
IoT Device Security the Hard(ware) way
(Paper published at the 23rd European Conference on Pattern Languages of Programs in July 2018)

Markus Schuß, Johannes Iber, Jürgen Dobaj, Christian Kreiner,
Carlo Alberto Boano and Kay Römer

Institute of Technical Informatics, Graz University of Technology, Austria

ABSTRACT
Numerous attacks on Internet of Things (IoT) devices have shown
that security cannot be neglected, even when building devices with
just a few kB of memory. While it is common sense to run regular
software updates and use state-of-the-art security on embedded or
general purpose systems, this is often not possible with IoT devices.
While many of those devices have the facilities to perform over-
the-air updates, their memory and processing capabilities limit the
use of state-of-the-art cryptography. Additionally, these devices
often lack the capabilities to secure the cryptographic keys, the
foundation on which the device’s security is built, which makes
them even more vulnerable to attacks. In this work, we present a
pattern that allows even constrained devices to utilize state-of-the-
art cryptographic functions, providing the foundation for a secure
Internet of Things. The identified pattern presents the following
characteristics: (i) confidentiality, by offloading the cryptographic
functions and key storage; (ii) authenticity, by signing messages
with the securely stored key using hash as well as signature func-
tions, often too complex for such constrained devices on their own;
(iii) integrity, a key requirement for connected sensors. As an added
benefit, a faster detection of corrupted or tampered updates can
also increase the availability of the system. This pattern is primarily
targeted at IoT device vendors, who wish to keep their devices
secure, by implementing security in hardware.

CCS CONCEPTS
• Software and its engineering→ Patterns; Designing software.

KEYWORDS
Internet of Things; System design.

1 INTRODUCTION
To date, thousands if not millions of deployed IoT devices lack the
capability to communicate securely through the Internet. These
devices are often based on constrained 8 or 16 bit micro-controllers
with only a few kB of RAM and flash. Despite these severe con-
straints, these devices rely on the Internet protocol (IP) to connect
to servers in the cloud, which alone is consuming a large portion of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroPLoP ’18, July 4–8, 2018, Irsee, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6387-7/18/07. . . $15.00
https://doi.org/10.1145/3282308.3282329

the available resources. Examples of applications using such devices
are parking lot vacancy monitoring, remote controlled lighting, dis-
tributed air quality sensors and other smart city or home devices.
A block diagram of a device used in such a system is shown in
Figure 1, which includes not only the micro-controller and a radio
for communication, but also the application-specific sensors and ac-
tuators required by the application. Historically, such devices were
deployed using proprietary protocols on the user datagram protocol
(UDP). With the advent of specialized IoT protocols, which typically
favor easier development and information processing over a small
memory footprint, the overhead has only increased. Furthermore
despite new protocols typically support transport layer security
(TLS), the implementation of this feature was often neglected due
to the resource constraints of the devices. While one could argue
that the replacement of these devices with more powerful versions
is the easiest solution to this issue, the cost of replacing millions of
devices would be high while not giving the customers any visible
benefit. The increase in performance will not only increase the price
per unit, but also its power consumption, which in turn decreases
the time the device will be able to run on battery. In addition, the
use of cryptography in software also increases the complexity of the
solution and hence the attack surface for any malicious party while
also increasing the likelihood of introducing a software bug. Lastly,
this would set a precedent for the next time the used cryptographic
primitives become outdated.

Micro-
controller

Sensors

Actuators

Software
(OS, Application 

Logic, Libraries...)

Sensor
Bus

Actuator
Bus

Radio
Radio
Bus

Crypto KeysCrypto Keys

Figure 1: Typical IoT device using cryptographic functions
implemented in software. The devices peripherals (sensors,
actuators and radio) do not directly affect the pattern.

https://doi.org/10.1145/3282308.3282329


EuroPLoP ’18, July 4–8, 2018, Irsee, Germany M. Schuß, J. Iber, J. Dobaj, C. Kreiner, C. A. Boano, K. Römer

