
Moving Beyond Competitions: Extending D-Cube to
Seamlessly Benchmark Low-Power Wireless Systems

Markus Schuß, Carlo Alberto Boano, and Kay Römer

Paper published at the 1st Workshop on Benchmarking Cyber-Physical Networks and Systems. Porto, Portugal. April 2018.

Institute of Technical Informatics, Graz University of Technology, Austria
{markus.schuss, cboano, roemer}@tugraz.at

Abstract—Performance comparisons of low-power wireless
systems are often not substantiated by accurate and realistic
evaluations, which raises the need of a proper benchmark.
In a first attempt towards a rigorous comparison of protocol
performance under the exact same settings, we have devel-
oped in 2016 a prototype benchmarking infrastructure called
D-Cube, and used it to run the first of a series of competitions
aiming to quantitatively assess the performance of low-power
wireless protocols in specific scenarios. Given the success of
the competition among both academia and industry, we have
significantly extended the benchmarking infrastructure in the
following two editions: D-Cube now also supports, among others,
remote experimentation, multiple traffic patterns and loads, a
custom description of how to derive performance metrics, and
is further able to control the network density as well as the
harshness of the RF environment. In this paper we perform a
critical analysis of the current capabilities of D-Cube and argue
that its main limiting factor is that the traffic patterns and
node identities are manually embedded in the source code by
developers and cannot be changed automatically. We show that
we can overcome this limitation by utilizing a well-known data
structure and by having developers describe its memory address
using a configuration file that is passed to the benchmarking
infrastructure. Following this concept, we extend D-Cube with
the ability of building and applying patches to binary files and
show that this allows not only to automatically change traffic
patterns and node identities, but to also change user-defined
protocol parameters. We believe that this extension is one of
the last missing stepping stones to make D-Cube a full-fledged
benchmarking infrastructure for low-power wireless systems.

Index Terms—benchmarking; competition; dependability; IoT;
low-power wireless; measurement; performance; testbeds.

I. INTRODUCTION

An increasing number of Internet of Things applications im-
pose strict dependability requirements on network performance
and require the employed communication protocols to deliver
information in a reliable, efficient, and timely manner. In
response to this need, many low-power wireless protocols have
been proposed by industry and academia over the last decade.
The problem. Most of these protocols are validated by
simulation or using large-scale public testbeds such as Indriya
and FlockLab. In all these settings, developers typically define
an ad-hoc evaluation scenario, extract the metrics of interest,
and draw conclusions about the performance of their solution.
However, the lack of a standardized methodology to evaluate
protocol performance often leads to a high divergence across
experimental setups, which makes it impossible to compare
results obtained by different authors [7]. As a consequence,
there is an increasing need to rigorously benchmark low-power
wireless systems under the exact same settings.

Benchmarking requirements. A low-power wireless bench-
mark ideally consists of an experimental setup enabling the au-
tomated, seamless, and repeatable execution of experiments on
real hardware [3]. Such a benchmarking infrastructure should
allow a user to define parameters that directly characterize
the system behavior, e.g., (i) traffic parameters such as pattern
and load; (ii) system parameters such as network density; (iii)
experiment parameters such as duration and number of runs; as
well as (iv) environmental parameters, such as the amount of
RF interference that should be generated in the surroundings
of the wireless nodes. The benchmarking infrastructure should
also allow a user to define metrics quantifying the performance
of the system under test, such as the packet delivery rate,
the energy consumption, and the end-to-end latency [3]. In
the ideal case, the user just needs to provide the firmware
to be tested and to specify concrete values for the set of
parameters, as well as a description of how the performance
metrics should be measured. The benchmarking infrastructure
then autonomously executes multiple runs and returns a report
containing the performance metrics of interest.

