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Abstract
While interest in low-power mesh networks for the Internet
of Things (IoT) has proliferated over recent years, much of
the focus in this area has considered the deployment of a
single sensor network, or brokering data to and from a cloud-
based server. Yet, particularly for industrial use-cases such
as distributed sensor-actuator networks, there is a need to
consider fully-federated IoT networks where devices may be
required to send data over a mesh-cloud continuum directly
to devices at remote sites while adhering to strict latency and
reliability requirements. To allow experimentation in such
settings we present X-Lab, an open-source federated testbed
infrastructure for end-to-end benchmarking of low-power
wireless protocols. Using X-Lab, we establish a 4000 km
cross-continent setup between two sites and evaluate the end-
to-end performance of two low-power wireless protocols.
We find that despite the large distance between sites, mesh
latency often dominates the latency of the Internet – which
can directly account for as little as 22% in some protocols.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-

ysis and Design Aids; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design

General Terms
Design, Measurement, Experimentation, Performance.

Keywords
Benchmarking, Cloud, D-Cube, Dependability, End-to-

end, Geographically-distributed, IoT, Testbeds, Wireless.

1 Introduction
IoT solutions often leverage the cloud for connecting differ-
ent geographically-distributed deployments. Fig. 1 shows
how multiple mesh networks may be connected through the
Internet by means of edge devices acting as border routers
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Figure 1: Blue links denote the classical cloud paradigm.
Orange links allow edge devices to directly communicate.

(BRs). Links through the Internet shown in blue represent the
classical cloud paradigm, where each site is connected to one
or more central servers. However, such a paradigm may cause
significant delays if an end-device in one instance needs to
communicate with end-devices in another instance. The links
in orange illustrate the approach of modern IoT deployments,
which take advantage of direct connections across the cloud,
allowing edge devices to exchange data directly (hence, at a
lower latency) without losing access to the resources avail-
able in the cloud. Unfortunately, while the first approach
has been extensively researched in the literature, few public
testbeds exist that span across multiple sites in order to enable
performance characterization over a mesh-cloud-continuum.
Challenges. One could naı̈vely assume that the latency and
reliability of each part of the network is independent, with the
system simply exhibiting the sum of all the parts, i.e., the sum
of the latency and the product of the reliability of all links
involved. However, strategies such as duty cycling which
are employed by most low-power wireless protocols mean
that the latency depends on the alignment of the duty cycles
of the different sites, as a packet that arrives in a network
after an active slot is delayed until the next one. As such, the
uncertainty caused by congestion across the Internet link can
have drastic implications for the system’s performance. This
calls for experimental infrastructures enabling a fine-grained
performance characterization over a mesh-cloud continuum.
Lack of automation. Setting up experiments spanning multi-
ple sites – and potentially also cloud resources – can cause
significant overhead to the user, who may also introduce er-
rors. While federated testbeds that allow the control of the
devices on each site exist, all steps – from device setup to
network configuration, traffic generation, and even collection
of measurements – have to be performed manually.
Lack of an isolated network. While it would be possible to
simply expose BRs directly to the Internet and let the user
configure the necessary firewall rules, this would represent an



