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Abstract
The ability to communicate within given delay bounds

in noisy RF environments is crucial for Bluetooth Low En-
ergy (BLE) applications used in safety-critical application
domains. In this work, we experimentally study the latency
of BLE communications in the presence of radio interfer-
ence, and show that applications may incur long and unpre-
dictable transmission delays. To mitigate this problem, we
devise a model capturing the timeliness of connection-based
BLE communications in noisy RF channels by expressing
the impact of radio interference in terms of the number of
connection events necessary to complete a successful data
transmission (nCE ). We show that this quantity can be esti-
mated using the timing information of commands sent over
the host controller interface of common BLE devices, hence
without additional communication overhead or energy ex-
penditure. We finally show that a BLE application can make
use of our model and recent nCE measurements to adapt its
connection interval at runtime, improving its performance in
the presence of radio interference. Experiments on the pop-
ular nRF52840 platform running Zephyr show that a BLE
application can effectively increase the timeliness of its com-
munications in noisy RF environments, reducing the number
of delayed packets by up to a factor of 40.
Categories and Subject Descriptors

B.8 [Performance and Reliability]
General Terms

Design, Measurement, Performance, Reliability.
Keywords

Bluetooth Low Energy, BLE, Dependability, Interference.
1 Introduction

The continuous proliferation of wireless devices leads to
an increasing congestion of the RF spectrum; especially in

the 2.4 GHz ISM band, where several technologies share the
same frequencies [30]. One of these technologies is Blue-
tooth Low Energy (BLE), which is increasingly used to build
Internet of Things (IoT) applications due to its wide adoption
in consumer devices such as wearables and smartphones [5].

BLE systems typically need to co-exist with a large num-
ber of Wi-Fi devices, which transmit at high data rates,
use a significantly higher transmission power, and make use
of much wider channel bandwidths (20 or even 40 MHz).
Furthermore, Bluetooth-based devices (using either BLE
or classic Bluetooth) such as headphones, headsets, smart
watches, and fitness trackers, are nowadays becoming ubiq-
uitous, which increases their chances to interfere with each
other and experience co-existence issues [1, 18].

Such issues typically manifest in the form of an increased
packet loss and a higher amount of re-transmissions, which
may affect in turn key performance metrics such as energy
efficiency, latency, and throughput [6]. As several BLE-
based systems are used in safety-critical application domains
such as health care [4, 12] and smart cities [3, 10], it is impor-
tant to fully understand the impact of radio interference on
their performance and to make sure that delay-sensitive ap-
plications operate correctly even in noisy RF environments.
Limited number of experimental studies. To date, how-
ever, still very little is known about the actual performance
of BLE in the presence of interference, especially when it
comes to connection-based BLE systems. Existing works
focus indeed mostly on BLE discovery [11, 29], or are lim-
ited to simulations showing the impact of increasing bit error
rates [19, 27]. A few measurement reports carried out us-
ing real hardware exist, but are either limited to small-scale
experiments in anechoic chambers [24], or only address the
interference generated by co-located BLE devices [28].

Unfortunately, the few works available do not allow to
get a comprehensive picture of BLE’s performance in typical
residential and office environments where several wireless
networks are co-located. Even worse, some works do not
reach the same conclusions: while most simulation works
argue that BLE’s performance should decrease under inter-
ference [19, 27], some of the existing studies do not confirm
this [24]. Because of this lack of experimental evidence, the
general belief in the community is that BLE is highly reli-
able also in noisy RF environments by design, thanks to its
adaptive frequency hopping (AFH) algorithm [8].



No upper bound on latency. The AFH algorithm allows
BLE devices to blacklist interfered channels, and to au-
tonomously re-transmit packets on different frequencies un-
til interference is finally avoided. Although this is proven
to be an effective method to mitigate co-existence prob-
lems [20, 24], it only makes sure that every data packet that is
added to the transmission buffer of a BLE radio will eventu-
ally get transmitted (as long as a connection is not dropped).

As we show in Sect. 3, the presence of interference can
introduce significant delays that may affect the performance
of a BLE application. To make sure that the communication
latency stays within acceptable delay bounds, connection-
based BLE applications can adjust their connection param-
eters at runtime [25]. Providing such delay bounds would
allow developers to apply theoretical network analysis tools,
such as network calculus [21], to their BLE applications.
Unsuitable models. The ability to trim connection param-
eters at runtime, however, requires proper models capturing
the impact of radio interference. Unfortunately, most of the
existing models rely on ideal channel conditions [13, 25].
A few models for noisy channels exist [7, 9, 19], but they
cannot be used by most BLE devices, as they rely on infor-
mation that is not available on the BLE host (e.g., bit error
rate, employed data channels, and number of CRC errors).