Our first attempt. As no benchmarking infrastructure satis-
fying these requirements existed, we have started in 2016 the
EWSN Dependability Competition Series [2] as a first attempt
to rigorously benchmark the performance of low-power wire-
less systems in harsh RF environments. With this long-term
goal in mind, we have created D-Cube, a low-cost tool that
allows to accurately measure key dependability metrics such
as end-to-end delay, reliability, and power consumption, as
well as to graphically visualize their evolution in real-time [8].
Each competition defines an evaluation scenario emulating the
operation of wireless networks monitoring discrete events in
the presence of a crowded RF spectrum, where all protocol and
system parameters are specified in advance and do not change
over time. The competing teams carefully tune their system
to the specific evaluation scenario at hand in a dedicated
preparation phase, during which they are aware of each other’s
performance. At the end of this phase, each team provides a
final firmware whose performance is benchmarked against all
others in terms of reliability, latency, and energy consumption.

An evolving infrastructure. Following the needs of the
contestants and in order to improve the competition format,
we have significantly extended the capabilities of D-Cube over
the years. First, as it is hard to properly optimize a system in
a few days only, we have supported remote experimentation.

Second, as the competition scenario originally supported only
very specific parameters (e.g., only point-to-point traffic) and
the competition results could hence not be easily generalized,
we have implemented support for multiple traffic patterns and
the ability to disable specific nodes on-demand (e.g., to vary
network density). Furthermore, we have added the ability to
input events via multiple GPIO pins instead of relying on
platform-specific sensors (e.g., light sensors). Since the 2018
edition of the competition, we have also introduced the possi-
bility to input to D-Cube the description of how to derive the
performance metrics from the measurement traces. This allows
our benchmarking infrastructure to automatically compute the
results of a run and to list them in a leaderboard summarizing
all results for a specific set of parameters. Therefore, as of
today, D-Cube can support many of the features that an ideal
low-power wireless benchmark should offer, although some
of them are intertwined with the specific application scenario
used in the competition and cannot be easily generalized.

Moving forward. In order to use D-Cube as a generic bench-
marking infrastructure, a necessary step is to move beyond
the static competition scenarios encompassing a single set of
parameters (i.e., just a small instance of the design space). We
hence need to provide D-Cube with the ability to (i) support
multiple sets of parameters (e.g., different traffic patterns and
loads) as well as (ii) to automatically instantiate several runs
with a diverse combination of such parameters (i.e., a different
benchmark profile). Towards this goal, the main challenge is
that traffic patterns and node identities are currently manu-
ally embedded in the source code by developers and cannot
be changed automatically. Therefore, we investigate how to
overcome this limitation without constraining developers to a
specific application scenario and provide a proof-of-concept
solution in which D-Cube can automatically change traffic
patterns and node identities by building and applying patches
to binary files. We believe that this extension is one of the
last missing stepping stones to make D-Cube a full-fledged
benchmarking infrastructure for low-power wireless systems.

Contributions. In this paper we outline how the benchmarking
infrastructure created to support the EWSN dependability
competition series has significantly evolved in the past three
years and show that it now supports – among others – remote
experimentation, a set of configurable parameters, as well as
a custom description of performance metrics (Sect. II). We
then argue that, to seamlessly benchmark low-power wireless
systems, the main limiting factor of D-Cube is that the traffic
patterns and node identities are embedded in the source code
by developers and cannot be changed automatically (Sect. III).
We hence describe how we can overcome this limitation by
making use of a well-known data structure and by extending
D-Cube with the ability of building and applying patches to
binary files (Sect. IV). With this extension, D-Cube is able
to automatically change not only the traffic patterns and node
identities, but any user-defined protocol parameter, such as the
node initiating a Glossy flood. We finally conclude the paper
with a summary and an outlook on future activities (Sect. V).

II. THREE YEARS OF DEPENDABILITY COMPETITION

Since 2016, we organize every year a dependability com-
petition co-located with the International Conference on Em-
bedded Wireless Systems and Networks (EWSN) [2].

In the first two editions, the task of the contestants was
to design a system in which a source node monitors the
brightness of a light source in close proximity using its
embedded light sensors. Any sudden change in the lighting
condition had to be promptly reported to a sink node by
communicating over a wireless mesh network, such that the
sink could replicate the state of the lighting source (on/off)
using a GPIO pin. To emulate a congested RF environment,
repeatable interference was generated using Jamlab [4].