We identified a pattern for (i) adding external cryptographic
co-processors to hardware allowing IoT device vendors to ensure
that new devices can keep up with the current demands for crypto-
graphic operations, and to (ii) enable their existing devices to cope
with the demands of the security challenges of the next decades.
This pattern can be applied during the design phase of new devices
as well as serve as an upgrade for existing hardware. This pattern
can be best observed in applications such as mobile phones and
other cellular devices, as they rely on SIM cards to provide authen-
tication to the network and can be used to increase security of
applications such as mobile payments. Several new cryptographic
features have been added in recent years, allowing the SIM card to
serve as secure element for payment and bank transactions. These
cards have a backwards-compatible interface, which allows older
devices to use even the newest cards and - if the software supports
it - all the new features that come with them. Therefore, a SIM card
slot should always be considered for IoT devices, even those not
relying on cellular technology for communications.

The target audience for this pattern are IoT device vendors that
can include the ability to later upgrade the security capabilities
of devices with long-term support without adding unnecessarily
strong micro-controllers handling more demanding tasks later on.
This reduces the cost for device and increases its lifetime.

2 HARDWARE IOT SECURITY PATTERN
Context
The hardware IoT security pattern is placed in the context of the
design of a new IoT device, capable of upgrading its cryptography
functionality independently from the rest of the system. The lat-
ter is important as some micro-controller include cryptographic
accelerators, however they cannot be upgraded.

Problem
The pattern focuses on a way to ensure that the IoT device can al-
ways communicate with the vendor’s server in a secure way, despite
the constrained nature of the device. The main problem the pattern
addresses is how to ensure that a IoT device can securely commu-
nicate through the Internet by allowing the upgrade the device’s
cryptographic functions independent from its micro-controller.

Consider an IoT device, designed with a cryptographic function
e.g., triple-DES that has been found insecure since its initial de-
ployment. As the hardware was designed for this task and only a
limited amount of spare resources were included when designing
the system, it is no longer capable to securely communicate. Up-
grading the micro-controller to a more capable one would require
porting the application and operating system to the new platform.
In addition to the development cost, the new device requires test-
ing and certification, which often makes this a highly undesirable
undertaking. As these devices are often placed out of reach, e.g., in
the ceiling of an office building or embedded in a parking lot, such
an upgrade is rarely performed, hence, most of the time, the device
remains in operation despite its insufficient security.

Forces
• (A) Offload cryptography: Keep the business logic stable and
separate from the security functionality, as the update of one
should not affect the other. In addition, this helps with the
certification of the device, as an update to the business logic
should not affect the security (and vice versa).

• (B) Costs: Secure an existing IoT device with a limited amount
of resources using state-of-the-art cryptographic operations
and without increasing cost significantly or impacting the
device’s power consumption. As little changes as possible
should be made to the hardware to keep the complexity
down and provide the ability to perform a “in-field” upgrade.

• (C) Security “ages” : Cryptographic functions evolve faster
than the typical lifetime of an IoT device. While these devices
are intended to be serviced (e.g., battery replacement) every
few years, their lifetime is typically intended in the area
of a decade or more. Security researchers find flaws in the
algorithm at a faster rate. Often, stronger cryptographic
functions require more CPU resources and memory, which
may not be available on the existing micro-controller.

• (D) Software always has bugs: Even if an algorithm is secure,
the used implementation may not necessarily be secure as
well. Certification of readily available software solutions is
often lacking for this reason, and many vendors lack the
ability to perform this certification in-house.

• (E) Malicious attacks: Side channels have been found in many
implementations ranging from power analysis to timing
attacks. Some of these attacks can be mitigated in software,
which requires more elaborate algorithms and, consequently,
drives resource consumption up. Mitigation against physical
attacks often requires a specialized processor.

• (F) Provisioning: Each device needs to be assigned a private
key during production. If this key is part of the firmware, the
flashing process becomes more complicated and the costs
increase. The manufacturer must be trusted as he has access
to the firmware and the embedded private key.

• (G) Time-to-market: For security certification and auditing
of a product, especially for high security applications, the
overhead in time and know-how for developing and testing
a completely secure system can be a challenge. The entire
certification has to be redone from scratch if the underlying
cryptographic functions should change.