Most BLE controllers are indeed drop-in radio periph-
erals that hide all communication details to a BLE appli-
cation running on the host processor. A BLE application
may only issue high-level commands, such as adding data
to the transmission buffer of the BLE controller. The latter
essentially acts as a black box, which autonomously handles
(re-)transmission and acknowledgment of link-layer packets,
buffer management, as well as data channel selection.
Receiving feedback at runtime. Once data is added to the
transmission buffer of a BLE controller, the application as-
sumes it is successfully transmitted. The BLE specifica-
tion [5] does not foresee a standardized way for an appli-
cation to get information about the number of link-layer re-
transmissions during a packet exchange, nor specify a link
quality indicator. In other words, applications do not receive
any feedback from the BLE controller about ongoing link-
layer transmissions: neither about loss, nor about latency.
Therefore, to be aware of the timeliness of its communi-
cations, a BLE application needs to pro-actively exchange
application messages to explicitly monitor delays (e.g., by
means of round-trip time estimations): an unnecessary com-
munication overhead and an additional energy expenditure.
Contributions. In this paper, we first experimentally study
the impact of radio interference on the latency of BLE com-
munications. After showing that the RF noise present in
common office environments can significantly decrease the
performance of BLE systems, we systematically analyze the
timeliness of BLE communications under different interfer-
ence patterns. Our analysis reveals that, in specific scenarios,
BLE’s AFH algorithm is unable to cope with the surrounding
interference, leading to long delays that may be unacceptable
for applications used in safety-critical domains.

To improve the timeliness of BLE in noisy RF environ-
ments, we revise the model proposed by Spörk et al. [25],

such that it can be used by an application to adapt its con-
nection parameters at runtime. We do so by expressing the
impact of interference in terms of the number of connection
events necessary to complete a successful data transmission
(nCE ). We show that this quantity can be estimated using the
timing information of commands sent over the Host Con-
troller Interface (HCI), the standardized interface between
host processor and BLE controller. This allows any applica-
tion compliant to the BLE specification [5] to estimate nCE
without any extra communication overhead or energy cost.

We experimentally show that the use of HCI timing in-
formation allows a more fine-grained and efficient nCE es-
timation than the exchange of application-level messages to
compute the round-trip time. Furthermore, we illustrate how
a generic BLE application can efficiently make use of recent
nCE estimations to adapt its connection interval at runtime,
in order to improve the timeliness of its communications.

Experiments on the popular Nordic Semiconductor
nRF52840 DK [16] using Zephyr [26] confirm that BLE ap-
plications estimating the nCE and adapting their connection
parameters at runtime following the approach presented in
this paper are able to cope with radio interference and to ef-
fectively increase their timeliness in noisy RF environments.

After providing the required background information on
connection-based BLE communication in Sect. 2, this paper
makes the following contributions:
• We experimentally study the latency of BLE communi-

cations in the presence of radio interference and show
that BLE applications may incur long and unpredictable
transmission delays (Sect. 3).
• We revise the timeliness model in [25] by introducing

the nCE metric, and show how to estimate its value using
only information available to a BLE host (Sect. 4).
• We implement our approach using Zephyr on the nRF52

radio (Sect. 5), and experimentally evaluate the accu-
racy and efficiency of the nCE estimation carried out us-
ing timing information of HCI commands (Sect. 6).
• We show how an application using recent nCE measure-

ments and our revised timeliness model can adapt its
connection interval at runtime (Sect. 7) and increase its
timeliness in noisy RF environments (Sect. 8).

After describing related work in Sect. 9, we conclude our
paper in Sect. 10, along with a discussion on future work.

2 Connection-based BLE Communication
Compared to the simpler connection-less communication

mode making use of 3 advertisement channels (37, 38, and
39) to broadcast short data packets, connection-based BLE
provides bidirectional data transfer between a slave and a
master. After an initial setup phase using connection-less
primitives, connection-based communication takes place
during connection events (N0 ... Ni), as shown in Fig. 1.

The time between the start of two consecutive connec-
tion events is defined by the connection interval (conn int).
During a single connection event, master and slave exchange
link-layer packets that may carry application data (yellow).
In case no data needs to be sent, master and slave simply ex-
change link-layer keep-alive packets (dark blue), which only
carry the mandatory link-layer header.
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Figure 1: BLE connection between slave and master.

The duration of a connection event depends on the num-
ber and the size of exchanged link-layer packets and is lim-
ited by the maximum connection event length (tCE ). Every
connection event starts with a transmission from the master,
to which the slave responds. Master and slave keep exchang-
ing link-layer data packets until they have all been success-
fully sent or until tCE is reached. The last link-layer packet
during a connection event is always sent from the slave to
the master, after which both devices turn off their radio and
resume communication at the next connection event.

In the example shown in Fig. 1, during connection event
N0, the master starts the connection event by sending a keep-
alive packet to the slave. The slave has data to transmit and
therefore responds with a link-layer data packet. Because the
slave sends data instead of only a keep-alive packet, its trans-
mission time is longer than the master’s. During connection
event N1, master and slave have no data to send and therefore
only exchange the mandatory keep-alive packets. In connec-
tion event N2, the master transmits data by sending a data
packet. Because the transmission data of the master exceeds
the maximum link-layer data packet length, the master waits
for a link-layer packet from the slave before completing its
data transmission. The slave responds with a link-layer keep-
alive packet within the same connection event.