The competing solutions were evaluated using three metrics
describing the system’s end-to-end performance: (i) reliability
(i.e., the number of changes in lighting condition correctly
relayed from the source to the destination); (ii) end-to-end
latency (i.e., the time between the change in lighting condition
and the instant in which the GPIO pin of the destination node
reflected this change); as well as (iii) energy consumption (i.e.,
the amount of energy consumed by all nodes in the network).

A. Key changes introduced by the 2018 edition

The dependability competition has evolved over the years
and several key changes were introduced by its 2018 edition.

i) Multiple events. The first two competitions focused on
the detection of a single type of event (change in lighting
condition) using the embedded sensors of a source node. In
the 2018 edition, up to 8 types of events had to be detected and
reported using the GPIO pins available on the source nodes.

ii) Multiple traffic patterns. In the last competition, the
wireless system to be designed had to support not only
point-to-point (P2P) traffic (i.e., from a single source to a
single destination), but also point-to-multipoint (P2MP) and
multipoint-to-point (MP2P). In the case of P2P traffic, all
changes of a specific GPIO pin on a source node had to be
transmitted to a pre-defined destination node, which would
toggle one of its GPIO pins accordingly. P2MP traffic relayed
state changes in a specific GPIO pin of a source node to
multiple destination nodes. A state change was considered
to be reported correctly only if all destination nodes did
reproduce it. MP2P traffic relayed changes in the state of a
GPIO in multiple source nodes to a single destination, which
had to logically OR all these state changes and reproduce the
resulting pattern on a pre-defined GPIO pin. Multiple sets of
source and destination nodes for each of the three patterns
were supported, for a total of 11 source nodes, 13 destination
nodes, and 27 nodes available as a forwarder.

iii) Remote experimentation. In the first two editions, the
benchmarking infrastructure was installed at the venue hosting
the EWSN conference. The competitors physically gathered
there and had approximately 48 hours of preparation time to
study the evaluation scenario and parametrize their solutions
accordingly. The last competition, instead, was run remotely,
and the competitors had more than two months time to
experiment and optimize their systems.

DCDC/GPIO
Isolators

Processing Unit
Raspberry Pi 2 3 Model B

TI LMP92064

G
P

IO
s

Navspark-GL

SP
I

Observer Module

GPIO Tracing
Process Latency Profiling

Process
Power Profiling

Process

GPIO Tracing Unit Latency
Profiling Unit

Power
Profiling Unit

U
A

R
T

P
P

S

D-Cube

User Interface
Grafana

Observer
Module 1

Observer
Module n...

Target
Node 1

Target
Node n

...

G
P

S

R
e

se
t

P
o

w
e

r

V
o

lt
ag

e

C
u

rr
en

t

V
o

lt
ag

e

C
u

rr
en

t

Time Series
Database
InfluxDB

Scheduler

PoE
Switch

Computation of
performance

metrics

Web Interface
Queue, Leaderboard

Fig. 1. D-Cube testbed infrastructure (updated components are shown in red).

iv) More challenging RF environment. In the 2018 edition of
the competition, we no longer made use of JamLab to emulate
a congested RF environment, but used instead many Raspberry
Pi 3 nodes generating Wi-Fi traffic with diverse characteristics.

B. Evolution of D-Cube
In order to support the aforementioned changes, many

new features were added to the competition’s benchmarking
infrastructure (called D-Cube1 [8]). The latter has significantly
evolved over the years: whilst in the first edition of the
competition, experiments were scheduled manually, the entire
execution, evaluation, and ranking of the submitted solutions
can now be performed automatically, and the evaluation results
are published on a leaderboard visible by all contestants.