Solution
Use exchangeable cryptographic co-processors to secure IoT de-
vices. Figure 2 shows a device with a slot for such a co-processor
in the form of a SIM card. While new devices can be designed
with a slot for a such a co-processor, existing devices will need
to be upgraded with the addition of a cryptography module. This
introduces less costs than replacing the entire hard- and software
of all existing devices. In order to facilitate further upgrades, we
identified the smart-card standard which has stood the test of time.
The use of a SIM-card slot is the best suited for an IoT class device
due to its small size and mechanical stability.



IoT Device Security the Hard(ware) way
EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Security 
Controller

SIM Card 
Slot

Micro-
controller

Crypto

Keys

Sensors

Actuators

Sensor
Bus

Actuator
Bus

Radio
Radio
Bus

Software
(OS, Application 

Logic, Libraries...)

Figure 2: IoT device implementing the hardware IoT security pattern. Cryptographic functions and key storage are moved to
a dedicated, external security controller, freeing up resources on the the micro-controller.

Security as an upgradeable hardware component: Newer devices
should always be built with a slot for the security controller in
mind. Even when using the best cryptographic functions available
today, these functions will also eventually become obsolete. After
the initial overhead of adding a slot for a cryptographic module,
each upgrade can be performed along the regular maintenance e.g.,
replacing the battery. While the focus of the pattern is on new
devices, it is possible to retrofit existing systems. Depending on the
device, the upgrade can be as simple plugging in a connector or, in
the worst case, may require soldering by a technician.

Besides using a SIM card containing a security controller, there
are similar solutions available from different manufacturers. These
devices fall into two main categories, (i) devices which implement
the required functionality but use a proprietary software or hard-
ware interface and (ii) devices which adhere to a given standard
(this also includes the smart card standard used by SIM cards).

Proprietary co-processors: Chip vendors produce co-processors
for cryptographic operations, usually relying on a simple hard-
and software interface. These range from simple chips capable of
only offloading a single type of operation to chips including all
functions for an entire communication suite like transport layer
security (TLS). These chips are optimized for IoT devices requiring
little power and few physical connections to the micro-controller.

Standardized trusted platformmodules (TPM): Many vendors have
released a versatile crpytographic coprocessors using the TPM stan-
dard, which is nowadays typically supported in the Linux operating
system. While constrained IoT devices typically run a much sim-
pler operating system, they can still be used, although without
official support from the manufacturer. In addition to the offloading
the cryptographic function, this chip also supports secure keystor-
age. Their main benefit is, that they are based on a well-known
standard and a vendor lock-in is less likely than with proprietary
co-processors. However, unlike the latter, trusted platform modules
have a higher cost, more complex interface and typically higher
power consumption and is therefore less useful for constrained IoT.

Consequences
To date deployed IoT devices can be easily upgraded by a non
technician by simply replacing the security controller, providing
state-of-the-art cryptography, nomatter the age of the device.While
the cost of components increases, the time spend in development
is decreased and the expected lifetime of the device much longer,
lowering the total cost over time. The target of the pattern are
vendors, however it is recommend to also consider the customer.

Vendor: Using a upgradeable co-processor for the cryptograpic
functionality ensures that the device can always securely connect
to the vendor’s servers through the Internet. This is important, as
the financial cost as well damage to the brand can be significant,
especially considering laws such as the EU’s General Data Pro-
tection Regulation (GPDR). Offloading the computational heavy
cryptographic functions to a dedicated co-processor will also free
up CPU time and memory in RAM and flash. With this new-found
space, new features can be added to the aging hardware making an
upgrade attractive for the end-user of a device.

Customer: The lifetime of existing IoT devices can be extended
without having to buy and familiarize with a new one. While most
customers would like to avoid any maintenance, this is not feasible
in the real world (especially when considering battery powered
devices). One can only hope that to those who deploy IoT devices
in their home, the possible loss of privacy is sufficient reason to
perform the maintenance.

Independently of the affected parties, the consequences of the
hardware IoT device security pattern can be viewed as a list of pros
and cons, which in turn can be attributed to the forces.

+ (A) Updates to the business logic do not affect the security of
the device, as this part is handled by the security controller.