Using connection-based BLE, the link layer automatically
handles the acknowledgment (ACK) of packets and link-
layer flow control using a 1-bit ACK field and a 1-bit se-
quence number in the header of every link-layer packet (both
keep-alive and data packets). In case a link-layer packet is
not successfully received, it is automatically re-transmitted
without any notification to the BLE application.
Data channel selection. At the beginning of every connec-
tion event, one out of 37 possible BLE data channels is se-
lected by the adaptive frequency hopping (AFH) algorithm.
A new channel is chosen for every connection event and is
used by master and slave to transmit/receive all packets dur-
ing the event. All 37 possible BLE data channels are located
in the unlicensed 2.4 GHz ISM band. The latter, however,
is also used by other wireless technologies, such as Wi-Fi,
Classic Bluetooth, and IEEE 802.15.4, that may interfere
with BLE communications, leading to link-layer packet loss
and re-transmissions. The AFH algorithm may choose only
a subset of the 37 data channels, defined by the channel map
(Cmap) set by the BLE master during connection setup.

To mitigate the effect of co-located wireless applications
or multi-path fading, the AFH algorithm may blacklist any
BLE data channel with poor link quality by updating the
Cmap of the BLE connection at runtime. A data channel
disabled in the Cmap will not be used for communication,
but may be whitelisted again. Both black- and whitelisting

of BLE data channels is performed using standardized BLE
commands and may only be initiated by a BLE master.

The BLE specification [5] defines a mandatory delay of
at least six connection events between a slave receiving the
Cmap, and the latter being used for actual communication. A
slave is required to use the updated channel map, but cannot
impose nor suggest changes in Cmap to the master in a stan-
dardized way. This can lead to long transmission delays in
case a source of interference is located near the slave and is
not detected by the master, as we show in Sect. 3.
Transmission latency. Several models capturing the trans-
mission latency of application data sent over a BLE connec-
tion exist [9, 13, 19, 25]. However, only the model proposed
by Spörk et al. [25] uses information that is typically avail-
able from a BLE radio and can hence be directly used by
an application to adapt its connection parameters at runtime.
According to this model [25], the upper bound on transmis-
sion latency of application data sent over a BLE connection
on an ideal channel can be computed as:

tmax = dD/Fe · conn int + tCE , (1)

where D is the data length in bytes, F is the maximum num-
ber of bytes that may be transmitted during a single connec-
tion event, conn int is the length of the connection interval,
and tCE is the maximum length of a connection event [25].

As we show in Sect. 3, an application cannot rely on this
model to compute an upper bound on its end-to-end latency
in noisy environments. Radio interference, indeed, causes
several link-layer re-transmissions that introduce delays up
to four times higher than the ones predicted by this model.

3 BLE Latency in Noisy RF Environments
To demonstrate the impact of radio interference on a BLE

connection, we experimentally show that RF noise in a com-
mon office environment leads to high transmission latencies
over BLE connections (Sect. 3.1). We use a testbed with 9
BLE nodes (Sect. 3.2) to measure the latency of individual
data packets in detail and investigate how BLE’s AFH al-
gorithm adapts the data channel map over time (Sect. 3.3).
Based on our results, we highlight the specific scenarios in
which the AFH algorithm is unable to cope with the sur-
rounding interference, leading to long delays (Sect. 3.4).

3.1 Latency in a Common Office Environment
We start by evaluating the transmission latency of a BLE

application running in a common office environment for 48
hours. We use a nRF52840 DK node as slave and connect it
via IPv6-over-BLE to a Raspberry Pi 3 (RPi3) master. Mas-
ter and slave have a distance of approx. 2 meters with direct
line of sight. After the IPv6-over-BLE connection is set up,
the slave transmits a 29-bytes long UDP packet (resulting
in 80 bytes of link-layer payload) to the master once every
second. For each UDP packet, we measure the transmission
latency (tlatency) as the time difference between the slave’s
application issuing the send command to the BLE radio and
the master’s application successfully receiving the packet.

The two BLE nodes can send F = 128 bytes during a sin-
gle connection event and have a maximum connection event
length of 10 ms. When using the model shown in Eq. 1 with
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Figure 2: Percentage of packets exceeding the expected upper bound on transmission delay across 48 hours in a common office
environment. During daytime, up to 22% of the transmitted packets are delayed due to the surrounding radio interference.

conn int = 250 ms, an application would expect a maximum
transmission latency tmax = 260 ms for each UDP packet.

Fig. 2 shows the percentage of data packets that exceed
this upper bound on transmission latency over the 48 hours.
Each bar refers to 15 minutes, i.e., 900 UDP transmissions.
During daytime, when the office is busy, up to 21.74% of
UDP packets sent within 15 minutes experience a transmis-
sion latency above tmax. Several packets even experienced a
latency above 1000 ms. During nighttime, when the office is
vacant, almost no packets have a latency above 260 ms.

These results show that the RF noise present in a com-
mon office environment can have a significant impact on
the transmission latency of connection-based BLE. To get
a deeper understanding of the impact of different sources of
radio interference on the BLE transmission delay, we inves-
tigate next the performance of BLE in a systematic way.

3.2 Experimental Setup
We perform our experiments on a testbed allowing us to

control the RF noise experienced by each BLE node.
Testbed facility. The testbed consists of nine RPi3 equally
distributed over a University lab (6x10 meters) that is kept
vacant during our experiments. Each RPi3 runs the Raspbian
OS and is connected via USB to one BLE node (nRF52840
DK device). All RPi3 are connected via Ethernet and use
NTP for time synchronization, providing us with the same
notion of time across the testbed. Each RPi3 is augmented
with a D-Cube board [22] allowing us to accurately measure
the power consumption of each BLE node over time.
Generating interference.

