of the 6th TridentCom, 2010.

[9] C. Adjih et al. FIT IoT-LAB: A large scale open experimental IoT
testbed. In Proc. of the 2nd WF-IoT, 2015.

[10] M. Cattani, A. Loukas, M. Zimmerling, M. Zuniga, and K. Langen-
doen. Staffetta: Smart duty-cycling for opportunistic data collection.
In Proc. of the 14th SenSys Conf., 2016.

[11] Defense Advanced Research Projects Agency. DARPA Urban Chal-
lenge. http://archive.darpa.mil/grandchallenge/. Last visi-
ted: 27.06.2016.

[12] M. Doddavenkatappa, M. Chan, and A. Ananda. Indriya: A low-cost,
3D wireless sensor network testbed. In Proc. of TridentCom, 2011.

[13] A. Dunkels. The ContikiMAC radio duty cycling protocol. Technical
Report T2011:13, Swedish Institute of Computer Science, 2011.

[14] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Proc. of the
1st EmNetS Workshop, 2004.

[15] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-based on-
line energy estimation for sensor nodes. In Proc. of the 4th EmNetS
Workshop, 2007.

[16] S. Duquennoy, B. A. Nahas, O. Landsiedel, and T. Watteyne. Orches-
tra: Robust mesh networks through autonomously scheduled TSCH.
In Proc. of the 13th SenSys Conf., 2015.

[17] S. Duquennoy, F. Österlind, and A. Dunkels. Lossy links, low power,
high throughput. In Proc. of the 9th SenSys Conf., 2011.

[18] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis.
Design and evaluation of a versatile and efficient receiver-initiated link
layer for low-power wireless. In Proc. of the 8th SenSys Conf., 2010.

[19] E. Ertin, A. Arora, R. Ramnath, M. Sridharan, and V. Kulathumani.
Kansei: A testbed for sensing at scale. In Proc. of the 5th IPSN, 2006.

[20] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power
wireless bus. In Proc. of the 10th SenSys Conf., 2012.

[21] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with Glossy. In Proc. of the 10th

IPSN Conf., 2011.
[22] K. Genter, T. Laue, and P. Stone. Benchmarking robot coopera-

tion without pre-coordination in the robocup standard platform league
drop-in player competition. In Proc. of the IROS Conf., 2015.

[23] J. V.-V. Gerwen, S. Bouckaert, I. Moerman, and P. Demeester. Exploit-
ing low-cost directional antennas in 2.4 GHz IEEE 802.15.4 wireless
sensor networks. In Proc. of the 5th SENSORCOMM, 2011.

[24] J. V.-V. Gerwen, E. D. Poorter, B. Latré, I. Moerman, and P. De-
meester. Real-life performance of protocol combinations for wireless
sensor networks. In Proc. of the SUTC Conf., 2010.

[25] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collec-
tion tree protocol. In Proc. of the 7th SenSys Conf., 2009.

[26] P. H. Gomes, T. Watteyne, P. Gosh, and B. Krishnamachari. Reliability
through timeslotted channel hopping and flooding-based routing. In
Proc. of the 13th EWSN Conf., competition session, 2016.

[27] V. Handziski, A. Köpke, A. Willig, and A. Wolisz. TWIST: a scalable
and reconfigurable testbed for wireless indoor experiments with sensor
networks. In Proc. of the 2nd REALMAN Workshop, 2006.

[28] I. Haratcherev, G. Halkes, T. Parker, O. Visser, and K. Langen-
doen. PowerBench: A scalable testbed infrastructure for benchmark-
ing power consumption. In Proc. of the 1st IWSNE Workshop, 2008.

[29] M. Hempstead, M. Welsh, and D. Brooks. Tinybench: The case for a
standardized benchmark suite for TinyOS based wireless sensor net-
work devices. In Proc. of the 29th LCN Conf., poster session, 2004.

[30] I. Galpin et al. SensorBench: Benchmarking approaches to processing
wireless sensor network data. In Proc. of the 26th SSDBM, 2014.

[31] T. Kim, J. Kim, S. Lee, I. Ahn, M. Song, and K. Won. An automatic
protocol verification framework for the development of wireless sen-
sor networks. In Proc. of the 4th TridentCom Conf., 2008.

[32] A. King, J. Hadley, and U. Roedig. Contikimac with differentiating
clear channel assessment. In Proc. of the 13th EWSN Conf., competi-
tion session, 2016.