Changes in D-Cube’s hardware. As shown in Fig. 1, D-Cube
no longer needs to rely on an existing testbed infrastructure, as
both observer modules (upgraded to Raspberry Pi 3 devices)
and target nodes (TelosB replicas) can be powered using
Power over Ethernet (PoE). Target nodes can be individually
powered on and off by software, hence allowing to control
the network density and to emulate node failures (e.g., due
to an early battery depletion). The GPIO tracing and latency
profiling units were redesigned to allow simultaneous tracing
and actuation of up to 8 GPIO pins, and nodes without GPS
connectivity can synchronize to the rest of the network using
NTP with an accuracy well below 10 µs.

Changes in D-Cube’s software and back-end. As shown
in Fig. 1, D-Cube features a new Web interface allowing
contestants to upload their firmware (a single .ihex file) and
to configure a number of parameters such as the generation of
external interference, as well as the duration of an experiment.
Experiments are automatically executed using a round-robin
scheduling algorithm during night or public holidays, in order
to keep uncontrolled interference at the minimum. The Web
interface can also visualize raw measurement traces (i.e.,
voltage, current, and state of GPIO pins) and output a number
of performance metrics (e.g., reliability, end-to-end latency
and energy consumption). To compute these performance
metrics, we have added the possibility to input into D-Cube
the description of how to derive a set of metrics from the
measurement traces. A description contains, for example,

1D-Cube (D3) takes his name from the three dependability metrics that are
observed in the competition: reliability, timeliness, and availability.

Team A Team B Team C
100

200

300

La
te

nc
y

[m
s]

24
1.

4

82
.3 10

7.
924

3.
7

82
.2 10

0.
023

9.
9

81
.2 10

0.
524

5.
1

89
.1 14

2.
6

All
P2P

P2MP
MP2P

(a) Average latency for different traffic patterns

Team A Team B Team C
100

200

300

La
te

nc
y

[m
s]

24
3.

7

82
.2 10

0.
0

24
0.

2

79
.9 11

8.
3

24
9.

3

82
.7 11

5.
3

24
1.

5

84
.1

66
.5

All P2P
118-209

206-110
213-225

(b) Average latency for different P2P source-destination pairs

Fig. 2. Average latency of different teams during the last EWSN’18
dependability competition. D-Cube was used to benchmark the performance of
the different teams as a function of various traffic patterns and node identities.

instructions on how to compute whether a destination node
correctly ORed the state changes occurring in the GPIO pins
of a set of sources nodes for MP2P scenarios. Such description
is used to filter the measurements stored in a centralized
database once a run has completed: thanks to the database
search and filter operations, the performance metrics can be
derived rather efficiently. With the description of how to derive
performance metrics from measurements traces, D-Cube can
then automatically compute the results of a run and list them
on an online leaderboard. The latter summarizes all results
obtained for a set of given parameters: a user can, for example,
display the results obtained using specific levels of generated
interference or traffic patterns. Fig. 2 shows how D-Cube
allows to derive the end-to-end latency of different solutions
for a specific traffic pattern (Fig. 2(a)), as well as to break
down the performance obtained in P2P scenarios only, for
different sets of source-destination pairs (Fig. 2(b)).

III. FROM COMPETITION TO BENCHMARK

In each instance of the competition, a static setup with
a fixed set of parameters was defined and communicated
beforehand to all contestants. Although well-defined setups
allow to clearly identify which systems are more suitable for
a specific application and to push protocol performance to
the limits [8], it is often not possible to generalize results.
The solutions being benchmarked in competitions are indeed
often designed for broader classes of applications (e.g., low-
rate data collection with aperiodic traffic). When adapting
a generic solution to the specific competition scenario at
hand, contestants heavily optimize their code and strive for
victory, ending up with their protocols being denatured (i.e.,
not resembling the original design) or with very customized
solutions. As a result, one cannot argue whether the results
obtained in the competition by a given solution are actually
representative of its goodness and suitability for a generic class
of applications or for a larger range of traffic parameters.