All RPi3 in the testbed are used to re-program the BLE
nodes and to monitor the status of each experiment by log-
ging data in persistent memory. We further use the RPi3s in
the testbed to generate Bluetooth and Wi-Fi interference us-
ing their on-board Broadcom bcm43438 radio chip. To gen-
erate Bluetooth interference, we configure each RPi3 to cre-
ate a point-to-point Bluetooth connection with another RPi3,
and to transmit RFCOMM packets with a length of 1000
bytes every 11.034 ms, resulting in a RFCOMM data rate of
725 kbits/s. To create Wi-Fi interference, we let each RPi3
generate IEEE 802.11 b/g/n packets of configurable length
and rate on a given channel and with a transmission power
of 30 mW, using the approach followed by Schuss et al. [23].
BLE master. We use one of the RPi3 as BLE master for
all our tests. This RPi3 uses its on-board BLE radio to scan
for and connect to nearby IPv6-over-BLE slaves. When an
IPv6-over-BLE connection is established, the master starts
a UDP server that waits for incoming UDP packets. Every
time a UDP packet is received, payload and reception time
are logged locally via the serial interface of the node.

BLE slave. We use each of the nRF52840 devices (only one
at a time to avoid self interference) as BLE slave. Each slave
waits for the BLE master to initiate an IPv6-over-BLE con-
nection and sends a UDP message to the master every sec-
ond, once the connection is established. Each UDP message
has a length of 29 bytes (resulting in a BLE link-layer packet
length of 80 bytes) and carries an 8-digit sequence number
in its payload. Whenever the slave sends a UDP message,
transmission time and sequence number are logged locally
via the serial interface of the node. The slave application uses
the Zephyr OS [26] and its existing IPv6-over-BLE stack.
3.3 Experimental Results

Using our testbed setup, we experimentally investigate
the loss induced by radio interference on link-layer data
packets and their resulting transmission latency. Both master
and slave make use of conn int = 250ms, F = 128bytes, and
tCE = 10ms. As discussed in Sect. 3.1, we expect the upper
bound on each transmission tmax to be 260 ms (see Eq. 1).
3.3.1 Bluetooth interference

We first analyze the latency of data transmissions in the
presence of classic Bluetooth interference. Similar to BLE,
Bluetooth also uses the 2.4 GHz ISM band and makes use
of frequency hopping to mitigate external interference by
hopping to a new channel every 625 µs [5]. As described
in Sect. 3.2, we use the RPi3 in the testbed to create three
simultaneous Bluetooth connections, each transmitting with
an RFCOMM bandwidth of 725 kbits/s. We further measure
the packet latency (tlatency) as the time difference between the
slave issuing the send command and the master being noti-
fied about packet reception, as described in Sect. 3.1.

Fig. 3 shows tlatency (top) and the data channel map (bot-
tom) of a BLE connection between a master and a slave
communicating at a distance of 10 meters with direct line
of sight. Data packets exceeding tmax = 260ms (shown as
horizontal dashed line), are marked as delayed. After initial-
izing the IPv6-over-BLE connection, we wait 60 seconds for
the system to be stable before we simultaneously start inter-
fering on all three Bluetooth connections (time 0 in Fig. 3).

Our results show that every UDP packet is, eventu-
ally, successfully received. However, Bluetooth interference
causes several UDP messages to sustain a tlatency ≥ 2 · tmax.

We further see that the AFH algorithm is trying to update
the data channel map to mitigate the effect of the Bluetooth
interference on the BLE connection. However, the AFH al-
gorithm is not able to predict the frequencies used by Blue-
tooth and its blacklisting strategy does not help in mitigating
the impact of Bluetooth interference on the BLE connection.

Note that the same effect shown in Fig. 3 is experienced
by every BLE slave in our testbed, even those that are only 3
meters away from the master and have direct line of sight.
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Figure 3: BLE packet latency (tlatency) and data channel map of a BLE connection under heavy Bluetooth interference.
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Figure 4: BLE packet latency (tlatency) and data channel map of a BLE connection under Wi-Fi interference near the master.
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Figure 5: BLE packet latency (tlatency) and data channel map of a BLE connection under Wi-Fi interference near the slave.

3.3.2 Wi-Fi interference
We investigate next the impact of Wi-Fi interference on

an active BLE connection. Following the setup described in
Sect. 3.2, we first generate Wi-Fi interference in proximity
of the BLE master, and then in proximity of a BLE slave.
Wi-Fi interference near the master. Fig. 4 shows the mea-
sured tlatency (top) and used data channel map (bottom) of
a BLE connection in the presence of Wi-Fi interference lo-
cated near the master. Also in this case, the master and slave
are at a distance of 10 meters with direct line of sight. Af-
ter an initial delay of 60 seconds to let the IPv6-over-BLE
connection being set up, we let a RPi3 near the BLE master
generate Wi-Fi traffic on channel 11 in bursts of 30 seconds.

