
JamLab-NG: Benchmarking Low-Power Wireless Protocols
under Controllable and Repeatable Wi-Fi Interference

Markus Schuß†, Carlo Alberto Boano†, Manuel Weber†, Matthias Schulz‡,
Matthias Hollick‡, and Kay Römer†

†Institute for Technical Informatics, Graz University of Technology, Austria
‡Secure Mobile Networking Lab, Darmstadt University of Technology, Germany

Abstract
Evaluating the performance of low-power wireless pro-

tocols in noisy environments in a repeatable and fully-
automated way is still an open problem in our community.
On the one hand, there is a lack of tools enabling the control-
lable and repeatable generation of interference using Wi-Fi
devices. On the other hand, existing testbeds do not offer the
automated generation of Wi-Fi interference on a large-scale.
In this work, we present JamLab-NG, an open-source frame-
work allowing the generation of controllable Wi-Fi interfer-
ence using off-the-shelf devices such as the Raspberry Pi 3.
JamLab-NG enables the fine-grained control of individual
link-layer transmissions, avoiding the uncontrollable de-
lays introduced by the network stack, the operating system,
and the clear channel assessment procedure. Furthermore,
JamLab-NG allows to generate repeatable Wi-Fi interference
patterns by controlling radio settings such as the transmis-
sion speed and the packet length, which would otherwise be
automatically adapted by the radio firmware at run-time.
We use JamLab-NG to augment an existing testbed and em-
bed the generation of Wi-Fi interference into its automated
execution of experiments. Among others, we allow remote
configuration of the interference generated by individual
Wi-Fi devices, and show that they can operate in a synchro-
nized fashion without additional infrastructure. Finally, we
use the augmented testbed to benchmark the performance of
state-of-the-art IoT protocols under Wi-Fi interference in a
repeatable and fully-automated way.

Categories and Subject Descriptors
B8.2 [Performance Analysis and Reliability]

General Terms
Design, Measurement, Performance, Reliability.

Keywords
Competition, Dependability, Performance, Testbeds.

1 Introduction
The prolific nature of Wi-Fi, combined with its high data

rates and transmission power, as well as the use of 20 or even
40 MHz bandwidth channels, can be highly detrimental to
the communications of co-located IoT devices using the 2.4
GHz ISM band. In the presence of Wi-Fi transmissions, for
example, systems based on IEEE 802.15.4 or Bluetooth Low
Energy typically experience an increased packet loss and
number of retransmissions [22, 32]. This affects the latency,
throughput, and energy efficiency of the network, which may
be critical for IoT systems used in safety-critical application
domains such as smart production and smart grids.

For this reason, over the past decade, both industry and
academia have worked relentlessly in order to design new
low-power wireless protocols that can sustain a reliable per-
formance also in noisy environments [19, 21, 42, 43]. These
new-generation protocols have proven that techniques such
as constructive interference, flooding, and (time-slotted)
frequency-hopping can significantly help in mitigating cross-
technology interference [41]. However, how to test, debug,
and quantitatively compare the performance of these and
other IoT protocols under Wi-Fi interference in an automated
and repeatable way remains an open problem.
Challenges. This problem is mainly due to (i) the limitations
of mote-based approaches commonly used to test protocols
under interference, (ii) the inability of fully controlling the
interference generated by actual Wi-Fi devices, and (iii) the
lack of large-scale IoT testbeds offering the automated gen-
eration of Wi-Fi interference on a large scale.
Limitations of mote-based approaches. Several researchers
rely on JamLab [9], a tool to produce repeatable interference
using off-the-shelf motes [12, 19, 26, 43]. JamLab allows
to use a fraction of the IEEE 802.15.4 nodes in a testbed
to generate specific interference patterns by simply re-
programming the nodes intended as jammers with the
proper software. However, Jamlab’s ability to reproduce
Wi-Fi traffic is limited, due to the limited bandwidth
(3 MHz), transmission power (1 mW), and rate (250 kbps) of
IEEE 802.15.4 transceivers. Indeed, JamLab can only emu-
late IEEE 802.11b traffic, as the limited throughput of motes
based on IEEE 802.15.4 radios does not allow to emulate
faster IEEE 802.11g/n transmissions. Furthermore, to em-
ulate a Wi-Fi device using 20 or 40 MHz bandwidth chan-
nels, one would need to synchronize 4 to 8 JamLab nodes,
respectively, hence using a large fraction of the nodes in a



testbed. The number of necessary JamLab nodes would in-
crease even further if one needs to cover the area that would
be interfered by a Wi-Fi device transmitting at 100 mW us-
ing IEEE 802.15.4-based motes.
Inability of fully controlling Wi-Fi transmissions. Several
works make use of actual Wi-Fi devices to test the perfor-
mance of IoT protocols under interference [13, 24, 31, 44].
Whilst this approach is obviously superior to the use of
motes (in the sense that the limitations on bandwidth, trans-
mission power, and rate are intrinsically solved), it still can-
not guarantee the repeatability of an experiment. A Wi-Fi
pattern can indeed only be repeated when having full control
of the individual link-layer transmissions. Approaches rely-
ing on a Wi-Fi device downloading large files from an access
point [13, 20, 25], or generating a bandwidth-limited data
transfer using applications such as iperf [18, 31, 33, 44]
are unable to fully control the timing and properties of Wi-Fi
transmissions. The problem lies in the inability of applica-
tions to directly access the radio firmware (which is typically
closed-source). On the one hand, due to the radio’s auto-
matic adaptation of the transmission rate and packet size, an
application lacks the means to control the channel occupancy
in a fine-grained way. On the other hand, applications do not
have control over the delays introduced by the network stack,
the operating system (OS), and the actual radio firmware,
which limits the control over the timing of individual link-
layer transmissions. On top of this, Wi-Fi radios always per-
form a clear channel assessment (CCA) prior transmission
and back-off when the channel is busy, which exacerbates
the problem even further. As a result, as we experimentally
show in Sect. 2, the repeatability of experiments carried out
with off-the-shelf Wi-Fi devices is rather limited.

Automation of large-scale experiments. Having many Wi-Fi
devices generate interference over a large area is a complex
and time-consuming procedure. Wi-Fi devices require in-
deed the prior establishment of a connection to communi-
cate. In conventional settings, Wi-Fi clients connect to an
access point (AP) using a specific channel. However, when
using several APs to generate interference over a large area,
one needs to change their settings on a per-experiment basis,
which is a huge configuration burden and is often unfeasible.
In principle, Wi-Fi clients could be configured to act as ad-
hoc APs. However, to avoid interfering with each other,
multiple Wi-Fi clients cannot operate on adjacent channels.
This makes the channel selection over large areas problem-
atic, as it requires knowledge about the placement of each
device and the propagation of its signals. For this reason,
most researchers rely on temporary, static, and small-scale
setups involving only one or at most few APs [1, 22, 32]. To
tackle these limitations, we hence need a client-only solu-
tion, which does not rely on an active connection. Doing so
with software-defined radios (SDRs) [17, 30] does not scale,
due to the high costs of the required hardware. As a result,
the automated generation of Wi-Fi interference in large-scale
IoT testbeds remains an open challenge.

This state of affairs represents a serious problem, because
it limits the possibility of rigorously benchmarking the de-
pendability of low-power wireless protocols and IoT systems

in the presence of Wi-Fi interference [7]. On the one hand,
because of the limited repeatability and reproducibility of ex-
periments, the obtained results can hardly be compared and
generalized. On the other hand, the lack of automated testbed
solutions, together with the high effort and costs in manually
setting up experiments, discourages most researchers, who
rather resort to the use of background Wi-Fi noise from of-
fices where testbeds are deployed to test their protocols’ per-
formance [16, 46]. This practice, however, does not ensure
repeatable and comparable experiments, and is therefore not
suitable to benchmark the performance of IoT systems.
Contributions. To address all the aforementioned chal-
lenges, we present JamLab-NG, a framework that allows to
generate controllable and repeatable Wi-Fi interference us-
ing low-cost off-the-shelf hardware. JamLab-NG is able to
fully control the relevant physical layer settings of the Wi-Fi
radio, as well as to schedule individual link-layer packets.
This is achieved by modifying the Wi-Fi radio’s firmware
and by controlling it without the need to rely upon the net-
work stack or the operating system (Sect. 3). In partic-
ular, JamLab-NG (i) allows to control parameters such as
transmission rate, power, and packet size, (ii) supports dis-
abling of the CCA procedure, and (iii) implements accurate
timers in the Wi-Fi radio firmware that enable a fine-grained
control of the timing of individual link-layer transmissions.
JamLab-NG further simplifies the description of an interfer-
ence pattern by allowing a developer to directly specify the
physical properties of the interference to be generated (e.g.,
channel occupancy and burstiness), hence enabling the cre-
ation of a library of patterns to be used for benchmarking.
We implement JamLab-NG on top of Nexmon [39], a popu-
lar C-based patching framework for Wi-Fi radios, and show-
case the repeatability of the generated interference using the
off-the-shelf Raspberry Pi 3 (Sect. 4). We further make
JamLab-NG open-source1 and keep its design modular: this,
together with the extensive support of Nexmon for Broad-
com (now Cypress) chipsets [28], enables an easy migration
of JamLab-NG to other popular low-cost devices (Sect. 5).
We then show how to integrate JamLab-NG’s functional-
ity into large-scale IoT testbed facilities by augmenting
D-Cube [41], i.e., by adding the generation of Wi-Fi interfer-
ence into its automated execution of experiments (Sect. 6). In
particular, we allow the configuration of Wi-Fi interference
via a REST API or Web interface, and show that each Wi-Fi
device can autonomously control interference in a synchro-
nized fashion without the need of additional infrastructure.
We finally make use of the D-Cube testbed augmented with
JamLab-NG to benchmark the performance of several IoT
protocols under Wi-Fi interference, and show that their per-
formance can be quantitatively compared in a repeatable, re-
producible, and fully-automated way (Sect. 7).
2 Issues in Controlling Wi-Fi Transmissions