open call for attacks. In fact, even with a properly configured
firewall, undesired traffic may still be forwarded into the low-
power mesh network. Furthermore, depending on the type of
Internet connection available at a site, the provision of only a
single public IP utilizing network address translation (NAT)
or the lack of IPv6 support (often used by low-power devices)
may make the setup of end-to-end (E2E) experiments rather
cumbersome.
Lack of security. While the lack of an isolated network puts
the devices performing the experiment at risk, the ability
to run arbitrary code on such devices may in turn expose
the testbed infrastructure (and attached internal networks) to
harm. While many federated testbeds include support for
edge devices as virtual machines, even virtualisation does
not provide perfect isolation, and attackers may compromise
the underlying hypervisor. Even worse, as such devices are
connected to the Internet, they may be recruited for denial of
service attacks or used to share illicit materials.
Contributions. Addressing these challenges, we present
X-Lab, an open-source1 extension of the D-Cube testbed [16]
enabling the setup of federated experiments spanning multiple
D-Cube instances. With X-Lab, we provide the following con-
tributions. First, we extend D-Cube with an overlay network
to enable BRs to securely communicate between different
testbed instances without the need for any special routing
considerations on the user side. All the complexity of net-
working devices in different geographically-distributed sites
across the Internet is hidden from the user presenting only
a single layer-2 network domain. Second, we use X-Lab to
establish a 4000 km cross-continent testbed between a site
in Europe (Graz, Austria) and in Asia (Abu Dhabi, United
Arab Emirates). Third, we employ this cross-continent setup
to demonstrate and explore the impact of the Internet con-
nection and necessary border routers on the performance of
existing IoT protocols. The chosen protocols represent the
two extremes of today’s most used philosophies: carrier-sense
multiple access (CSMA) utilizing only a single shared chan-
nel, which is often employed where power is not a primary
concern along with the standardized routing protocol for low-
power and lossy networks (RPL), and Open Synchronous
Flooding (OSF), which instead relies on synchronous flood-
ing [3] on multiple channels on a fixed periodic schedule –
thus allowing a device to sleep for the remainder of the time.
Our experiments highlight that delays induced by duty-cycled
mesh protocols can account for up to 80% of the overall E2E
delays – for example, due the unfortunate misalignment of
the duty cycle schedule at different sites – and can thus signif-
icantly outweigh the delays introduced by the Internet link.
Paper outline. This paper proceeds as follows. We provide
in § 2 a primer on D-Cube, the system on which X-Lab is
based. We then present our approach to federating multiple
testbed instances in § 3, detailing how we implement it in
practice by extending D-Cube. We evaluate two protocols
over a 4000 km cross-continent setup in § 4, shedding light
on the factors affecting E2E performance. We finally provide
an overview of related works in § 5 before concluding in § 6.

1https://iti.tugraz.at/X-Lab
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Figure 2: D-Cube architecture. Server-side components im-
plement experiment logic, while observer modules execute
the individual steps and collect the hardware-based measure-
ments from target nodes.

2 D-Cube: A Primer
To enable E2E experimentation, we extend D-Cube: an ex-
perimental facility to benchmark low-power wireless sys-
tems [16, 15, 17] previously used to organize the EWSN
dependability competition series [4]. D-Cube’s architecture
is shown in Fig. 2, which implements the individual steps re-
quired during an experiment as standalone components, e.g.,
the ability to program the low-power wireless device with the
required firmware, control over the power and reset state of
a device, or the collection of hardware-based measurements.
The step-by-step logic required to perform an experiment
is implemented in an easy-to-read script (part of the back-
end’s scheduler) communicating with the observer module
via a common API. This API is called D-Cube messaging
(DCM) and is based on Advanced Message Queuing Proto-
col (AMQP). Furthermore, D-Cube is split into two types
of components: those running on the observer modules and
those running on a central server. The former are the dis-
tributed devices forming the testbed infrastructure powering,
programming, and instrumenting the low-power wireless sys-
tem running the actual software to be tested. Each observer
module is directly attached to one target node. The server-side
components allow interaction with the outside world through
a Web interface (front-end) and storage of the measurement
data, as well as hosting the message broker used to relay
DCM messages from and to the observer modules.
The individual steps required to perform an experiment are
entirely controlled by the server-side components’ scheduler,
which connects to the message broker and issues commands
such as downloading/flashing of the firmware, controlling
the target node’s power and reset state, or initializing the
measurement process. A key advantage of this architecture
is that the observer module does not require any knowledge
about the order of steps, with the exception of the beginning
and end of an experiment (which is used mostly to keep track
of any process started during an experiment and to ensure a
consistent state before and after an experiment).
While each observer module only needs access to the server-
side components, they do not need any open ports for in-
coming connections. As such, the underlying network archi-
tecture (including IP addresses of the observer modules) is
completely hidden from the server-side components and an
observer module may be on a completely different network.