An example of this problem can be seen in Fig. 3, which
shows the energy consumption of three solutions benchmarked

Team A Team B Team C

6000

7000

8000
En

er
gy

 [J
]

70
23

60
23

71
01

70
40

61
29

61
12

70
98

60
52

57
44

70
64

60
42

56
24

1s
5s

15s
30s

Fig. 3. Energy consumption of three solutions benchmarked at the EWSN’18
dependability competition in the presence of controlled interference. The
performance of Team C largely varies as a function of traffic load.

at the EWSN’18 dependability competition as a function of
traffic load in the presence of controlled interference. The 2018
edition of the competition made use of a fixed traffic load in
which on/off events where generated probabilistically in the
range [1, 11] seconds (this choice was driven by the need to
maximize the number of events generated in each of the slots
allocated to the contestants for experimentation). Therefore,
within the competition, the performance of the contestants as a
function of traffic load was not captured nor evaluated. Whilst
the performance of most solutions was relatively independent
of the traffic load, Fig. 3 shows that this is not the case for one
of the teams (Team C), whose energy consumption decreases
when events are generated at a lower rate2. Indeed, the solution
provided by Team C performs better than the other two if
the application would generate events slightly less often (e.g.,
every 15 seconds). This aspect, however, could not be captured
during the competition, due to its static setup.

A. Moving to a generic benchmarking infrastructure

To generalize the results obtained in the competition, one
needs to benchmark the performance of a system under
varying settings or for a whole class of applications. Towards
this goal, the benchmarking infrastructure needs the ability
of supporting multiple profiles and of automatically iterating
through them, as discussed next.

Supporting a set of profiles. Each dependability competition
corresponds to a single benchmark profile, i.e., a concrete
set of parameters and performance metrics mapping to a
specific real-world application [3]. Ideally, one would test a
solution on multiple instances of a competition, i.e., using
multiple profiles. For example, one can define four different
data collection profiles where the data is periodically generated
every 1, 5, 15, and 30 seconds, as shown in Fig. 3, or a
profile in which data is sent aperiodically. Similarly, one can
specify individual profiles capturing different traffic patterns,
e.g., three profiles supporting only P2P, P2MP, and MP2P
traffic, respectively. The ability of doing so would allow to
better characterize protocol performance and to generalize
the obtained results, e.g., one could show that the solution
provided by Team C is suitable for applications with variable
data rates (see Fig. 3). One would also be able to better assess
the performance when using specific traffic patterns. Using the
current competition setup this is possible (see Fig. 2), but the
benchmarked solution needs to support multiple traffic patterns

2The reliability of all three teams did not exhibit major differences when
changing the traffic load, with ≥ 99% of the events being correctly reported.

at the same time. The performance of the tested solution would
likely be different when tailored to a single type of traffic only.

Automatic iteration through a set of profiles. Given a
set of profiles, a generic benchmarking infrastructure needs
to automatically execute different runs for each profile and
return a report containing the desired performance metrics.
Besides automatically scheduling experiments with different
parameters (e.g., setting up runs using different traffic loads),
an important feature of a benchmarking infrastructure is the
ability to vary the identity of the nodes involved in the
communication. In the competition setup, this is not the case,
as the identities of source and destinations nodes are known
beforehand. The ability to automatically shuffle the identity
of transmitters and receivers would allow to better cover the
space of possible link qualities and hop distance between
nodes, hence allowing a more comprehensive characterization
of protocol performance.

Static application specifications. The competition setup cur-
rently interacts with the firmware under test using GPIO pins.
The latter are toggled in order to trigger the transmission
of binary events from selected source nodes to a (set of)
destination node(s). As detailed in [8], this choice allows an
unobtrusive interaction with the firmware under test without
the need for the developer to use additional libraries and
without significantly affecting performance metrics such as
latency and energy consumption. A generic benchmarking
infrastructure should, however, embed the ability to pass arbi-
trary commands to the firmware under test in an unobtrusive
way. For example, one should have the ability to instruct node
14 to send one packet with a payload length of 45 bytes to
nodes 26, 31, and 45, or to enter a low-power state.