Our results show that every UDP packet is eventually re-
ceived. We further see that the AFH algorithm is able to
detect the Wi-Fi interference and mitigate its effects on the
BLE connection. Despite the heavy traffic generated on Wi-
Fi channel 11, indeed, the affected BLE data channels (18 to
31) are blacklisted as soon as the master detects their poor
link quality, resulting in only a few delayed packets.
Wi-Fi interference near the slave. Using the aforemen-
tioned setup, we now let the RPi3 near the slave generate the
same Wi-Fi pattern. Fig. 5 shows the measured tlatency (top)
and used data channel map (bottom) of a BLE connection in

the presence of Wi-Fi interference near the slave.
Once again, every UDP packet is, eventually, successfully

received. However, compared to the experiments shown in
Fig. 4, this time the AFH algorithm is unable to mitigate the
effects of Wi-Fi interference on the BLE connection. Dur-
ing Wi-Fi bursts, several UDP messages are significantly de-
layed, some even with tlatency ≥ 5 · tmax. Note that we have
observed the same behavior on all slaves located at more than
7 meters distance from the master. The reason for this is the
inability of the BLE master to detect the Wi-Fi interference,
which does not update the data channel map as shown in
Fig. 4. The BLE slave would be able to detect the poor qual-
ity of the data channels affected by Wi-Fi traffic. However,
it cannot update the data channel map in a standardized way
according to the BLE specification, as discussed in Sect. 2.
3.4 Lessons Learned

Our experiments show that BLE connections are eventu-
ally able to successfully transmit all data packets, even un-
der heavy Wi-Fi or Bluetooth interference, hence confirming
BLE’s high reliability highlighted by [24]. Although no data
packet is lost, however, we have observed that the transmis-
sion latency significantly increases under interference.
Inefficiency of AFH. In particular, our experiments high-
light that, in two situations, the AFH algorithm used by BLE



is unable to cope with the surrounding interference, leading
to long delays. First, the AFH algorithm loses its efficacy in
the presence of interference generated by other radio tech-
nologies making use of frequency hopping, such as Classic
Bluetooth. Second, in the presence of Wi-Fi interference lo-
cated close to the slave, the master is unable to detect the RF
noise and does not update the list of blacklisted channels. In
these situations, the number of re-transmissions performed
by a BLE connection drastically increases, leading to high
latencies that may be unacceptable for safety-critical BLE
applications such as health care monitoring [4, 12].
Need for runtime adaptation. In order to avoid such long
latencies, delay-sensitive BLE applications need to adjust the
connection parameters of their ongoing connections, e.g., by
lowering the connection interval according to changes in the
link-quality. However, this task is complicated by the fact
that the BLE specification [5] does not provide a standard-
ized way for an application to directly get feedback about
ongoing link-layer (re-)transmissions or about the quality of
a BLE connection. As a consequence, to be aware about
the timeliness of its communications, a BLE application
needs to pro-actively let the communicating nodes exchange
application-level messages to explicitly monitor delays, e.g.,
by means of round-trip time estimations. Pro-actively ex-
changing application messages, however, is an unnecessary
communication overhead and an additional energy expendi-
ture that is undesirable for resource-constrained BLE nodes.

In the next section, we show that any application com-
pliant to the BLE specification [5] can estimate the impact
of interference on an ongoing connection by estimating the
number of connection events necessary to complete a suc-
cessful data transmission. We show how this quantity can
be measured without any extra communication overhead or
energy cost using the timing information of HCI commands.

4 Measuring and Modeling BLE Latency
In this section, we first revise the model shown in Eq. 1

in order to capture the nCE , i.e., the number of connec-
tion events necessary to complete a successful data transmis-
sion (Sect. 4.1). After discussing the unavailability of link-
layer information on standard-compliant BLE host devices
(Sect. 4.2), we show how a BLE application can estimate nCE
autonomously in two ways. First, we show how to relate nCE
to the round-trip time measured by introducing application-
layer ACKs (Sect. 4.3). As this method is inaccurate and
increases the communication overhead as well as the energy
expenditure of BLE devices, we propose a second way to es-
timate nCE that makes use of the timing information of com-
mands sent over the standardized Host Controller Interface
between host processor and BLE controller (Sect. 4.4).

4.1 Revising the BLE Timeliness Model
We start by revising the timeliness model from [25]

shown in Eq. 1. The latter describes how an application data
packet of length D (bytes) is split into data fragments with a
maximum size F (bytes), each of which is transmitted on a
separate connection event. As discussed in [25], the model
neglects the effects of link-layer packet loss on the transmis-
sion delay of the individual fragments.

BLE Host

BLE 
Controller BLE PHY Layer

BLE Link Layer

BLE L2CAP

ATT 6LoWPAN

GATT IPv6

GAP TCP/UDP

Application

HCI
BLE HCI driver

Figure 6: Standard BLE and IPv6-over-BLE stack.

To model the effects of link-layer packet loss and retrans-
missions, we introduce the nCE metric, which expresses the
number of connection events necessary to successfully trans-
mit individual data fragments, into the model as:

tmax =

(
dD/Fe

∑
f=1

nCE f · conn int

)
+ tCE , (2)

where dD/Fe captures the fragmentation of data with length
D into one or multiple data fragments of length F , and nCE f

is the nCE of a single data fragment f .
By knowing the nCE of each fragment, Eq. 2 now captures

the impact of RF noise on the quality of a BLE connection,
and is hence able to provide an upper bound on transmission
delay. This, however, requires a precise nCE measurement.
4.2 Challenges in Measuring nCE

The main challenge in measuring nCE on a standard-
compliant host device is the nature of the BLE communi-
cation stack. The latter is split into two separate parts, a BLE
controller and a BLE host [5], that exchange commands via
a standardized Host Controller Interface (HCI) (see Fig. 6).
To simplify the development of BLE applications, the con-
troller implements the physical and link layer – practically
acting as a black box to the host running the application.