https://iti.tugraz.at/X-Lab


3 Federating Multiple Testbed Instances
As outlined in § 2, D-Cube’s observer modules connect to a
message broker and await instructions without any knowl-
edge of the order of steps to be performed for each experi-
ment. Therefore, an observer module can be on a completely
different network (even separated by the Internet) than the
server-side components. We exploit this feature to connect
all observer modules from the different testbeds to a single
instance’s message broker. On the server, a single script
is in charge of running each individual experiment and is
given a list of observer modules which participate (as a json
file). Should an experiment be flagged as an E2E experiment,
before running any commands on the nodes of the foreign
testbed the script requests permission to do so from the server
of that testbed instance. This means that the observer mod-
ule does not need to be aware if it is currently performing
a local experiment or an E2E one, reducing the complexity
of federating experiments significantly. However, this puts
the burden of coordinating the different testbeds entirely on
the server-side components, and thus requires to change how
experiments are scheduled.

Federated scheduler. Typically, D-Cube’s scheduler only
has to pick the next experiment from a list of candidates to be
executed and then run the script performing the actual experi-
ment. As the primary testbed instance (in Graz) is located in
an office building, the scheduler also needs to consider the
time of day – otherwise the interference caused by people in
the office would negatively affect the repeatability of experi-
ments. Further, the scheduler uses a round-robin algorithm to
pick the next experiment to avoid a single researcher or group
blocking the testbed for a longer duration. However, running
an E2E experiment across multiple testbed instances means
modifications to the scheduler are required. Namely, testbed
instances now have to communicate among each other, which
requires a notion of trust between instances. While a user may
have an account on one site, the same might not hold true for
the remaining ones, especially for private instances. To this
end, we extended D-Cube with a public key which is shared
with all other testbed instances that trust this specific instance
and accept requests for E2E experiments. Every such request
is then signed with the initiating instance’s private key which
can be validated with the shared public key.

Border router (BR). The observer modules in all instances
are controlled from a single server, resulting in the ability
to run a coordinated experiment across multiple – typically
geographically distributed – sites. However, there is no way
for the target nodes from one site to communicate with target
nodes in another, or with any other cloud resources. As low-
power wireless devices are typically not able to communicate
with the Internet directly, so-called BRs are used to translate
the (often compressed and fragmented) IP packets from and to
an outside network. While no singular standard for this exists,
these BRs often run entirely on a low-power device simply
passing messages to an attached Linux device by serialising
packets and passing them via UART or USB. Alternatively,
other solutions allow the use of the low-power device only for
the physical and media access layers with the rest of the proto-
col running on the Linux device. Fig. 3 shows the architecture
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Figure 3: Example of BR types: a) embedded device running
most of the network stack and services such as RPL; b) the
Linux host running a natively-compiled version of the embed-
ded network stack and services along the existing host stack.

of these two approaches. The embedded solution (a) runs
the entire network stack directly on the low-power device.
While these devices have far fewer resources compared to the
Linux host, any traffic from and to the low-power mesh net-
work does not suffer any overhead from forwarding to/from
that host. The native solution (b) delegates the time-critical
MAC operations to the low-power device, but forwards the
raw frames to the host for framing, fragmentation, and header
compression. Either approach necessitates the ability to run
code on the observer module. Since no singular standard
exists, this code needs to be either provided by the user or
maintained by the testbed operator. For the first release, we
choose to support the SLIP protocol, which is available on
operating systems such as Contiki-NG, RIOT, and Zephyr.
Any experiment marked as E2E includes a list of nodes acting
as BRs. These always start tunslip, which offers an IPv6
prefix via SLIP and then translates all packets from and to a
special tunnel interface (typically tun0). The firmware on the
low-power target devices is still in charge of handling these
packets and the Linux-side code is independent of the OS and
protocol running the on the target node.