+ (B) The security controller requires less power to perform the
cryptographic functions than the micro-controller would,
extending the battery life.

+ (B) Easy upgrade for the vendor by utilizing existing mainte-
nance intervals prolongs the time a device can be deployed.



EuroPLoP ’18, July 4–8, 2018, Irsee, Germany M. Schuß, J. Iber, J. Dobaj, C. Kreiner, C. A. Boano, K. Römer

+ (C) New cryptographic functions are feasible on old and con-
strained hardware without a major rewrite of the firmware
(it still needs support for the security controller).

+ (E) The security controller is designed to withstand a large num-
ber of malicious attacks, including physical attacks which
could not be mitigated in software.

+ (F) The security controller can be pre-programmed by the man-
ufacturer using a device with a secure random number gen-
erator. Once the keys are stored in the security controller,
they can not be read or cloned by a third party.

+ (G) The use of tested and certified security controllers reduces
the time-to-market for products.

+ (G) The private key is no longer part of the firmware which
speeds up production as all devices now use an identical
firmware.

- (A) The software needs to be adapted to make use of the external
security controller.

- (B) The additional slot for the security controller as well as the
upgrade introduce costs.

- (B) For older devices, a technician is required to modify the
existing hardware, which is often not easily accessible.

- (C) Newer algorithms can not be added via a software, but al-
ways require the replacement of the security controller.

- (D) There is typically no way to patch the security controller: if
there is a bug, it needs to be replaced.

Known Uses
Mobile phones. While the strategy of adding an additional crypto-
graphic co-processor to existing hardware seems far fetched, this
has actually happened in the past. SIM cards as typically used in
mobile phones nowadays contain secure elements (i.e., a security
controller). This feature is often used to ensure the security of
payments via the Internet or even using near field communication.

Set-top Boxes. While an entirely different field of application, the
payed subscription and video on-demand industry has been one of
the first industries to realize the pattern of replaceable cryptogra-
phy in hardware. The business model relies on smart cards with
advanced cryptographic functions to ensure that only paying cus-
tomers can decrypt the video stream since the broadcast region of
a satellite cannot be constrained. Whenever a cryptographic cipher
has been broken by a malicious third party, they simply have to
send out a new generation of smart cards to fix the problem.

Two-factor authentication. In order to secure online interactions
many companies offer to log-in via two-factor authentication. In
addition to a conventional password, a second proof of identity
is required. While many use an application for smartphones or
even SMS for this, for high security demands, hardware tokens are
also used. These tokens use a challenge-response protocol with
the cryptographic functions typically implemented in hardware.
Similar to the previous applications, if the cryptography would no
longer provide sufficient protection, these physical tokens (often
USB drives or smart-cards) can easily be replaced.

Related Pattern
IoT devices require more than just secure communication. Many
of the patterns useful for such devices are described by Reinfurt
et al. [? ]. Given that merely adding a co-processor for offloading
the cryptographic functions does not result in a secure device by
default, these functions still need to be used correctly, e.g., to es-
tablish a secure channel as described by Sinnhofer et al. [? ]. The
latter provides a pattern that highlights the need to establish a se-
cured connection, while the hardware IoT security pattern provides
a means to achieve this in a upgradeable way on even the most
constrained devices. In addition, to ensure that the whole system is
secure, the entire application needs to be designed with security
in mind. A good overview of many different security patterns for
software is given by Bunke et al. [? ].

3 CONCLUSION
In this workwe have shown that, while common knowledge dictates
that security cannot be added as an afterthought but should always
be "designed in", there are still ways to achieve this. We show that
it is possible to bring 10-20 year old devices into the cloud using
state of the art cryptographic functions and keep them safe for the
foreseeable future.

ACKNOWLEDGMENTS
We thank our shepherd Tobias Rauter, in particular for stopping
this patter from turning into a technical manual. In addition, we
would like to thank Andrea Höller for the help with a company’s
view on this topic as well as the focus group for the great input
provided during the writers workshop and beyond.


	Abstract
	1 Introduction
	2 Hardware IoT Security Pattern
	Problem
	Forces
	Solution
	Consequences
	Known Uses

	3 Conclusion
	Acknowledgments