B. Which features is D-Cube missing?

We analyze next the current capabilities of D-Cube and
point out which limitations should be addressed in order to
make the benchmarking infrastructure more generic.

Already supported features. Fig. 4 shows the current archi-
tecture of D-Cube, including the new features added to support
the EWSN’18 dependability competition (see Sect. II-B). Most
of the inputted parameters can be changed without the need to
interact with the developers. The traffic load can be provided
to D-Cube as a description of the number of events to be
generated (either an interval or a probability distribution).
The harshness of the RF environment can be given as input
to D-Cube by providing a description of the characteristics
of the interference generated by the Raspberry Pi 3 devices.
Experiment parameters such as the duration of a run and the
number of repetitions can also be passed to the benchmarking
infrastructure as input. D-Cube also has the ability to control
the density of the nodes in the network by individually pow-
ering devices on and off. Finally, as discussed in Sect. II-B, a
scheduler able to process the inputted parameters, the provided
firmware, and a description of the performance metrics already
exists. This scheduler automatically executes and evaluates the
benchmarked firmware, generating a human-readable report

Parameters Developer

Protocol
(Glossy, 6TSCH, ...)

Firmware to Run
(.ihex file with specified traffic pattern
including source and destination nodes

Environmental
Parameters

(Amount of external
interference)

TestbedTestbedD-Cube Testbed
Infrastructure

Performance Metrics
(Reliability, end-to-end latency, energy

consumption)

Application
Specification

(Traffic pattern,
selection of source

and destination
nodes)

OS
(Contiki, TinyOS, ...)

Experiment
Parameters

(Duration and number
of repetitions)

Traffic Load
(via device inputs)

System Parameters
(Network density)

Description of
Performance Metrics

(How to derive metrics
from measurements

traces)

Measurement Traces
(Voltage, Current, GPIOs)

Fig. 4. D-Cube’s architecture during the EWSN’18 dependability competition.

and storing persistently machine-readable performance metrics
that can be used to rank the tested solutions.

Parameters intertwined with source code. As shown in
Fig. 4, the application specification currently contains the
traffic pattern as well as the identity of source and destination
nodes. Node identities hence cannot be changed by D-Cube
automatically without having access to the actual source code.
In order to change traffic pattern and node identities without
introducing significant overhead, a novel approach is required
to alter their configuration directly in flash. This could be
achieved by providing the developer with a well-known data
structure in the form of a header file containing a C struct,
as well as a textual description of its fields. By specifying
the memory location of this struct in the .ihex file,
the benchmarking infrastructure could automatically alter the
values of all configuration variables using a binary patching
framework. We provide a proof-of-concept of this approach in
Sect. IV.

Support of binary events only. D-Cube does not currently
support passing arbitrary commands to the benchmarked
firmware. In principle, UART messages could be used to send
specific commands to the tested application (e.g., following
the principle of Contiki’s shell), as they can embed a large
amount of info. However, these messages are handled by a
dedicated USB-to-UART converter embedded on the target
node, which introduces uncontrollable latency and jitter to
the measurements. For example, the FT232BM used by the
TelosB nodes introduces at least a 1 ms latency as well as

a non-constant overhead in current of ≈ 20 mA. Bypassing
such a converter would require extensive modifications to the
target node. Moreover, parsing UART messages introduces
significant overhead in RAM and the necessary libraries limit
the amount of flash memory available. In contrast to UART
messages, the interaction with the benchmarked firmware
using GPIO pins (as currently supported by D-Cube) ensures
to not alter the behavior of the tested solution, as well as a
minimal overhead. The proposed binary patching framework to
separate traffic pattern and node identities from the application
specifications in Sect. IV could also be used to send a
predefined set of commands using the GPIO pins. A command
can trigger an action upon reception of an event, which is well-
suited for latency measurements. If a command requires more
than one bit of data (e.g., to specify a payload or a destination
address), information could be serialized over a GPIO pin. In
absence of hardware support to automatically parse the data,
the target node could emulate serialization in software3.