Overlay network. With the integration of BRs into D-Cube’s
workflow and the coordinated setup and start of experiments,
one could already start E2E experiments by exposing the BRs
directly to the Internet. As the aim is to explore different
solutions for heterogeneous IoT architectures that employ
fundamentally different protocols with vastly different re-
quirements, the setup must not impose any strict requirement
beyond the use of IP. For MQTT, which uses TCP to route all
data through a central message broker, this only requires a sin-
gle device (which typically resides on a Linux host and must
be reachable by all other devices). As a protocol optimized for
the IoT, the Constraint Application Protocol (CoAP), which
uses UDP, has several if not all devices acting as servers using
a REST API to serve data. This necessitates incoming connec-
tions on multiple devices within the low-power mesh network.
Simply exposing every single low-power device as well as the
BRs directly to the Internet with a public IPv6 address would
not only cause foreign traffic to affect the experiments, but
also cause an unacceptable security risk to the testbed infras-
tructure. However, due to the vastly different requirements of
protocols used for communication in IoT systems, reliance
on network address translation (NAT) and users modifying
their existing solutions to cope with the limitations imposed
by such an approach is also not ideal. As such, we integrate a
site-to-site VPN tunnel based on wireguard into the design
of X-Lab, which further removes the need for all instances to
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Figure 4: Two D-Cube instances extended via X-Lab. Green
shows the low-power mesh. Blue shows the local network
links. Orange shows the Internet site-to-site connection.

be directly reachable via a public IP. While this for the most
part solves the issue of foreign traffic (some traffic from the
testbed infrastructure may still be relayed to the low-power
mesh), it does not solve the issue of requiring NAT on each
BR. With the tunnel in place, however, we can create an
isolated OSI layer 2 network between the BRs using vxlan.
This allows encapsulation of arbitrary layer 2 frames over
wireguard’s layer 3 network, allowing the user to freely
communicate directly between the BRs without the need for
NAT and without any foreign traffic interfering with the ex-
periment’s traffic. Fig. 4 shows how two independent D-Cube
instances located in two different continents enhanced with
X-Lab can cooperate to execute an E2E experiment. The
resulting end-to-end connection spans three types of links:
low-power wireless mesh links connecting the target devices
in each site with one another (green), links representing the
different hops on the local area network (blue), and links
across the Internet (orange).

4 Evaluation
We use X-Lab to evaluate the performance of different low-
power wireless protocols running on a Nordic nRF52840-DK
and establish two testbed instances in Graz (AT), and in
Abu Dhabi (UAE), i.e., over 4000 km apart. Both versions are
independent instances that can be used to conduct their own
experiments. However, with the changes outlined in § 3, one
instance can now be used to request temporary control over
the nodes in the other testbed to conduct an E2E experiment.
Evaluated protocols. Based on the popular Contiki-NG
operating system, we first evaluate a protocol based on RPL
Lite (Contiki-NG’s lightweight RPL implementation) and
CSMA, as well as a second protocol, Open-SF (OSF) – a
multi-PHY protocol based on synchronous transmissions [2].
RPL Lite. We evaluate CSMA+RPL with a minimal applica-
tion that relays UDP messages from the source to the destina-
tion node via Contiki-NG’s embedded rpl-border-router.
This relies on serial line IP (SLIP) to pass messages from
the low-power wireless mesh network to the edge device
running Linux, which is connected to the other BRs via the
isolated overlay network. While the goal is to show the per-
formance of Contiki-NG out-of-the-box, due to the large and
challenging setup of the Graz testbed instance, it is required
to change some parameters to reliably form a network cover-
ing all devices. As such, this example increases the max link
metric to 4096 (from 512) as well as the maximum number
of retransmission of RPL’s DAO messages to 10 (from 5).
OSF. While several synchronous flooding protocols have been
open-sourced in the past [20], the latest version of OSF has

Table 1: Performance of the selected protocols in different
setups. For the baseline performance in Graz, node 206 and
200 are source and destination, whereas node 51 and 54 are
source and destination in Abu Dhabi, respectively. For the
E2E experiments, node 206 and 54 are used (with 200 and 51
acting as BRs). Each experiment was repeated 10 times.

Setup Protocol Latency [ms] Reliability [%]