We start our discussion by experimentally showing the
limitations of existing approaches making use of Wi-Fi de-
vices to generate interference in terms of repeatability and
reproducibility. The repeatability of an experiment can be
defined as the variability of the measurements obtained when

1http://www.iti.tugraz.at/JamLab-NG



Raspberry Pi 3
BCM43430A1/Raspbian

VoCore 2 AP

RX

TelosB TelosBTelosB TelosB

TX

MTM-CM5000
CC2420/Contiki

1m1m 1m1m

dAPdAP

(a) Experimental setup

10 20 30 40 50 60
Payload length [byte]

70

72

74

76

PR
R 

[%
]

(b) Repeatability problem

3 10 15
dAP [m]

20

40

60

80

PR
R 

[%
]

(c) Reproducibility problem

0 1 2 3 40 1 2 3 4

15m
[1Mbps]

10m
[5.5Mbps]

3m
[24Mbps]

Si
gn

al
 c

ap
tu

re
d

 b
y 

O
sc

ill
o

sc
o

p
e

Time [s]

dAP
[speed]

(d) RF signal at varying dAP

Figure 1: The inability of fully controlling the timing of Wi-Fi transmissions leads to a repeatability and reproducibility prob-
lem. The generated interference causes the PRR of communicating IEEE 802.15.4 nodes to largely vary across the same
experiment (b) and across experiments with different dAP (c), due to the delays introduced by operating system and network
stack as well as due to the Wi-Fi radio’s dynamic adaptation of parameters such as the transmission rate (d).

repeating the same experiment multiple times. The repro-
ducibility refers to the variability of the measurements ob-
tained when replicating the same experiment in another set-
ting, which hinders a consistent comparison of results [31].
Experimental Setup. We replicate a setup similar to the
ones commonly used in the literature to artificially create
noisy environments by generating Wi-Fi traffic with a given
bandwidth [31, 33, 44]. As shown in Fig. 1, we let a pair of
TelosB replicas (Advanticsys MTM-CM5000 embedding a
TI CC2420 radio) exchange packets periodically in the pres-
ence of a Raspberry Pi 3 (RPi3) connected to a VoCore2
Wi-Fi AP. The RPi3 makes use of its embedded bcm43430a1
radio chip to connect to the AP using Wi-Fi channel 6, and
generates traffic using ncat in combination with pv: this al-
lows to continuously transfer data from the RPi3 to the AP
using TCP with a limited bandwidth BW . Note that the AP is
isolated from other networks and that all experiments are car-
ried out in absence of external interference. The two TelosB
nodes (TX and RX) are placed at 1 m distance from the
RPi3, whilst the distance between the RPi3 and the AP varies
across our experiments and it is referred to as dAP. TelosB
nodes make use of Contiki with nullmac and nullrdc to let
the TX node periodically transmit 16 packets/sec to the RX
node on channel 18, without the randomness or variability
introduced by duty-cycling and MAC layers. We measure
the packet reception ratio (PRR) as the ratio between the
number of correctly-received packets and the number orig-
inally transmitted by the TX node. Each experiment stops
after transmitting 10000 packets, and is repeated ten times.
Limited repeatability. In a first set of experiments, we set
BW =500 kbps, and keep dAP=0.5 m to ensure a stable con-
nection, as well as to avoid that the two Wi-Fi devices back-
off due to concurrent TelosB transmissions [22]. As both the
IEEE 802.15.4 and the Wi-Fi network exchange messages at
a constant rate, we expect the measured PRR to be highly
repeatable over long runs, and to linearly decrease when us-
ing larger payloads, as shown in [9, 29]. Fig. 1b shows the
results of 10 experiments: the green line indicates the me-
dian value, each box depicts the first and third quartile, with
the whiskers showing the 5–95 percentile, and the dots in-
dicating outliers. As one can observe, the PRR exhibits a
large variance (up to 5%) despite the constant rate of both

IEEE 802.15.4 and Wi-Fi traffic, revealing a severe problem
in terms of repeatability. While the amount of data trans-
mitted in both networks remains unchanged over time, and
the timing of the IEEE 802.15.4 transmissions is tightly con-
trolled by Contiki, the same does not hold true for the Wi-Fi
network. We have indeed observed that the timing of the
generated Wi-Fi transmissions significantly varies over time,
due to the activities of the RPi3’s OS (kernel and network
stack) and radio module. Applications such as ncat and
iperf, unfortunately, cannot control those activities in detail
and hence cannot schedule precisely-timed packet transmis-
sions. As our results show, this limits the repeatability of the
generated interference, and also implies a problem in terms
of reproducibility, as we illustrate next.
Limited reproducibility. In a second set of experiments,
we set BW =200 kbps and vary dAP, emulating the different
distances between a Wi-Fi node and an AP on a large-scale
testbed. In principle, one would expect the communicating
IEEE 802.15.4 nodes to sustain a higher PRR, as the dis-
tance dAP between RPi3 and AP increases. Indeed, whilst the
transmissions of the RPi3 should affect the IEEE 802.15.4
communications in the same way (the distance between RPi3
and TelosB nodes does not change), the signal strength of
the AP’s transmissions would weaken with distance and may
no longer jam IEEE 802.15.4 traffic. Instead, as shown in
Fig. 1c, the measured PRR exhibits the exact opposite trend,
i.e., it significantly decreases when the two Wi-Fi devices are
far away. The reason for this behavior can be explained by
looking at Fig. 1d, which shows an excerpt of the RF signal
captured using a Keysight MSO-S 254A oscilloscope with
a bandwidth of 2.5 GHz. The RPi3’s radio automatically
adapts the transmission rate in relation to the quality of the
wireless link with the AP, resulting in a transmission rate of
1, 5.5, and 24 Mbps at 3, 10, and 15 m, respectively. This
changes unpredictably the channel occupancy of the gener-
ated Wi-Fi traffic, significantly affecting the way ongoing
IEEE 802.15.4 transmissions are disturbed, and impairing
the reproducibility of experiments.
In summary, our experiments highlight that (i) the reliance

on (and impact of) existing Wi-Fi infrastructure (APs), to-
gether with (ii) the inability to control the physical settings of
the Wi-Fi radio as well as the OS’ activities limit the control



over the timing of individual link-layer transmissions – im-
pairing the reproducibility and repeatability of experiments.

3 JamLab-NG: Design and Implementation
We next present the design of JamLab-NG: a framework

that allows to generate repeatable and reproducible interfer-
ence using common Wi-Fi devices. After clarifying the de-
sign rationale (Sect. 3.1), we present JamLab-NG’s architec-
ture (Sect. 3.2) and discuss the functionality and implemen-
tation of its core modules (Sect. 3.3 to 3.5).
3.1 Design Rationale

To mitigate the challenges shown in Sect. 2, one first
needs to gain access to the radio’s physical layer (PHY) and
the ability of sending data without an access point.
Using monitor mode. Several chipsets offer the ability to
work in monitor mode, which allows a device to send data
without the need to associate to an AP. Although not sup-
ported by every Wi-Fi card, this mode allows applications
like scapy [35] to send arbitrary, raw frames without the
need of an established connection or additional infrastruc-
ture. Moreover, when using monitor mode, one can also con-
figure PHY settings such as channel and transmission rate:
this is necessary, as the radio is no longer connected to an AP,
and hence unable to determine these settings autonomously.