IV. PATCHING BINARY FILES: PROOF OF CONCEPT

To separate traffic pattern and node identities from the
application specification, we extend D-Cube with the ability
of building and applying patches to binary files following
the concept shown in Fig. 5. The application specification
given to the developers now contains a header file embedding
a well-known data structure in the form of a C struct,
as well as a textual description of its fields. The developers
need to first add a new section to their firmware containing
an instance of the C struct and assign a default value
for all its fields, e.g., traffic patterns and identity of source
and destination nodes (traffic_pattern, source_id,
and destination_id in the example4 shown in Fig. 5).
These default values are placeholders and will automatically
be replaced by the binary patching framework. To this end, the
developers also provide D-Cube with an .xml file containing
the memory address at which the C struct was placed
(e.g., 0xd400). Using a Python script, the binary patching
framework seamlessly modifies the base firmware’s .config
section and creates a firmware ready to run – without involving
the developer, without requiring access to the source code, and
without introducing any overhead at run-time.

We describe next a preliminary implementation of the binary
patching framework (Sect. IV-A) and show that D-Cube can
now modify not only traffic patterns and node identities, but
even user-defined protocol parameters (Sect. IV-B).

A. Binary patching

We implemented a binary patching framework using Python
that takes as input: (i) a base firmware as .ihex file, (ii)
the description of traffic patterns, node identities, and user-
defined variables in an .xml file, as well as (iii) the new

3An example of such emulation is the 1-Wire bus used by TelosB nodes
to communicate with the embedded DS2411 ID chip.

4Please note that this is a simplified example supporting only one concurrent
pattern with up to 8 source and 8 destination addresses. In principle, one can
implement an array with any fixed number of source and destination nodes.

Parameters

Developer

Protocol
(Glossy,6TSCH, ...)

OS
(Contiki,TinyOS, ...)

Application Specification
(How to link and parse the

config struct)

TestbedTestbed

D-Cube Testbed
Infrastructure

...

Traffic Load

(via device inputs)

Header file
(contains config struct definition)
typedef struct {
 uint8_t traffic_pattern;
 uint8_t source_id[8];
 uint8_t destination_id[8];
 uint8_t gpio_pin;
} config_t;

Firmware to Run
(.ihex with placeholder

filled)

.text section

.config section

.text section

.config section

Firmware to Run
(.ihex with placeholder

filled)

.text section

.config section
Traffic pattern, node identity, user-defined variables

(through an XML file with their memory locations)
<?xml version="1.0"?>
<testbedconfig>
 <section address="0xd400" endianness="little" bits="16">
 <int bits="8" offset="0x0">traffic_pattern</int>
 <int bits="64" offset="0x2">sink_id</int>
 <int bits="64" offset="0xA">destination_id</int>
 <int bits="8" offset="0x12">gpio_pin</int>
 <int bits="8" offset="0x14">crystal_sink_id</int>
 </section>
</testbedconfig>

Base Firmware
(.ihex file with placeholder for traffic pattern

including source and destination nodes)

Fig. 5. Changes to D-Cube’s architecture in order to support binary patching.

values for the parameters in the C struct described by the
.xml file and produces a new firmware to run (see Fig. 5). As
.ihex files are compressed ASCII encoded representations
of binary information and include a checksum for each line,
they cannot be modified directly. Therefore, we use a Python
script to perform the patching operation in three steps. First,
the script calls gcc’s obj-copy to create an .elf file
from the base firmware. Second, as the .elf format is still
compressed, the script reads out the .elf file’s headers.
The latter describe at least two sections: .text (i.e., the
program code of the base firmware) and .config (acting
as placeholder configuration), and further contain the offset of
each section in the uncompressed address space, as well as the
offset in the compressed .elf file. The script then reads the
offsets for all parameters in the C struct from the .xml
file and replaces the variables in the .config section with
the new values provided as arguments to the script. The last
step consists in using obj-copy to generate a new .ihex
file with filled placeholders from the modified .elf.