Graz CSMA+RPL 235.27 ± 17.13 98.13 ± 2.19
OSF 147.00 ± 12.71 100.00 ± 0

Abu Dhabi CSMA+RPL 40.23 ± 4.07 99.66 ± 1.10
OSF 125.76 ± 23.24 98.97 ± 1.67

E2E CSMA+RPL 337.70 ± 15.19 94.90 ± 2.76
OSF 252.47 ± 6.22 99.84 ± 0.25

the advantage of supporting IPv6, including support for SLIP-
based BRs. This means that the same application logic that
is used by the RPL example can be used to compare the
impact of a duty-cycled but highly reliable protocol. The
BR code is provided as a separate null-border-router,
which removes RPL-specific code and uses the existing SLIP
fallback interface to forward any packet not destined for the
low-power wireless mesh network’s prefix to the Linux part
of the BR. Unless otherwise specified, we selected a period
of 200 ms with NTA of 6, NTX of 12, and NSLOTS of 242

due to the aforementioned challenges of the Graz instance.
Testbed instances. The two testbed installations represent
fundamentally different layouts, varying greatly in the number
of nodes, diameter, and density.
Graz. This site has 48 nodes co-located with offices, with one
side of the testbed representing a dense cluster of 20 nodes
in a single room, while the remaining 28 nodes are spread
across different offices.
Abu Dhabi. In this layout, 11 nodes are mounted around a
323m2 drone arena. Nodes are deployed along the walls of
the arena, as well as mounted on the ceiling across two floors
of adjacent offices. As such, the nodes are more uniformly
distributed and their diameter is lower than in Graz (based on
the chosen PHY, each node can be reached in one/two hops).
Baseline performance. First, we evaluate the performance of
both mesh network instances individually. We only consider
a single point-to-point connection within the testbed, i.e., a
single source and destination.
Graz. We select a node (206) at the edge of the sparse section
of the testbed to act as the source node and a geographically
central node (200) as the destination. Tab. 1 (Graz) shows
the mean and standard deviation for latency and reliability
computed by D-Cube over 10 repetitions of a 10-minute ex-
periment. Note that, despite using duty cycling, the flooding-
based approach utilized by OSF exhibits a much lower latency
with both protocols achieving a high degree of reliability.
Abu Dhabi. We again select a central location for the des-
tination node (54) with a source node (51) at the edge of
the testbed. However, as the testbed is much smaller than
that in Graz, lower latency due to much fewer hops is to be
expected. Tab. 1 (Abu Dhabi) shows the mean and standard
deviation for the latency and reliability computed by D-Cube
2The OSF paper [2] provides more information on these terms.
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Figure 5: RTT (ping) across the VPN tunnel over 1 month.

over 10 repetitions of a 10-minute experiment. Compared to
the results obtained in Graz, CSMA+RPL beats OSF in the
Abu Dhabi site, despite the lower network diameter. OSF has
in fact a lower latency per hop, but incurs a base latency for
aperiodic traffic of half its period (100 ms).
Connection between the testbeds. To characterize the Inter-
net link between the two D-Cube instances, we periodically
run iperf3 to determine the available bandwidth as well as
ping to determine the round-trip time (RTT) between the two
sites. Fig. 5 shows the RTT of the Internet link over the course
of a month. The steep jump at the beginning of the measure-
ments (March 23–24) is due to a significant change in Inter-
net routing. Using traceroute, we noticed that – instead
of going directly from Abu Dhabi to Graz (via France) – the
packets were routed through the United States (based on the
geolocation of the obtained IP addresses). Further, on sev-
eral occasions, the measured RTT drops significantly (more
than 100 ms on one occasion on April 5 and two more times
on April 20) across an entire 60-packet measurement with
no noticeable change in the variation between pings, only
to return to its previous value in the next measurement. As
Abu Dhabi employs ADSL (rather than a dedicated leased
line) such variations are, however, not only expected but even
(to a degree) desired. The average RTT between the sites
over the course of a month was 267.35 ms (271.42 ms with
the initial two days removed). As this is the average of the
average RTT (each over 60 individual measurements), we
will refer to the short-term standard deviation between the 60
measurements as jitter (which has a mean of 0.88 ms over the
entire month). The long-term standard deviation of the mea-
surements conducted every 10 minutes, however, is 19.20 ms
(5.48 ms with the initial two days removed).
End-to-end performance. Subsequently, we can now evalu-
ate the true E2E performance. To this end, the initial destina-
tion node 200 in Graz has been configured as BR. The new
E2E benchmark suite supports multiple BRs, but as RPL-Lite
no longer supports multiple DODAGs, each testbed only uses
a single BR. To ensure that at least more than one hop is re-
quired, we choose a node (51) in the corner of the Abu Dhabi
site as BR with a node in a second-floor office as destination.
Tab. 1 (E2E) shows the E2E performance for both protocols.
Unlike the baseline, these experiments are conducted over
one hour, each with 10 repetitions. However, note that half the
OSF results suffered from a synchronisation bug in the early
version of the firmware and had to be excluded, as no net-
work formed in one of the two instances. Importantly, these
experiments were not conducted in a controlled environment
but rather over the course of several hours with changes in
the Internet link as well interference due to office occupancy.
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Figure 6: Comparison between the cumulative latency of the
two instances plus the average Internet link latency versus the
measured E2E latency for a) RPL and b) OSF.