The controller, indeed, provides all services needed for
connection-based BLE communication, such as autonomous
link-layer retransmissions and acknowledgments, timing of
connection events, and data channel selection (including
blacklisting) using the AFH algorithm. Controllers are often
separate chips that are closed-source and cannot be accessed
or modified by developers. The only way for a host to inter-
act with a controller is to provide high-level parameters and
listen for HCI events. No info about the BLE connection,
such as the number of retransmissions, is passed to the host.

The BLE host implements the upper communication lay-
ers of the BLE stack, including the L2CAP layer, the ATT/-
GATT protocols, and support for IPv6 communication.

Due to the nature of the BLE stack, several challenges
arise when measuring nCE on a host, which we discuss next.
Packet transmission. The controller autonomously handles
the scheduling of transmissions and the ACK of packets in
its transmission buffer. The host can use HCI commands
to add a new data packet to the transmission buffer of the
controller, but has no implicit control over its timing and no
information about when it has actually been sent. The host
hence assumes that each packet will be sent, eventually, as
long as the underlying BLE connection is not dropped.
Buffer management. The controller implements its own
management of both reception and transmission buffer. The



BLE host (and hence the application developer) has no direct
control over the controller’s buffers and can only request the
number and length of available buffers in the controller.
Channel selection. At connection setup, the link layer of
the BLE master provides the data channel map to the slave.
During an active connection, the controller of both slave and
master autonomously handles BLE data channel selection.
The BLE host, however, has no control or info over the data
channel used in current or upcoming connection events.
Link quality information. The BLE specification [5] does
not provide any standardized primitive allowing a host to re-
trieve link quality information about an ongoing connection.
Any information about the received signal strength (RSS),
the signal-to-noise ratio (SNR), or the number of retransmis-
sions on a BLE data channel is limited to the link layer of
the BLE controller. The BLE host is hence unable to retrieve
any of these low-level measurements in a standardized way.

Due to these challenges, directly measuring the nCE of an
ongoing connection from the BLE host is not possible. A
host may, however, estimate the nCE using application-layer
acknowledgments or HCI information, as we show next.

4.3 Estimating nCE using Round-Trip Time
An application can estimate the number of connection

events necessary to successfully transmit individual data
fragments by using application-layer ACKs and by mea-
suring the round-trip time (tRT T ): we refer to this form of
nCE estimation as RTT-based nCE . When carrying out an
RTT-based nCE estimation, every data transmission initi-
ated by an application (master or slave) is confirmed by an
ACK from the other party’s application, as shown in Fig. 7.

An application measures tRT T as the time between the in-
stant in which it adds a data packet P to the transmission
buffer of the controller, and the time in which it receives the
application-layer ACK A in its reception buffer. The mea-
sured tRT T can be expressed as the sum of tP and tA:

tRT T = tP + tA,
where tP is the time it takes between P being added to the
controller’s transmission buffer and being received in the
other party’s reception buffer. tA, instead, captures the time
between P being received into the receiving buffer, and the
subsequent application-layer ACK being received by the ap-
plication that originally sent P. Fig. 7 shows an example in
which a slave sends a data packet consisting of a single frag-
ment, and a master replies with an application-level ACK.

Both data exchanges (actual packet and application-layer
ACK) can be modeled as individual data transmissions, each
with an upper latency bound tmax that is calculated using
Eq. 2. For our model, we assume that data packet and ACK
have the same length D. Furthermore, because an applica-
tion has no insight about the performance of each individ-
ual fragment, it can only derive a nCE f that is the same for
all fragments involved in the data exchange (data packet and
ACK). Following these assumptions, we calculate tRT T as:

tRT T ≤ 2 ·tmax or tRT T ≤ 2 ·dD/Fe·nCE f ·conn int+2·tCE .

By measuring tRT T , an application can hence estimate the
average nCE f for all fragments in the data exchange as:
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Figure 7: RTT-based nCE estimation for a slave transmit-
ting a data packet (P) and receiving an ACK (A).

nCE f =

⌈
tRT T −2 · tCE

2 · dD/Fe · conn int

⌉
. (3)

Limitations. A basic requirement to be able to carry out
RTT-based nCE estimation is that the developer has full
control over the application running on both master and
slave. This may not necessarily be the case, for exam-
ple, when a slave acting as IPv6-over-BLE node transmits
IPv6 messages to a router (master). Although a developer
could force a round-trip time measurement using L2CAP
ping messages, RTT-based nCE estimation might not be
suitable for energy-constrained slaves. The same observa-
tion applies when introducing application-layer ACKs, as
they increase communication overhead and hence cause an
additional power consumption, as we show in Sect. 6.2.