While the use of monitor mode seems to be the solution to
many of the challenges highlighted in Sect. 2, its use to send
individual frames does still not allow to avoid the overhead
as well as the uncontrollable delays introduced by the OS and
the radio firmware. In addition, even on devices where mon-
itor mode is available, several low-level settings such as the
possibility to disable the CCA, the spacing between packets,
or the per-packet transmission rate cannot be modified.

The ability to control these settings in a fine-grained way
is very important: for example, depending on the strength
of the received signal, a Wi-Fi radio with CCA enabled
backs-off and delays its transmissions [22]. This means that
the timing and the amount of the generated Wi-Fi interfer-
ence becomes dependent on external influences such as the
transmissions and settings of other nearby devices (e.g., em-
ployed channel, transmission power and rate). We show this
by reusing the same setup described in Sect. 2 to let the
RPi3 in monitor mode inject 763 bytes-long frames every
13 ms at 1 Mbps using scapy. Fig. 2a shows that the impact
of the generated Wi-Fi interference on the PRR of the two
IEEE 802.15.4 nodes varies as a function of the TX mote’s
transmission power PT X (0 or -35 dBm). Similar effects
would occur if the motes would change their relative posi-
tion, transmission rate, or channel. Gaining control of the
radio’s PHY settings and the ability to modify them is hence
key to enable reproducible and repeatable experiments.
Altering the radio firmware. To modify the inner work-
ings of a Wi-Fi radio, one can alter its firmware, i.e., the
actual software running on the module. The source code
of some Wi-Fi cards has been made available by its vendor,
e.g., Atheros USB cards based on the ath9k_htc chip. The
availability of such an open-source firmware has been used,
among others, to build makeshift spectrum analyzers [18],
or to enable energy detection at runtime and enable cross-
technology communication [3, 15]. Open-source firmwares

10 20 30 40 50 60
Mote's payload length [bytes]

20

30

40

50

60

PR
R 

[%
]

pTX=0dBm
pTX=-35dBm

(a) Effect of Wi-Fi’s CCA

10 20 30 40 50 60
Mote's payload length [bytes]

20

30

40

50

60

70

PR
R 

[%
]

High RPi load
Low RPi load

(b) Effect of the RPi3’s CPU load

Figure 2: Limitations in the use of Wi-Fi’s monitor mode
when not being able to disable CCA (a) and bypass the OS
(b): the impact of interference can be vastly different.

have also been modified to enable even lower-level access
to the internals of the Wi-Fi card. For example, Vanhoef
et al. have disabled the CCA and removed the interframe
gap on ath9k_htc chips in order to build a reactive jammer
generating traffic as soon as a Wi-Fi transmission was de-
tected on the air [49]. Other radios for which the source
code was not made available by their vendors have been
reverse-engineered, e.g., the popular Broadcom (now Cy-
press) bcm43 series [37]. This enabled the use of monitor
mode, normally unavailable on these cards, and has also been
used to disable CCA and implement reactive jamming [36].
JamLab-NG exploits a combination of monitor mode with
low-level access to the radio firmware to transmit repeatable
interference patterns without the need to connect to an AP.
Bypassing the OS. This combination, however, may still
be insufficient to generate repeatable interference on low-
end devices. For example, when triggering the transmission
of individual Wi-Fi packets from an userland application,
the timing of the resulting interference is – among others –
strongly affected by the load of the host CPU. Fig. 2b shows
what happens when repeating the same experiment shown in
Fig. 2a while the CPU of the RPi3 is under a constant ar-
tificial 100% load. The light grey bars show that the PRR
sustained by the two motes is significantly higher (≈20%)
when the RPi3 is running with a high CPU load. The dark
bars in Fig. 2 are measured with the constant 60% CPU load
introduced by scapy. This shows that the userland applica-
tion triggering the generation of interference should not han-
dle individual packets, but only signal the beginning and the
end of the interference process. Every other operation (e.g.,
loading and scheduling of packets) needs to be handled by
the radio itself. We do so by creating a tool that triggers
the generation of interference from within the radio mod-
ule2. This way, by avoiding that the application triggers the
transmission of individual frames, we minimize the number
of calls through the OS, and eschew uncontrollable delays.
Describing the interference properties. When using the
radio module to handle the generation of interference upon

2Note that also reactive jamming approaches do not rely on an userland
application scheduling individual packets, but instead trigger the transmis-
sion of frames upon detection of Wi-Fi activity [36, 49]. This, however,
does not allow to generate interference at arbitrary points in time.



a trigger from an userland application, we would need to
store long sequences of packets or embed lengthy descrip-
tions about the timing of packet transmissions inside the ra-
dio firmware. However, as the latter has a very constrained
memory (in the order of a few kB), this is not possible.

To overcome this constraint, we need to make use of a
high-level description of interference without having to ex-
plicitly specify the characteristics and payload of the individ-
ual packets to be sent. We hence derive a lightweight model
of Wi-Fi traffic and use it to generate controllable interfer-
ence from the radio module despite its memory constraints.
Parametrizing the interference properties. Following this
rationale, the userland application can trigger the generation
of pre-defined interference models with a single call through
the OS. To avoid the generation of fixed models, we still need
to allow an application to parametrize the model, so to vary
the characteristics of interference arbitrarily at runtime.

3.2 JamLab-NG’s Architecture
We design JamLab-NG in order to enable Wi-Fi devices

supporting monitor mode to generate controllable and re-
peatable interference. Monitor mode is supported by nearly
every vendor, including Atheros (now Qualcomm), Intel, as
well as RaLink, and is also available on reverse-engineered
Broadcom (now Cypress) chips using Nexmon [37].

JamLab-NG encompasses two tools named Jelly and
Confiture. With Jelly, one has the ability to generate in-
terference by directly sending packets to the Wi-Fi radio in
monitor mode. Although this does not solve the problem of
bypassing the OS (see Sect. 3.1), this is the only way that
the few Wi-Fi radios, for which no open-source or reverse-
engineered firmware exists, have to generate controllable in-
terference. All other Wi-Fi radios, instead, can make use of
Confiture: a solution that bypasses the OS by embedding
the interference generation directly into the radio firmware.

Confiture is split between a userland application (app)
and a scheduler running directly on the Wi-Fi radio. The app
is used to pass the properties of the interference to be gen-
erated to the scheduler in the form of model parameters (no
individual packets). The scheduler is used to autonomously
trigger the transmission of packets according to these model
parameters. This allows us to trigger the generation of inter-
ference from the Confiture app using a single call, hence
bypassing the OS and avoiding uncontrollable delays.

The key difference between the two tools is that
Confiture can be used for repeatable interference gener-
ation from a Wi-Fi radio while the device performs other
activities, such as recording the serial output, observing
GPIO pins, or performing energy measurements. In contrast,
Jelly requires the dedicated use of the Wi-Fi device for in-
terference generation, and no other tasks should run on the
OS in order to ensure repeatability. This makes Confiture
suitable to extend common IoT testbeds [10, 23, 41, 45],
which typically carry out all these activities, with highly-
repeatable interference generation, as discussed in Sect. 6.
Fig. 3 shows an overview of the resulting architecture of

JamLab-NG. We base our illustration on our reference im-
plementation for the off-the-shelf RPi3 embedding a bcm43
Wi-Fi chip. As there is no open-source implementation of

BCM43430A1 Wi-Fi Module

Raspberry Pi 3 Host CPU

Operating System
Linux (Raspbian)

Command Dispatcher
wlc_ioctl_hook()

IO
C

T
L

Existing Firmware Functionality
Broadcom Firmware

PHY 
Settings

Confiture App
(directly sends IOCTL 

commands)

Network Stack

iperf

Jelly Tool
(monitor mode)
Jelly Tool
(monitor mode)

Nexmon TX
sendframe()

PHY Control
(CCA, channel, 

power, …)

CSV File
(interference properties)

Model Parameters Frame PayloadModel Parameters Frame Payload

Confiture Scheduler
Model

Parameters
ms Timer
hnd_timer

µS Timer
hwtimer

Frame 
Payload

Model
Parameters

ms Timer
hnd_timer

µS Timer
hwtimer

Frame 
Payload

Confiture Scheduler
Model

Parameters
ms Timer
hnd_timer

µS Timer
hwtimer

Frame 
Payload

Figure 3: A sketch of JamLab-NG’s architecture.

the bcm43 firmware, we make use of Nexmon [37], a C-based
patching framework for a wide range of Broadcom radios.
This enables us to extend the Wi-Fi firmware with new func-
tions without breaking existing functionality. A Wi-Fi device
can hence normally connect to APs and a user can still run
tools like iperf without any modification.