More than the sum of its parts. Comparing these num-
bers reveals a pitfall that can occur when one considers
each part of the system – the mesh networks and the In-
ternet link – as independent. On one hand, for RPL+CSMA
we observe a cumulative latency (neglecting the latency on
the local Ethernet network and the BRs) of 235.26ms +
40.23ms+(267.35ms/2) = 409.17ms, which is larger than
the measured E2E-latency of 337.70 ms. For OSF, we would
expect a latency of 147ms+ 125.76ms+ (267.35ms/2) =
406,435ms, but observe an E2E latency of only 252.47 ms.
Obscured sources of latency. While investigating the source of
this discrepancy, we took a closer look at the true Internet la-
tency by running tcpdump on each of the VPN servers. With
this, we can log each individual UDP packet traversing the
VPN tunnel including timestamp and payload. Fig. 7 shows
the RTT in blue compared to the latency computed from
the PCAP file produced by tcpdump. While large changes
in the Internet connection are for the most part reflected in
both measurements, the final change in the PCAP at 2 am is
not reflected in the round-trip time. With this measurement,
we can improve our earlier estimate for RPL. The new mean
value for the Internet of 75.79 ms (6.50 ms standard deviation)
lowers the end-to-end estimate to 351.28 ms which reduces
the discrepancy to well below the uncertainty of our mea-
surements. Fig. 6 shows a comparison of the now corrected
cumulative latency obtained by summing up the individual
parts compared to the actually measured E2E latency. How-
ever, Fig. 6b shows that the same does not hold true for OSF,
as the resulting cumulative latency of 348.55 ms is still almost
100 ms off despite the (in general) lower uncertainty observed
in OSF. This is due to a property of protocols employing
duty-cycling or other forms of periodically-scheduled com-
munication, where the latency of packets can no longer be
considered independent from one another. A packet that is de-
layed in Graz might be further delayed by an entire cycle on
the Abu Dhabi side; however, in this case, while both testbeds
are instructed to start at the same time, the Abu Dhabi site
starts ∆T (≈ 70-85 ms) later, caused by the time it takes for
the reset command to traverse the Internet link. Therefore, the
OSF periodic schedule is also delayed by ∆T . As experiment
traffic from the Graz site to the Abu Dhabi site must also
travel over this same Internet link (incurring the same time
penalty ∆T ), it arrives at the Abu Dhabi site nicely aligned
with the OSF duty cycle schedule at that location.
While these estimates now align well with our E2E measure-
ments, they obscure an important source of latency: the BR.
With the local setup, we have to receive and deliver one addi-
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Figure 7: RTT (ping) of the Internet link vs. the per-packet
latency obtained from a PCAP packet capture for a 1 h test.