[33] L. Nazhandali et al. SenseBench: Toward an accurate evaluation of
sensor network processors. In Proc. of the IISWC Symposium, 2005.

[34] R. Lajara, J. Pelegrı́-Sebastiá, and J. J. P. Solano. Power consumption
analysis of operating systems for wireless sensor networks. Sensors,
10(6), 2010.

[35] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale. In
Proc. of the 11th SenSys Conf., 2013.

[36] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beu-
tel. FlockLab: A testbed for distributed, synchronized tracing and
profiling of wireless embedded systems. In Proc. of the IPSN, 2013.

[37] R. Lim, B. Maag, B. Dissler, J. Beutel, and L. Thiele. TraceLab: A
testbed for fine-grained tracing of time sensitive behavior in wireless
sensor networks. In Proc. of the 10th SenseApp Workshop, 2015.

[38] Q. Luo, H. Wu, W. Xue, and B. He. Benchmarking in-network sen-
sor query processing. Technical Report HKUST-CS05-09, The Hong
Kong University of Science and Technology, 2005.

[39] D. Lymberopoulos, J. Liu, X. Yang, R. R. Choudhury, S. Sen, and
V. Handziski. Microsoft indoor localization competition: Experiences
and lessons learned. GetMobile, 18(4), 2014.

[40] A. Maskooki, V. Toldov, L. Clavier, V. Loscrı̀, and N. Mitton. Chan-
nel exploration/exploitation based on a thompson sampling approach
in a radio cognitive environment. In Proc. of the 13th EWSN Conf.,
competition session, 2016.

[41] M. Mohammad, X. Guo, and M. C. Chan. Oppcast: Exploiting spatial
and channel diversity for robust data collection in urban environments.
In Proc. of the 15th IPSN Conf., 2016.

[42] S. Mysore, B. Agrawal, F. T. Chong, and T. Sherwood. Exploring the
processor and ISA design for wireless sensor network applications. In
Proc. of the 21st International Conference on VLSI Design, 2008.

[43] S. Nabar, A. Banerjee, S. K. Gupta, and R. Poovendran. Evaluation
of body sensor network platforms: A design space and benchmarking
analysis. In Proc. of the Wireless Health Conference, 2010.

[44] B. A. Nahas, S. Duquennoy, V. Iyer, and T. Voigt. Low-Power Listen-
ing Goes Multi-Channel. In Proc. of the 10th IEEE DCOSS, 2014.

[45] F. Österlind, L. Mottola, T. Voigt, N. Tsiftes, and A. Dunkels. Straw-
man: Resolving collisions in bursty low-power wireless networks. In
Proc. of the 11th IPSN Conf., 2012.

[46] S. Duquennoy et al. A benchmark for low-power wireless networking.
In Proc. of the 14th SenSys Conf., poster session, 2016.

[47] F. Schmidt, M. Ceriotti, N. Hauser, and K. Wehrle. Hotbox: Testing
temperature effects in sensor networks. Technical Report AIB-2014-
14, RWTH Aachen, Germany, 2014.

[48] F. Schmidt, M. Ceriotti, N. Hauser, and K. Wehrle. If you can’t take
the heat: Temperature effects on low-power wireless networks and
how to mitigate them. In Proc. of the 12th EWSN Conf., 2015.

[49] P. Sommer and Y.-A. Pignolet. Dependable network flooding using
glossy with channel-hopping. In Proc. of the 13th EWSN Conf., com-
petition session, 2016.

[50] M. K. Watfa and M. Moubarak. A benchmarking tool for wireless
sensor network embedded operating systems. Journal of Networks,
9(8), 2014.

[51] T. Watteyne, S. Lanzisera, A. Mehta, and K. S. Pister. Mitigating mul-
tipath fading through channel hopping in wireless sensor networks. In
Proc. of the IEEE ICC Conf., 2010.

[52] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: a wireless
sensor network testbed. In Proc. of the 4th IPSN, 2005.

[53] D. Yuan and M. Hollick. Sparkle: Energy efficient, reliable, ultra-low
latency communication in wireless control networks. In Proc. of the
13th EWSN Conf., competition session, 2016.

[54] D. Yuan, M. Riecker, and M. Hollick. Making ’glossy’ networks
sparkle: Exploiting concurrent transmissions for energy efficient, re-
liable, ultra-low latency communication in wireless control networks.
In Proc. of the 11st EWSN Conf., 2014.