Both Confiture and Jelly read a common comma sep-
arated value (CSV) file containing the properties of the in-
terference to be generated. This simplifies the description
of an interference pattern by allowing a non-expert to di-
rectly specify interference characteristics such as channel oc-
cupancy and burstiness, hence enabling the creation of a li-
brary of patterns to be used for benchmarking. In particular,
the CSV file contains in each line a list of model parameters
that are used by Jelly and by Confiture’s scheduler to con-
figure the transmission rate, as well as the length and timing
of individual frames. Each line of the CSV also contains a
timestamp to allow the model parameters to be changed over
time and generate different interference patterns at runtime.

Differently from Jelly, the Confiture tool only sends
commands to the radio using directly the input/output con-
trol (IOCTL) interface. The latter defines high-level com-
mands that are identified by an integer number. Confiture
makes use of these commands to change the model param-
eters stored in the scheduler, or to start/stop the interference
generation, hence bypassing the OS functionality to send
packets. Both tools share (i) the use of IOCTL commands
to modify PHY settings such as channel, power, and CCA,
as well as (ii) Nexmon’s sendframe() function to inject the
frame payload into the existing firmware functionality.

The injection of frames is performed in both tools ac-
cording to an interference model. While in Confiture this
task is performed by a scheduler embedded in the radio, in
Jelly this functionality is kept in the userland. Confiture’s
scheduler and Jelly operate according to the same princi-
ple, and call Nexmon’s sendframe() function depending
on the timing information provided by the model parame-
ters. We next describe how such model parameters can be
derived (Sect. 3.3), as well as the implemention of Jelly
and Confiture (Sect. 3.4 and 3.5).



Burst of Packets 
tburst

Packet 
Duration tjam

Idle Channel tidle

Interference Period T

Inter-frame 
Gap tgap

0 10 20 30 40

Si
gn

al
 c

ap
tu

re
d

 b
y 

o
sc

ill
o

sc
o

p
e

Time [ms]
50 60 70 80 90 100

Figure 4: Periodically repeating RF signal measured by
a Keysight MSO-S 254A oscilloscope when transmitting
bandwidth-limited TCP traffic (from Fig. 1d).

3.3 Interference Model
The operation of Confiture’s scheduler and Jelly are

based on a lightweight model specifying how often and for
how long interference should be generated. To derive such a
model, we analyze the characteristics of Wi-Fi traffic in the
time domain using a mixed-signal oscilloscope when trans-
mitting data with a given application. When making use of
ncat and pv to produce bandwidth-limited TCP traffic as
shown in Sect. 2, the resulting RF signal in the time domain
follows a strongly-periodic pattern. For this type of periodic
bandwidth-limited TCP traffic, we therefore create a model
which generates periodic bursts of interference over time.

Fig. 4 shows a magnification of the bandwidth-limited
TCP traffic depicted in Fig. 1d. One can clearly identify a
burst of Wi-Fi packets separated by a variable inter-frame
gap, followed by a phase in which the channel remains idle.
We can hence identify an interference period T during which
the channel is occupied by a burst of Wi-Fi packets (tburst ),
followed by an idle phase (tidle). The burst of packets is com-
prised of several frames, each of length L bytes and duration
t jam. Consecutive frames are separated by a short idle phase
due to the inter-frame gap (tgap). The time each packet is
on air depends heavily on the employed transmission rate R,
which determines the amount of bits transmitted per second.

The duration in milliseconds of each individual packet
t jam depends on the amount of data, as well as on the rate
at which it is sent, and can be hence computed as:

t jam = tpreamble + (L·8)/R ·1000 (1)
where tpreamble is the time in milliseconds necessary to

transmit the default, long IEEE 802.11 preamble and PLCP
header at the fixed transmission rate of 1 Mbps:

tpreamble =
144bit +48bit

1Mbps
·1000 (2)

Using t jam and identifying n as the number of consecutive
packets sent within a burst, we can derive tburst in ms as:

tburst = (t jam ·n)+ tgap · (n−1) (3)

With this simple model, one can create a repeating signal
emulating the traffic generated by a bandwidth-limited TCP
connection. As we discuss in Sect. 5, one can enhance this
model with controllable jitter, as well as derive other models
for different types of Wi-Fi traffic.

Interference Period
hnd_timer

Burst of Packets
hwtimer

Fr
am

e

Fr
am

e

Fr
am

e

tjam+tgap tjam+tgap

Figure 5: Confiture’s scheduler uses two types of timers to
transmit frames according to the model shown in Sect. 3.3.

3.4 Jelly: Implementation
We base the design of Jelly on scapy, a powerful

open-source packet manipulation program written in python.
While originally designed to perform attacks such as ARP
poisoning on Ethernet [35], it has recently gained the ability
to read and modify radiotap headers. With this ability, it
can be used to inject IEEE 802.11 frames and pass to the ra-
dio parameters such as the transmission rate, but also vendor
specific extensions such as the ability to turn off CCA.

The main feature of scapy used in our design is its
L2socket, which allows us to send raw IEEE 802.11 frames
at the maximum rate supported by the Wi-Fi card. However,
this is only possible with pre-built frame payloads, as the
serialization of python frame objects to their binary repre-
sentation requires a large amount of CPU resources – hence
introducing large uncontrollable delays.
3.5 Confiture: Implementation

Confiture is split between an app that orchestrates the
generation of repeatable interference and a scheduler that
takes care of the actual transmission of link-layer frames.
App. The userland application reads from a CSV file (i) the
relative time-stamp since the start of the interference gener-
ation, (ii) the model parameters, and (iii) the PHY settings
to be employed (channel, power, CCA). It then issues via
IOCTL commands the start and stop of the interference gen-
eration to the scheduler running in the radio module.
Scheduler. The scheduler’s main task is to precisely sched-
ule the transmissions of frames based on the interference
model described in Sect. 3.3 and its parameters. To this
end, the scheduler stores the model parameters in a dedicated
memory area after receiving them from the app via IOCTL
commands. The scheduler makes use of two types of timers:
a high-resolution µs-timer (hwtimer) and a low-resolution
ms-timer (hnd_timer). The high-resolution timer is used to
model the interframe gap and send the individual packets,
whilst the low-resolution timer represents the interference
period T , as shown in Fig. 5. Every time the hnd_timer
fires, the hwtimer fires multiple times in a row in order to
send the individual packets using the sendframe() function.
The latter takes as argument the transmission rate R, as well
as a buffer with the payload to be sent. As this buffer is
freed with every send operation, randomly generating a new
payload each time would limit the rate at which packets can
be sent. Therefore, we also store a predefined (maximum
length) payload in the scheduler, and allocate a new buffer
(in which we copy L bytes) before calling sendframe().



1 2
5.

5 6 9 11 18 24 36 48 54

(a) Transmission rate
[Mbps]

0

20

40

60

80

PR
R 

[%
]

Confiture
Jelly

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

(b) Wi-Fi frame payload length
[byte]

0

20

40

60

80
Confiture
Jelly

10 11 12 13 14 15 16 17 18 19 20

(c) Interference period
[ms]

0

10

20

30 Confiture
Jelly

10 20 30 40 50 60 70 80 90 10
0

11
0

(d) Contiki payload length
[byte]

10

20

30

40

50
Confiture
Jelly

Figure 6: Packet reception rate (PRR) sustained by IEEE 802.15.4 nodes for Confiture (lighter grey bars) and Jelly (darker
grey bars) when using different model parameters for JamLab-NG and when the motes employ a different payload length.

4 Evaluating JamLab-NG’s Repeatability
We evaluate the ability of JamLab-NG to generate con-

trollable and repeatable Wi-Fi interference experimentally.
In particular, our evaluation answers the following questions:

• How repeatable is the impact of JamLab-NG’s interfer-
ence when using different model parameters?

• Does the impact of JamLab-NG’s generated interfer-
ence follow the expected trends?

• Is JamLab-NG actually more repeatable than common
bandwidth-limited Wi-Fi traffic generators?

We start by evaluating the impact of JamLab-NG’s inter-
ference on the performance of IEEE 802.15.4 communica-
tions when using different model parameters (Sect. 4.1). We
show that such an impact is highly repeatable and follows the
expected trends, thanks to JamLab-NG’s fine-grained control
of interference. Thereafter, we show that the repeatability
achieved by JamLab-NG is significantly higher than the one
obtained using tools such as iperf and ncat (Sect. 4.2).
Setup. Our evaluation is based on the same experimental
setup described in Sect. 2. The only difference is that the
VoCore2 AP has now been removed: the RPi3 hence runs
JamLab-NG and generates interference without the need of
additional infrastructure. As in Sect. 2, we assess the impact
of the generated interference by measuring the PRR of two
motes placed in proximity of the RPi3. Unless stated differ-
ently, the TX mote makes use of packets with a 40-bytes pay-
load sent every 62.5 ms on channel 26, whilst JamLab-NG
employs Wi-Fi channel 14 and the following model parame-
ters: T =13 ms, R=1 Mbps, n=1, and L=1526 bytes.