tional message from and to D-Cube respectively. The latter
employs an I2C mailbox, which introduces overhead com-
pared to the SLIP interface. While the node will pass the
packet within a few milliseconds to the SLIP interface, the
HW of the Nordic nRF52840-DK adds significant latency to
the time when the Linux side of the BR receives that packet.
As a matter of fact, Contiki-NG’s default UART baudrate
(115200 baud) is not far from the default 100 kHz speed of
the I2C peripheral. For SLIP, each UDP packet with 8 byte
payload actually has a length of 70 bytes with the IP and
UDP header decompressed (at least 2 bytes plus any overhead
from the SLIP encoding which depends on the actual content
of the IP packet). This means that the transmission of the
SLIP packet takes upwards from 5 ms for a packet of only
8 bytes payload. To further investigate the impact of this
overhead, we created a simplified test setup by running only
the BR code on a single observer module (RPi 3B) with the
node attached via the USB port used for programming and
UART communication. For a 32 byte ping (84 bytes with
IP and ICMP overhead) we measured an RTT from the RPi
to the nRF52840-DK of ≈ 20 ms, of which only 12 ms (twice
the 6 ms needed to transmit the packet via UART) can be
accounted for. Using the secondary “native” USB port creates
a UART interface on Linux, but does not emulate the baudrate
and rather runs closer to the maximum 12 Mbps. This latency
can be decreased to less than 1 ms. As such, the remaining
8 ms are lost due to overhead caused by the Segger JLink-
OB acting as USB-to-UART converter or the nRF52840-DK’s
UART peripheral driver. To verify that this is not due to a
bug in Contiki-NG’s SLIP or BR implementation, we test the
same setup with an OpenThread BR (using otbr 3), which
uses its own Spinel protocol instead of SLIP: this results in
a similar reduction by 20 ms when switching from UART
through the Segger to the native USB implementation.
5 Related Work
X-Lab tackles three relevant topics for the IoT community:
i) the ability to automatically run experiments on low-power
wireless devices with the support for HW-based measure-
ments [9], ii) the need for cooperation between independent
testbeds, and iii) the ability to abstract underlying Internet
links without altering their lossy/unpredictable nature, while
enabling experimentation without compromising security.
Testbeds capable of measurements. When low-power wire-
less testbeds first emerged, they typically consisted of Linux-
based embedded systems to which the target nodes were
attached via USB for power and programming [10, 19]. Any
metrics such as energy consumption, reliability, or latency,
3https://openthread.io/guides/border-router

had to be estimated or derived from serial logs [5, 7]. Un-
fortunately, this often requires OS support and adds over-
head affecting the measurement accuracy. Hence, testbeds
started then supporting the collection of such measurements
in HW [12, 16, 18]. Thanks to the accurate profiling of GPIO
events, these testbeds allow measuring the performance of a
solution without the need to modify the used device or OS.
However, these testbeds only operate on a local scale, and
while some [1, 14] do span larger areas including multiple
cities, they operate mostly independently from one another
without built-in support for E2E experimentation.
Federated testbeds. Federated testbeds [6, 8] often incor-
porate existing projects with different focuses (e.g., cellular,
software-defined radios, or low-power wireless). As such,
many existing testbeds for low-power devices [1, 10] have
joined projects for federated testbeds: this, however, does not
necessarily bring support for E2E experimentation. While
such testbeds adhere to a common API, this does not mean
that devices from one site can communicate with other sites.
While the API often allows a user to reserve a “raw” Linux-
based device to which a low-power node is attached to, it is
then up to the experimenter to set up the required network and
execute experiments by logging in via SSH and performing
all steps manually. This requires knowledge of the inter-
nals of multiple testbeds’ network, the setup of the BRs and
low-power nodes, as well as the (manual) correlation of the
different types of measurements collected by each individual
testbed involved in the experiment.
Next-generation network research. Besides testbeds that
utilize the Internet merely for connectivity between sites,
there exist infrastructure projects [11, 13] to enable research
into inter-domain networks that connect independent net-
works into an abstracted overlay network hiding the under-
lying topology – a field of research commonly referred to as
software-defined networking. X-Lab builds its overlay net-
work with the concepts and tools created by this community,
but allows to extend the overlay through BRs into the domain
of low-power wireless devices without the need to modify
their network stack or OS.

6 Conclusions and Future work
In this paper, we have presented X-Lab, an extension to
D-Cube that allows multiple testbed instances to cooperate
and conduct E2E experiments. Further, we have used it to
evaluate the impact of an unpredictable Internet connection
on the E2E performance of an IoT solution consisting of mul-
tiple geographically-distributed low-power mesh networks,
existing protocols, and BR solutions. We have made the entire
software required for such experimentation available as open
source, to enable and encourage others to test their solutions
using a wide range of IoT architectures. In future work, we
plan to extend X-Lab with support for Linux “target nodes”
to allow the integration of cloud-based computing and storage
resources solutions as well as edge devices.
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