B. Exposing user-defined protocols parameters

The binary patching framework described in Sect. IV-A can
also be used to modify user-defined parameters. The developer
may indeed choose to expose additional parameters in the
provided .xml file to check whether the chosen protocol
parameters actually deliver the best average performance.

We illustrate how this can be done with a running example
making use of the publicly available source code of Crystal [5].
A key configuration parameter of Crystal is the node that is
used as Glossy flood initiator [6]. We hence expose this pro-
tocol parameter to D-Cube by adding to the .xml file a user-
defined configuration parameter named crystal_sink_id.
The latter is the name of the variable used to identify the node
initiating a flood in the original firmware. We then instruct

11
7

11
8

15
0

20
0

20
2

20
4

20
6

20
7

20
9

21
1

21
2

21
3

21
9

22
1

22
5

ID of the node initating the Glossy flood

200

400

600

800

La
te

nc
y

[m
s]

11
8.

1

18
2.

9

11
1.

3

13
8.

4 29
8.

0

31
7.

9 79
9.

6
16

2.
8

12
3.

3

12
4.

1

84
.6 17

9.
5

13
9.

7

17
5.

3

Fig. 6. Average latency of Crystal when using different Glossy flood initiators.

D-Cube to execute several runs using a set of different nodes
as flood initiators and a setup similar to the one employed in
the EWSN’18 dependability competition. Using the proposed
binary patching framework, D-Cube automatically replaces
the crystal_sink_id variable and allows to derive the
results shown in Fig. 6. The latter shows that selecting node
213 as flood initiator allows to obtain the shortest average
latency, and that when selecting node 117 as initiator, Crystal
cannot successfully communicate. Whilst D-Cube can be used
to automatically alter user-defined variables, understanding
of their function relies on documentation provided by the
developer. If such variables are exposed, reasonable default
values and their range should be provided in textual form.

V. CONCLUSION AND FUTURE WORK

In this paper we perform a critical analysis of D-Cube and
argue that it already embeds many of the features desired by
a generic benchmarking infrastructure. Its main limitation is
that traffic patterns and node identities are currently embedded
in the source code by developers and cannot be changed
automatically. We show that we can overcome this limitation
by extending D-Cube with the ability of building and applying
patches to binary files: developers can now make use of well-
known data structures and describe their location using a
configuration file. In future work we will enrich D-Cube with
the ability to record environmental effects (so to enable a
fairer comparison between protocols [3]) and to control other
environmental aspects (e.g., temperature [1]). We will further
explore how to serialize commands over GPIO pins.

ACKNOWLEDGMENTS

This work was performed within the LEAD-Project “De-
pendable IoT in Adverse Environments”, funded by TU Graz.

REFERENCES

[1] C. A. Boano et al. TempLab: A Testbed Infrastructure to Study the Impact
of Temperature on Wireless Sensor Networks. In Proc. of IPSN’14.

[2] C. A. Boano et al. EWSN Dependability Competition: Experiences and
Lessons Learned. In IEEE Internet of Things Newsletter, 2017.

[3] C. A. Boano et al. IoTBench: Towards a Benchmark for Low-power
Wireless Networking. Proc. of the 1st CPSBench Workshop, 2018.

[4] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. A. Zúñiga. JamLab:
Augmenting Sensornet Testbeds with Realistic and Controlled Interfer-
ence Generation. In Proc. of the 10th IPSN Conf., 2011.

[5] T. Istomin et al. https://github.com/d3s-trento/crystal/tree/depcomp18.
[6] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza. Data Prediction

+ Synchronous Transmissions = Ultra-low Power Wireless Sensor Net-
works. In Proc. of the 14th SenSys Conf., 2016.

[7] S. Duquennoy et al. A Benchmark for Low-power Wireless Networking.
In Proc. of the 14th ACM SenSys Conference, poster session, 2016.

[8] M. Schuß et al. A Competition to Push the Dependability of Low-Power
Wireless Protocols to the Edge. In Proc. of the 14th EWSN Conf., 2017.