4.1 Impact of Model Parameters
We evaluate the repeatability of JamLab-NG by analyzing

the variability in the PRR sustained by the MTM-CM5000
nodes over tens of experiments and hundreds of thousands
transmissions. We use as metrics: (i) the average standard
deviation of PRR across all experiments (σPRR), and (ii) the
range of PRR values across all experiments (ΘPRR).
Transmission rate. We first analyze the impact of
JamLab-NG’s interference on the PRR of the communicat-
ing motes when using different transmission rates (R). The

bcm43430a1 can select several values for R depending on the
employed modulation, namely:

• DSSS: 1 and 2 Mbps;
• CCK: 5.5 and 11 Mbps;
• OFDM: 6, 9, 18, 24, 36, 48, and 54 Mbps.

Fig. 6a shows that the PRR of the two motes increases when
using a higher transmission rate. This is expected, as higher
transmission rates make use of shorter Wi-Fi frames, caus-
ing a lower channel utilization. The PRR does not change
significantly at higher rates: this is due to the fixed (slow)
preamble, whose impact becomes higher when R increases.
One can also observe that the use of R=1 Mbps results in a
PRR of 0: at such low rate, when using L=1526 bytes, t jam
is indeed almost equal to T (12.5 and 13 ms respectively),
which is insufficient to let Contiki successfully transmit an
entire packet over-the-air without collisions.

Overall, JamLab-NG exhibits a very high repeatability,
when using both Jelly (darker grey bars) and Confiture
(lighter grey bars). The standard deviation of the PRR is in
average only 0.17% for Jelly and 0.25% for Confiture,
as highlighted in Table 1, whilst the PRR range is 0.59 and
0.78%, respectively. Note that Jelly exhibits a slightly
higher repeatability than Confiture for two reasons. On the
one hand, there is no other task running on the RPi3’s CPU,
which gives Jelly nearly full control of the 1.2 GHz quad-
core. Second, Jelly and Confiture make use of different
timers. Whilst Python’s time module used by Jelly sus-
tains the same standard deviation of the hwtimer (275 µs),
Confiture also makes use of the hnd_timer, whose stan-
dard deviation is slightly higher (482 µs).
Length of Wi-Fi frame payload. We next analyze the
impact on PRR when varying JamLab-NG’s burst duration
(t jam). To this end, we vary the frame’s payload length L be-
tween 100 and 1500 bytes (note that L does not include the
length of the constant preamble). Fig. 6b shows that the mea-
sured PRR decreases linearly with the Wi-Fi frame lenght L,
up to a point in which the channel is almost fully saturated
(L=1500, resulting in a t jam=12.3 ms).

Also in this case, JamLab-NG exhibits a high repeatabil-
ity, both when using Jelly and Confiture. σPRR is only



JamLab-NG’s Tool Confiture Jelly
σPRR (%) ΘPRR (%) Model Error (%) σPRR (%) ΘPRR (%) Model Error (%)

Transmission rate (R) 0.25 0.78 0.43 0.17 0.59 0.61
Length of Wi-Fi frame payload (L) 0.19 0.62 1.18 0.16 0.52 0.88
Interference period (T ) 0.14 0.41 1.33 0.09 0.41 1.33
Contiki payload length (Lpayload) 0.23 0.75 1.26 0.70 2.18 1.50

Table 1: Average standard deviation of PRR (σPRR) and range of PRR values (ΘPRR) across all experiments for Confiture and
Jelly when using different model parameters and when the two motes employ different payload lengths.

0.16% for Jelly and 0.19% for Confiture, as highlighted
in Table 1, whilst ΘPRR is 0.52 and 0.62%, respectively.
Interference period. The impact of the interference period
T used by JamLab-NG on the PRR follows the expected
trend: the higher T , the higher the PRR sustained by the
motes. As we make use of L=1526 bytes and R=1 Mbps,
for T ≤ 13 ms, the channel is fully saturated and the two
IEEE 802.15.4 nodes are unable to communicate. Fig. 6c
shows that the repeatability of JamLab-NG is very high, with
Jelly and Confiture sustaining a σPRR of only 0.09 and
0.14%, respectively, as highlighted in Table 1.
Length of IEEE 802.15.4 packets. We finally show that the
interference generated by JamLab-NG is also highly repeat-
able regardless the size of the packets transmitted by the two
motes. As the maximum size of an IEEE 802.15.4 packet
is 127 bytes, we subtract Contiki’s Rime and MAC over-
head and vary the payload between 10 and a maximum of
110 bytes. Fig. 6d shows that the longer the packets ex-
changed by the two motes, the lower the PRR. Whilst this
is expected [9, 29], it is interesting to observe the small stan-
dard deviation and range of PRR values, especially when
comparing them to the ones obtained in Fig. 1b. As shown
in Table 1, Jelly and Confiture sustain a σPRR of 0.70 and
0.23%, as well as a ΘPRR of 2.18 and 0.18%, respectively.
Actual vs. expected impact of interference. The four plots
shown in Fig. 6 also embed a dotted blue line that indicates
the expected PRR sustained by the two IEEE 802.15.4 nodes.
We use this line to show that the impact of the interference
produced by JamLab-NG is not arbitrary, but indeed follows
the expected trends. The expected PRR is estimated based
on the model parameters used by JamLab-NG, the time in
ms necessary to transmit an IEEE 802.15.4 packet over the
air (tpacket ), and a simple model capturing the probability of
a collision P. We compute tpacket as:

tpacket = (Lheader+Lpayload)·8/Rieee (4)

where Rieee is the transmission rate of an IEEE 802.15.4 ra-
dio (250 kbps), Lheader is the header length (17 bytes), and
Lpayload is the length of the payload.

Following the mathematical model describing the likeli-
hood that two periodically recurring events have to coincide
by Richards [34], we derive:

P0 =
t jam · tpacket

T ·Tpacket
w =

t jam + tpacket

T ·Tpacket

P = (P0 +w∗ t) ·100 for t ≤ Max(T,Tpacket)

(5)

where T and t jam are the interference period and burst dura-
tion used by JamLab-NG, respectively; and Tpacket is the rate

10 20 30 40 50 60 70 80 90 10
0

11
0

Contiki payload length [byte]

74
75
76
77

PR
R 

[%
]

Figure 7: Variability of the PRR sustained by the IEEE
802.15.4 nodes when using Confiture to model a rate-
limited TCP connection. The repeatability is notably higher
compared to the use of classic tools such as ncat (Fig. 1b).

at which the IEEE 802.15.4 nodes transmit packets (in our
case 62.5 ms). Note that this simple model assumes (i) all
collisions to lead to a packet loss, and (ii) no jitter in the tim-
ing of transmissions. Using P, the estimated PRR in % of the
two motes when generating interference using JamLab-NG
can be computed as 100−P.

Fig. 6 shows that the estimated PRR (blue dotted line)
follows accurately the actual interference generated by
JamLab-NG. Table 1 also lists the average difference be-
tween the estimated PRR and the measured one. On av-
erage, the estimated PRR is always within 1.5% for both
Confiture and Jelly, which shows that the impact of
JamLab-NG’s generated interference is highly deterministic
and leads to the expected packet loss.
4.2 Comparison to Existing Tools

After showing the impact of the individual model param-
eters, we move back our focus to the original problem de-
scribed in Sect. 2. Our goal is to compare the repeatabil-
ity of the impact of JamLab-NG’s interference with the one
caused by existing tools generating a bandwidth-limited data
transfer. To this end, we adjust JamLab-NG’s model param-
eters to the ones used by ncat in the experiments shown in
Fig. 1b. We hence create longer interference bursts using
n=32 packets of L=1526 bytes that are sent at a transmission
rate R=54 Mbps every T =100 ms: this allows us to mimic
a similar bandwidth-limited TCP connection to the AP with
good signal quality.

Fig. 7 shows the impact of the interference generated
by JamLab-NG (using Confiture) on the PRR of the two
IEEE 802.15.4 nodes. When comparing Fig. 7 and Fig. 1b, it
is clear that JamLab-NG brings huge improvements in terms
of repeatability, with significantly less outliers and a much
smaller standard deviation. Indeed, in Fig. 7, the PRR of the
communicating motes exhibits a much clearer trend, with
σPRR=0.08% and ΘPRR=0.25% only – compared to 1.41%
and 4.11% obtained by ncat in Fig. 1b, respectively.