Another limitation of RTT-based nCE estimation is that
it assumes the same nCE f for all fragments involved in the
data exchange. On the one hand, this assumes the link to be
symmetric, which may lead to an underestimation of nCE f

in case the data packet is retransmitted for several connec-
tion events, but the ACK is received immediately. On the
other hand, by estimating an average nCE f for all fragments,
RTT-based nCE estimation cannot capture the case in which
interference leads to a high nCE f for specific fragments.

4.4 Estimating nCE using HCI Timing Info
In order to tackle the limitations of RTT-based nCE es-

timations, we present another approach that estimates the
number of connection events necessary to successfully trans-
mit a data fragment by using HCI timing information. We
refer to this form of nCE estimation as HCI-based nCE esti-
mation. As HCI commands and events are standardized, any
BLE-compliant host can make use of this approach. Dif-
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Figure 8: HCI-based nCE estimation for a BLE slave trans-
mitting a packet (P) consisting of a single data fragment.

ferent from RTT-based nCE estimation, the HCI-based ap-
proach can discern the nCE f of each individual fragment, and
its computation varies for masters and slaves.

4.4.1 Estimating nCE on a BLE slave
Fig. 8 shows the inner working of HCI-based nCE esti-

mation for a BLE slave transmitting a packet P consisting of
a single data fragment to the master. Compared to Fig. 7, one
can notice that the master is no longer sending application-
layer ACKs after receiving a packet. Fig. 8 also highlights a
number of time-stamps (TADD, TFREE , and TRX ) that can be
retrieved from the communication exchanges on the HCI.

Whenever an application needs to transmit data over the
BLE connection, it uses the HCI ACL data packet com-
mand to add data to the transmission buffer of the controller.
We define this instant TADD and measure it in the HCI driver
of the host. We also define TFREE as the instant in which the
buffer of the controller changes state and measure it by lis-
tening for HCI Number Of Completed Packets events. The
latter are issued from the controller when a transmission
buffer is freed, due to successful data transmission.

Both in the absence (Fig. 8a) and in the presence (Fig. 8b)
of link-layer errors, the only available timing info that can
be derived by the slave via the HCI is the time tT X elapsed
between the data being added to the controller’s transmission
buffer (TADD) and the buffer being actually freed (TFREE ):

tT X = TFREE −TADD. (4)
According to Fig. 8, we can observe that tT X can be ex-

pressed as the sum of two components tF and tLL:
tT X = tF + tLL, (5)

where tF is the latency of a single data fragment (which
may carry up to F bytes) into the master’s reception buffer,
whereas tLL captures the time between the reception of the
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Figure 9: HCI-based nCE estimation for a BLE master
transmitting a single data fragment (nCE f = 1).

data fragment into the master’s reception buffer and the slave
receiving the link-layer ACK and freeing the buffer (TFREE ).

The latency of a single data fragment tF can be derived
from Eq. 2 by setting D = F , hence deriving:

tF ≤ nCE f · conn int + tCE . (6)
Compared to the data fragment that may have a length of
up to 255 bytes according to the BLE specification [5], the
link-layer acknowledgment only has a length of 16-bits. We
therefore assume that the link-layer acknowledgment is suc-
cessfully transmitted within the first transmission attempt
and neglect its duration, resulting in tLL = conn int. With
this assumption, we can calculate tT X (using Eq. 5) as:

tT X ≤ (1+nCE f ) · conn int + tCE . (7)
A BLE application using the HCI communication to measure
tT X (using Eq. 7) can hence estimate the current nCE f as:

nCE f =

⌈
tT X − tCE

conn int

⌉
−1. (8)

4.4.2 Estimating nCE on a BLE master
HCI-based nCE estimation can be used on a master de-

vice using the same approach and HCI timing information
described in Sect. 4.4.1 (i.e., tT X = TFREE − TADD). The
main difference compared to HCI-based nCE estimation on
a slave is that the link-layer ACK for the data fragment sent
by the master comes within the same connection event, as
shown in Fig. 9. Therefore, tLL is already captured by the
maximum connection event length tCE value in Eq. 6. This
allows us to calculate tT X as:

tT X ≤ nCE f · conn int + tCE . (9)
An application running on the BLE master can hence esti-
mate the current nCE f value using the measured tT X as:

nCE f =

⌈
tT X − tCE

conn int

⌉
. (10)

We describe next the implementation of RTT-based or
HCI-based nCE estimation on the nRF52840 DK platform
using the Zephyr operating system (OS).
5 Implementing nCE Estimation on BLE Hosts

In this section, we present the implementation of a BLE
slave using RTT-based or HCI-based nCE estimation on
the Nordic Semiconductor nRF52840 DK platform [16]. The
latter embeds an ARM Cortex-M4F application processor, a
nRF52840 chip with 1024 kB of flash and 256 kB of mem-
ory, as well as a radio supporting BLE communication up to



version 5. Note that the same implementation can be used
out-of-the-box on all nRF52 variants.

Since we use only standardized BLE functionality, our
implementation can be ported on every hardware platform
that is compliant to the BLE specifications v4.1 and above.
Even devices using a proprietary communication interface
between BLE host and controller such as the TI CC26xx
platform can use our approaches with just minor adaptations.