5 Discussion
JamLab-NG is a complex framework whose features go

well beyond the ones described in the reference design on
Sect. 3. In this section, we aim to give a brief overview of the
capabilities and functionalities that have already been added,
or that can be integrated into JamLab-NG in the near future.
Interference library. In Sect. 3.3 we have described an
exemplary model for bandwidth-limited traffic that can be
used to emulate the behavior of applications like iperf and
ncat. In principle, JamLab-NG’s can be easily extended
with other models using CSV files collected in a common li-
brary and easy to share. For example, one can implement
probabilistic models similar to the ones supported by the
original Jamlab [9]: Confiture’s implementation already
includes a pseudo-random number generator with a config-
urable seed that can be used exactly for this purpose. Fur-
thermore, one can also create arbitrary sequences of frames
and share them as standard PCAP files. This can be done,
for example, by recording Wi-Fi traffic using a radio sniffing
packets in monitor mode. This functionality is already em-
bedded in Jelly, but its implementation has been omitted
from Sect. 3 due to space constraints.
Porting JamLab-NG. The bcm43430a1 Wi-Fi chip embed-
ded in the RPi3, on which our reference design is based, can
also be found on other off-the-shelf boards such as the Rasp-
berry Pi Zero W or the Banana Pi M2 Zero. As the radio
chip runs the same firmware, these platforms are all already
supported by JamLab-NG (both Confiture and Jelly).
These boards, which do not have a dedicated Ethernet jack,
but resemble instead an USB dongle, can be plugged into
more powerful devices without Wi-Fi cards in order to ex-
tend them with the ability to generate repeatable interference
(e.g., FlockLab’s observer nodes [23]). Furthermore, as out-
lined in Sect. 3, Confiture’s design can also be ported to
other cards with open-source firmware, such as platforms
based on ath9k_htc chips. Using the available open-source
implementation and the functionality documented in Mod-
WiFi [49], this process should be straightforward.
Observing interference. The Broadcom bcm43 chipset can
also be used as RSSI sniffer. Unlike the Atheros ath9k
chips, which only give the information whether the energy on
the channel is above or below a given threshold, the bcm43
can carry out a continuous energy detection and return nu-
meric RSSI values. This feature could be used in the future to
extend JamLab-NG with the ability to not only generate in-
terference, but also to observe the amount of surrounding in-
terference. This would allow testbeds to quantitatively mea-
sure if two experiments have been run under similar condi-
tions and pave the way for solutions enabling an easier com-
parability of experimental results, a well-known problem in
benchmarking low-power wireless systems [7].
Advanced features. JamLab-NG’s reference design is based
on the RPi3 platform. When using newer Wi-Fi radio chips,
such as the bcm43455c0 embedded in the RPI3’s succes-
sor, the Raspberry Pi 3 Model B+, one can even implement
more advanced forms of interference generation. For exam-
ple, the undocumented registers available in the bcm43455c0
allow to trigger the actuation of specific sub-carriers of the

Wi-Fi band and can be exploited to send raw IQ signals di-
rectly [38]. This could be used, for example, to emulate the
signals produced by other devices using the 2.4 GHz ISM
band, e.g., IEEE 802.15.4 and Bluetooth Low Energy.

6 Augmenting IoT Testbeds with JamLab-NG
In the previous sections we have shown how JamLab-NG

empowers the generation of repeatable interference using in-
dividual off-the-shelf Wi-Fi devices. Our ultimate goal, how-
ever, is its integration in IoT testbeds and its use for rigorous
benchmarking of low-power wireless systems. We describe
next the main challenges when integrating JamLab-NG into
existing testbeds, discuss the necessary pre-requisites, and
show a full-fledged integration into D-Cube [41].
Pre-requisites. In order to be extended with JamLab-NG,
an IoT testbed obviously needs to be equipped with devices
embedding a Wi-Fi radio. If this is not the case (e.g., Flock-
Lab [23]), one can simply retrofit the testbed’s observer
nodes3 with one of the many off-the-shelf USB Wi-Fi cards
based on the ath9k_htc, or with a Raspberry Pi Zero W
(as cheap as 10 EUR), as discussed in Sect. 5. If the existing
observer nodes in a testbed already embed a Wi-Fi radio sup-
porting monitor mode (e.g., w-iLab.t [18] and TWIST [48]),
one can seamlessly make use of Jelly. The several IoT
testbeds that are based on the Raspberry Pi 3 [10, 23, 41, 45]
can support both Jelly and Confiture out of the box.
Integration aspects. If the observer nodes in a testbed meet
the aforementioned pre-requisites, two main aspects need to
be addressed when integrating JamLab-NG.
Distribution of model parameters. As a first step, one needs
to distribute the model parameters used for interference gen-
eration in every observer node that should act as jammer
(i.e., that should be used to generate Wi-Fi interference). As
JamLab-NG makes use of a plain-text CSV file, the latter can
either be copied to the various nodes using tools like scp, or
be downloaded by each node from a REST API using curl.
Synchronized operations. As a second step, one needs to syn-
chronize the activities of the different observer nodes acting
as jammer. The simplest approach is to trigger the genera-
tion of interference separately from the experiment using the
network interface (e.g., via ssh or using a daemon listening
on a Web-socket connected to the server controlling the ex-
periment). A more elegant solution consists in exploiting the
capabilities that are already present in most testbeds, such as
the automatic execution of experiments. JamLab-NG has ac-
tually been designed with this in mind, and embeds the abil-
ity to trigger the generation of interference using one of the
GPIOs on the Wi-Fi device in use. One could hence connect
a GPIO pin of each observer node to the reset pin of a tar-
get low-power sensor node (which is already toggled by the
testbed infrastructure at the beginning of each experiment)
and indirectly synchronize the operation of all jammers.
Augmenting D-Cube. D-Cube is a low-cost, open-source
testbed that supports the remote, automatic execution of ex-
periments using a Web interface or REST API [40, 41]. In

3We call observer nodes (or observers) the testbed devices used to re-
program the target low-power sensor nodes, to readout their serial output,
as well as to measure their latency, energy consumption and GPIO activities.



Raspberry Pi 3 Model B

Observer Module

GPIO Tracing 
Process

GPIO 
Tracing Unit

Latency Profiling 
Process

Latency 
Profiling Unit

Power Profiling 
Process

Power 
Profiling Unit

Interference 
Unit

JamLab-NG’s 
confiture or 

jelly

Command and Control ServerWeb Interface

Experiment 
creation

Firmware

Settings

Firmware

Settings

Interference 
Database

Composition

Interf. Scenario

Scheduler

Figure 8: Additional modules of D-Cube’s architecture when
augmented with JamLab-NG (marked in red).

order to augment this testbed with JamLab-NG, we add three
modules to its architecture (marked in red in Fig. 8).
Interference unit. On each observer node (RPi3), an inter-
ference unit runs in parallel to the GPIO tracing, latency
profiling, and power profiling units. Once an experiment is
scheduled to start, each observer node autonomously down-
loads its CSV file from a common interference database via
a REST API using curl. It then starts the Confiture app,
which passes the model parameters from the CSV file to the
scheduler running on the radio. Note that, as Confiture
essentially requires no CPU resource, the operations of the
other measurement units (GPIO, latency, power) are unaf-
fected.
Interference database. In order to easily distribute the CSV
files to the observer nodes and to keep a library of interfer-
ence patterns, we have added an interference database on the
server coordinating the execution of D-Cube’s experiments.
This interference database stores a list of interference sce-
narios, each of which is a direct representation of the CSV
file, i.e., it embeds a series of timestamps and the configura-
tion of interference (model parameters). By default, a sce-
nario is applied to all observer nodes in the testbed. In case
some observers need to interfere in a different way, one can
associate in a composition table, a specific scenario to each
of the RPi3 in the testbed, as shown in Fig. 9. Using the info
in the composition table, a CSV file can be generated on the
fly and autonomously downloaded by each RPi3.
Experiment settings. D-Cube allows the scheduling of new
experiments using a Web interface or REST API. Users can
already configure specific settings for each experiment, such
as their duration and the logging of serial output. In addition
to this, D-Cube now allows to select an optional interference
pattern (jamming_level) to be generated during each exper-
iment. Such jamming_level is associated with an entry in
D-Cube’s central database, which describes the model pa-
rameters to be used on each observer node in the testbed.
Synchronizing D-Cube’s operations. To ensure that the op-
erations of the observer nodes acting as jammer are synchro-
nized to each other once an experiment is started, we rely
on D-Cube’s existing functionality to toggle the reset pin of
each target low-power sensor node in the testbed. To this

Composition

...

Default
Interf. ScenarioInterf. Scenario

Time + Interference 
Configuration

Time + Interference 
Configuration

...

1st RPi3

Interf. ScenarioInterf. Scenario
Time + Interference 

Configuration

Time + Interference 
Configuration

...

nth RPi3

Interf. ScenarioInterf. Scenario
Time + Interference 

Configuration

Time + Interference 
Configuration

...

optional

Figure 9: Info stored in D-Cube’s interference database.

end, Confiture has been extended with the ability to ob-
serve a GPIO pin on the RPi3 and synchronize the start/stop
of interference accordingly. In this way, no explicit commu-
nication between D-Cube and JamLab-NG is required. Sev-
eral experiments have shown that the synchronization that
can be reached in Confiture when exploiting the reset pin
of the 51 MTM-CM5000 nodes in the D-Cube testbed ex-
hibits a standard deviation of only 93 ms. This delay is due
to the employed motes, and does not affect JamLab-NG’s
repeatability on a large scale, as shown in the next section.
7 JamLab-NG in Action on D-Cube

We finally make use of the D-Cube testbed augmented
with JamLab-NG to benchmark the performance of state-of-
the-art IoT protocols under controllable and repeatable Wi-Fi
interference. Towards this goal, we organized a public com-
petition4 and invited the authors of 10 influential IoT proto-
cols to participate and compete with each other.
Benchmarking scenario. Differently from the measure-
ments shown in Sect. 4, which were table experiments with
only pairs of motes, we now make use of all 51 nodes avail-
able in D-Cube. During a preparation phase, we allowed all
contestants to properly configure and optimize their proto-
cols, such that they could obtain the best performance (reli-
ability, timeliness, and energy-efficiency) despite the gener-
ated Wi-Fi interference. All contestants could already make
use of the augmented D-Cube testbed during the preparation
phase, and select the interference pattern to be generated by
JamLab-NG (running Confiture) when creating an experi-
ment using a Web interface or a REST API.

We provide seven different interference scenarios to
Confiture, but we specifically focus on two in this pa-
per, due to space constraints. The first scenario, named
mild interference, emulates the operation of Wi-Fi devices
in common office environments, with bursts of Wi-Fi activ-
ity followed by periods with an idle channel. The bursts of
Wi-Fi activity had different characteristics over time (e.g., L
varied between 100 and 1500 bytes), and we also let each
RPi3 change sporadically its channel (1–14), as well as its
transmission power (0-200 mW). A second scenario, named
strong interference, resembles the mild interference scenario,
but all RPi3 nodes in the testbed make use of a transmission
power of 250 mW (24 dBm). This strong scenario may be
more challenging than what would be found in typical build-
ings and offices, but served to push the benchmarked proto-
cols to the edge. Note that we also benchmark all protocols

4https://iti-testbed.tugraz.at/blog/tag/ewsn2018/



Team A
No int.

Team B
No int.

Team C
No int.

Team A
Mild

Team B
Mild

Team C
Mild

Team A
Strong

Team B
Strong

Team C
Strong

Team and Interference Scenario

60

80

100

Re
lia

bi
lit

y 
[%

]

P2P MP2P P2MP

(a) Reliability of competing protocols

No int. Mild int. Strong int.
Interference Scenario

0
4
8

12
16
20

En
er

gy
 [k

J]

Team A Team B Team C Team D Team E

(b) Energy consumption of competing protocols

Figure 10: Performance of different IoT protocols during a public competition aimed at benchmarking their performance under
Wi-Fi interference. When using the D-Cube testbed augmented with JamLab-NG, the results are highly repeatable.

in absence of any interference, in order to have a baseline.
We benchmark the performance of the 10 protocols using

three types of traffic: (i) point-to-point: a single source trans-
mitting to a single destination, (ii) multipoint-to-point: sev-
eral sources to one destination, and (iii) point-to-multipoint:
one source transmitting to multiple destinations. A detailed
description of the evaluation scenario can be found in [40].
Benchmarking results. We discuss the results obtained
by the different protocols during the competition by show-
casing their repeatability. The actual performance of the 10
protocols (and the reasons behind it) would deserve a lengthy
discussion, and is hence beyond the scope of this paper.

Fig. 10 shows the reliability (in terms of number of
correctly-received information) and the energy consumption
sustained by some of the competing protocols. Fig. 10a fo-
cuses on the reliability of three protocols making use of con-
structive interference: BigBangBus [14], Crystal [47], and
Chaos [27] (we have masked the name of the protocols from
the plot, as this paper does not focus on their relative perfor-
mance). The PRR measured when running the protocols sev-
eral times is highly repeatable, despite having 51 RPi3 nodes
concurrently generating interference in our evaluation sce-
narios. In particular, the average standard deviation across
all protocols was only 0.23, 0.71, and 2.03% with no, mild
and strong interference, respectively. The average standard
deviation hence grows with the intensity of the generated in-
terference: this is due to the lower availability of the channel,
which amplifies the variability of protocols’ behavior. Note
that all benchmarking activities were run at night, in order to
avoid external sources of interference.

Fig. 10b shows the total energy consumed by all 51 nodes
in the testbed measured using D-Cube’s power profiling ca-
pability. The results are, also in this case, highly repeatable,
with an average standard deviation of only 0.02, 0.07, and
0.04 kJ with no, mild and strong interference, respectively.

8 Related Work
Several researchers in the IoT community have dealt with

the generation of interference, mostly in the context of evalu-
ating protocol performance, or in order to evaluate the impact
of jamming attacks on the security of wireless systems.
Generating interference for protocol testing. The ability
to experiment in noisy environments on a large-scale while
ensuring comparability of results has been a major challenge
for the low-power wireless community [7]. A typical ap-

proach followed by several researchers is to rely on existing
background Wi-Fi noise during daytime in offices or other
locations in which testbeds are installed [8, 16, 46]. As
this interference cannot be controlled, other works rely in-
stead on a Wi-Fi device downloading large files from an ac-
cess point [13, 20, 25], or generate a bandwidth-limited data
transfer using applications such as iperf [18, 31, 33, 44].

As the coordination of multiple Wi-Fi devices is com-
plex to manage on a large-scale (see Sect. 1), several re-
searchers have resorted to the use of motes to generate in-
terference [12, 19, 26, 43]. JamLab [9], for example, is a
tool that allows off-the-shelf low-power motes to generate
controllable and realistic interference. Although it simplifies
the generation of interference on large-scale testbeds with
minimal overhead, the interference generated using JamLab
is subject to the limitations of IEEE 802.15.4 radios, and is
not suitable to generate Wi-Fi interference on a large scale.

A few works use specialized HW such as SDRs to gener-
ate realistic interference [5, 11, 17]. This approach, however,
relies on a powerful PC to precisely control the generated
signals [6] and does not scale. Besides the large costs of SDR
devices and the PCs steering their operations, when building
large-scale SDR testbeds, one needs to rely on coaxial wires
and a 1 PPS signal, which is impractical in most installations.

JamLab-NG was designed to remedy all the intrinsic lim-
itations of the aforementioned approaches, as it enables the
controllable generation of Wi-Fi interference on large-scale
testbeds using low-cost off-the-shelf devices.
Jamming attacks. The ability to generate interference using
Wi-Fi devices has also been used in a security context. The
most common attack carried out using Wi-Fi interference is
denial of service (DoS) [4, 49]. Packet injection is also typi-
cally used in this context to forge malicious (but valid) pack-
ets for de-authentication attacks [2] (management traffic) or
key reuse [50]) to break Wi-Fi’s encryption.

Unlike JamLab-NG, the goal of such attacks is not to
generate a repeatable interference pattern, but to either com-
pletely deny access to the medium, to exploit weaknesses
in the management traffic and force disconnection of clients
(layer 2), or to break the connections’ encryption and per-
form attacks on higher levels of the communication stack.

9 Conclusions and Future work
In this paper, we have presented JamLab-NG, a frame-

work that enables the creation of controllable and repeatable



Wi-Fi interference using low-cost hardware. After describ-
ing the design and implementation of its core components,
we have experimentally shown how the impact of the in-
terference generated by JamLab-NG is significantly more
repeatable than the one observed using traditional systems.
Furthermore, we have shown how to integrate JamLab-NG in
IoT testbeds in order to evaluate protocol performance under
Wi-Fi interference in a repeatable and fully-automated way.
We believe that JamLab-NG paves the way for a rigorous
benchmarking of IoT systems, and expect its open-source
availability to facilitate the engagement of the low-power
wireless community, enabling consistent comparisons.
Acknowledgments

This work was performed within the LEAD-Project “De-
pendable Internet of Things in Adverse Environments”,
funded by Graz University of Technology.
10 References

[1] M. D. Abrignani et al. Testing the Impact of Wi-Fi Interference on
Zigbee Networks. In Proc. of the EMTC Conf., 2014.

[2] J. Bellardo et al. 802.11 Denial-of-service Attacks: Real Vulnerabili-
ties and Practical Solutions. In Proc. of the 12t h SSYM Symp., 2003.

[3] A. Bereza et al. Cross-Technology Communication Between BLE and
Wi-Fi Using Commodity Hardware. In Proc. of the 14th EWSN Conf.,
demo session, 2017.

[4] K. Bicakci et al. Denial-of-Service Attacks and Countermeasures in
IEEE 802.11 Wireless Networks. Comp. Stand. & Interf., 31(5), 2009.

[5] B. Bloessl et al. An IEEE 802.11a/g/p OFDM Receiver for GNU
Radio. In Proceedings of the 2nd SRIF Worksh., 2013.

[6] B. Bloessl, C. Leitner, F. Dressler, and C. Sommer. A GNU Radio-
based IEEE 802.15.4 Testbed. In Proc. of the 12th FGSN Conf., 2013.

[7] C. A. Boano et al. Towards a Benchmark for Low-power Wireless
Networking. In Proc. of the 1st CPSBench Worksh., 2018.

[8] C. A. Boano and K. Römer. External radio interference. In Radio Link
Quality Estimation in Low-Power Wireless Networks, SpringerBriefs
in Electrical and Computer Engineering - Cooperating Objects. 2013.

[9] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. A. Zúñiga. Jam-
Lab: Augmenting Sensornet Testbeds with Realistic and Controlled
Interference Generation. In Proc. of the 10th IPSN Conf., 2011.

[10] Z. Brodard et al. Rover: Poor (but Elegant) Man’s Testbed. In Proc.
of the 13th PE-WASUN Symp., 2016.

[11] L. S. Cardoso et al. Reliable and Reproducible Radio Experiments in
FIT/CorteXlab* SDR testbed: Initial Findings. In Proc. of the 12th

CrownCom Conf., 2017.
[12] S. Duquennoy, F. Österlind, and A. Dunkels. Lossy Links, Low Power,

High Throughput. In Proc. of the 9th ACM SenSys Conf., 2011.
[13] P. Dutta et al. Design and Evaluation of a Versatile and Efficient

Receiver-Initiated Link Layer for Low-Power Wireless. In Proc. of
the 8th ACM SenSys Conf., 2010.

[14] A. Escobar et al. BigBangBus. In Proc. of the 15th EWSN Conf.,
competition session, 2018.

[15] P. Gawłowicz and A. Zubow. Practical cross-technology radio re-
source management between LTE-U and WiFi. In Proc. of the IEEE
INFOCOM Conf., demo session, 2018.

[16] O. Gnawali et al. Collection Tree Protocol. In Proceedings of the 7th

ACM SenSys Conf., 2009.
[17] A. Hithnawi et al. Controlled Interference Generation for Wireless

Coexistence Research. In Proc. of the SRIF Worksh., 2015.
[18] iLab-t Testbeds’ 1.0.0 Documentation. https://doc.ilabt.imec.be/ilabt-

documentation/wilabfacility.html.
[19] T. Istomin et al. Interference-resilient Ultra-low Power Aperiodic Data

Collection. In Proc. of the 17th IPSN Conf., 2018.
[20] M. S. Kang et al. Adaptive Interference-Aware Multi-Channel Clus-

tering Algorithm in a ZigBee Network in the Presence of WLAN In-
terference. In Proc. of the 2nd ISWPC Symp., 2007.

[21] A. King, J. Brown, and U. Roedig. DCCA: Differentiating Clear
Channel Assessment for Improved 802.11/802.15.4 Coexistence. In
Proc. of the 10th WiMob Conf., 2014.

[22] C.-J. M. Liang et al. Surviving Wi-Fi Interference in Low Power Zig-
Bee Networks. In Proc. of the 8th ACM SenSys Conf., 2010.

[23] R. Lim et al. FlockLab: A Testbed for Distributed, Synchronized
Tracing and Profiling of Wireless Embedded Systems. In Proc. of the
12th IPSN Conf., 2013.

[24] S. Moeller et al. Routing without Routes: the Backpressure Collection
Protocol. In Proc. of the 9th IPSN Conf., 2010.

[25] R. Musaloiu-E. and A. Terzis. Minimising the Effect of Wi-Fi Inter-
ference in 802.15.4 Wireless Sensor Networks. IJSNet, 3(1), 2007.

[26] B. A. Nahas, S. Duquennoy, V. Iyer, and T. Voigt. Low-Power Listen-
ing Goes Multi-Channel. In Proc. of the 10th DCOSS Conf., 2014.

[27] B. A. Nahas and O. Landsiedel. Aggressive Synchronous Transmis-
sions with In-network Processing for Dependable All-to-All Commu-
nication. In Proc. of the 15th EWSN Conf., competition session, 2018.

[28] Nexmon GitHub repository. https://github.com/seemoo-lab/nexmon.
[29] C. Noda et al. On Packet Size and Error Correction Optim. in Low-

Power Wireless Networks. In Proc. of the 10th SECON Conf., 2013.
[30] Open-Access Research Testbed for Next-Generation Wireless Net-

works (ORBIT). http://www.orbit-lab.org/.
[31] G. Z. Papadopoulos, A. Gallais, G. Schreiner, and T. Noël. Importance

of Repeatable Setups for Reproducible Experimental Results in IoT.
In Proc. of the 13th PE-WASUN Symp., 2016.

[32] M. Petrova, L. Wu, P. Mähönen, and J. Riihijärvi. Interference
Measurements on Performance Degradation between Colocated IEEE
802.11g/n and 802.15.4 Networks. In Proc. of the 6th ICN Conf., 2007.

[33] S. Pollin et al. Harmful Coexistence Between 802.15.4 and 802.11: A
Measurement-based Study. In Proc. of the CrownCom Conf., 2008.

[34] P. I. Richards. Probability of Coincidence for Two Periodically Recur-
ring Events. The Annals of Mathematical Statistics, 19(1), 1948.

[35] Scapy: Packet Crafting for Python2 and Python3. https://scapy.net/.
[36] M. Schulz et al. Massive Reactive Smartphone-based Jamming Using

Arbitrary Waveforms and Adaptive Power Control. In Proc. of the
10th WiSec Conf., 2017.

[37] M. Schulz et al. Nexmon: Build Your Own Wi-Fi Testbeds with Low-
Level MAC & PHY-Access using Firmware Patches on Off-the-Shelf
Mobile Devices. In Proc. of the 11th WinTECH Worksh., 2017.

[38] M. Schulz et al. Teaching Smartphones to Transmit Raw Signals and
to Extract Channel State Information to Implement Practical Covert
Channels over Wi-Fi. In Proc. of the 16th MobiSys Conf., 2018.

[39] M. Schulz, D. Wegemer, and M. Hollick. The Nexmon Firmware
Analysis and Modification Framework: Empowering Researchers to
Enhance Wi-Fi Devices. COMCOM, 129(1), 2018.

[40] M. Schuß, C. A. Boano, and K. Röemer. Moving Beyond Competi-
tions: Extending D-Cube to Seamlessly Benchmark Low-Power Wire-
less Systems. In Proc. of the 1st CPSBench Worksh., 2018.

[41] M. Schuß, C. A. Boano, M. Weber, and K. Römer. A Competition to
Push the Dependability of Low-Power Wireless Protocols to the Edge.
In Proc. of the 14th EWSN Conf., 2017.

[42] M. Sha, G. Hackmann, and C. Lu. Energy-efficient Low Power Lis-
tening for Wireless Sensor Networks in Noisy Environments. In Proc.
of the 12th IPSN Conf., 2013.

[43] J. Shi, M. Sha, and Z. Yang. DiGS: Distributed Graph Routing and
Scheduling for Industrial Wireless Sensor-Actuator Networks. In
Proc. of the 38th ICDCS Conf., 2018.

[44] L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson. EM-MAC: A Dy-
namic Multichannel Energy-Efficient MAC Protocol for Wireless Sen-
sor Networks. In Proc. of the 12th MobiHoc Conf., 2011.

[45] The Binghamton University Wireless Embedded System Testbed.
http://www.cs.binghamton.edu/ msha/testbed.

[46] V. Toldov et al. Experimental Evaluation of Interference Impact on
the Energy Consumption in Wireless Sensor Networks. In Proc. of the
17th WoWMoM Symp., 2016.

[47] M. Trobinger et al. CRYSTAL Clear: Making Interference Transpar-
ent. In Proc. of the 15th EWSN Conf., competition session, 2018.

[48] TWIST Testbeds’ 1.12.0 Documentation. https://www.twist.tu-
berlin.de/testbeds/wireless.html#twist-nucs.

[49] M. Vanhoef and F. Piessens. Advanced Wi-Fi Attacks Using Com-
modity Hardware. In Proc. of the 30th ACSAC Conf., 2014.

[50] M. Vanhoef and F. Piessens. Key reinstallation attacks: Forcing nonce
reuse in WPA2. In Proc. of the ACM CCS Conf., 2017.