The Zephyr OS used for our implementation already in-
cludes a fully compliant BLE stack (including IPv6-over-
BLE support) that uses the standardized HCI to exchange
information between the BLE controller and the BLE host.
5.1 RTT-based nCE Estimation

We start by implementing the RTT-based nCE estima-
tion approach in the slave application described in Sect. 3.2.
For every UDP data message (with a UDP length of 29 bytes)
sent by the slave, the master responds with an 8-byte long
UDP acknowledgment. We measure the transmission time of
every UDP message right before it is added to the transmis-
sion buffer of the controller. The reception time is measured
immediately after the application was notified about the in-
coming application-layer acknowledgment from the master.
Both timestamps measure the current system uptime in mil-
liseconds, which we retrieve by calling k uptime get().

After every successful data transmission, the BLE appli-
cation calculates the round-trip time tRT T of the recent data
exchange and estimates the current nCE f value using Eq. 3.
5.2 HCI-based nCE Estimation

We next implement HCI-based nCE estimation reusing
the slave application from Sect. 3.2 and adding the nCE
measurements to the BLE host in the HCI driver layer
(hci core). Every time the host sends a HCI ACL Data
Packet command to the BLE controller in order to trans-
mit application data, we store the current system up-
time as TADD. When the BLE controller issues an
HCI Number Of Completed Packets event to notify the
host about the successful data transmission, we store TFREE
as the current system uptime. TADD and TFREE are retrieved
using k uptime get() and measured in milliseconds.

The nCE estimation is performed in the HCI driver layer
on the host using Eq. 8 each time the controller has success-
fully transmitted a data fragment. To provide BLE applica-
tions with the possibility to retrieve the current nCE f when
using HCI-based nCE estimation, we extend the HCI driver
with the function bt hci get nce(), which returns the most
recent nCE f estimate. This function is a custom addition to
the BLE stack and can be added to any BLE controller driver,
independently of the type of communication used between
BLE host and controller (HCI or proprietary).
6 Evaluating the Accuracy and Efficiency

of nCE Estimation
We experimentally evaluate the accuracy (Sect. 6.1) and

efficiency (Sect. 6.2) of RTT-based or HCI-based nCE es-
timation. We focus our evaluation on the BLE slave device,
since (i) it is typically more constrained in its energy bud-
get and processing power than the BLE master, and since (ii)
the HCI-based nCE estimation on a slave is by design less
accurate than on a master, as discussed in Sect. 4.
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Figure 10: Accuracy of HCI-based and RTT-based nCE es-
timation for two connection intervals.

6.1 Accuracy
We make use of the same experimental setup described

in Sect. 3.2. We run one estimation approach at a time and
measure the nCE f for each data fragment by computing the
end-to-end latency from slave to master tlatency as follows:

tlatency = TRX −TADD.
We then compute our baseline nCE f for each data fragment
based on the measured tlatency as:

nCE f =

⌈
tlatency− tCE

dD/Fe · conn int

⌉
.

Note that, as described in Sect. 3.2, the RPi3 nodes con-
nected to the master and the slave are NTP-synchronized,
giving us the same notion of time across the two nodes.

For both RTT-based and HCI-based nCE estimation,
slave and master exchange 600 UDP packets consisting of
a single fragment using two connection intervals (62.5 and
125 ms) in the presence of Wi-Fi interference near the slave.
We repeat our measurements ten times for each setting.

Fig. 10 plots the percentage of UDP packets for which
the resulting fragment’s nCE f has been correctly estimated,
overestimated, or underestimated (green, orange, and red, re-
spectively). We can clearly see that the number of correctly-
estimated nCE f values is higher when using HCI-based nCE
estimation, especially in the presence of highly unreliable
BLE connections (bars with a high baseline nCE f value).

Overall, HCI-based nCE estimation outperforms the
RTT-based one by 0.42, 8.06, 60.87, and 47.82% for a nCE f

of 1, 2, 3, and 4, respectively, in estimating the exact nCE f

value (conn int=62.5 ms). Furthermore, Fig. 10 also hints
that HCI-based estimation is far less likely to underestimate
the nCE f value of a fragment than RTT-based estimation.
HCI-based nCE estimation reduces the number of underes-
timations by 29, 80, and 83% for a nCE f of 2, 3, and 4, re-
spectively (conn int=62.5 ms). Similar trends are observed
when using a conn int=125 ms (Fig. 10(b)).
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Figure 11: Average power consumption of the nCE estima-
tors for different connection intervals and radio interference.

The few cases in which HCI-based nCE estimation un-
derestimates the baseline nCE f value (≤ 0.9% of all cases)
are caused by uncontrollable delays in the notification intro-
duced by the OS on the BLE master (shown as tN in Fig. 8).
6.2 Power Consumption

We measure the average power consumption of both
RTT-based and HCI-based nCE estimation under different
interference patterns, following the same experimental setup
described in Sect. 3.2. We measure the power consumption
of a nRF52840 slave using the D-Cube board [22].

Fig. 11 shows the average power consumption for differ-
ent connection intervals in absence and in the presence of
Wi-Fi interference. We can observe that, regardless of the
connection interval uses, and of the presence of Wi-Fi inter-
ference, the RTT-based nCE estimation adds an extra 18%
power consumption on the slave. This higher power con-
sumption is due to the communication overhead introduced
by the exchange (unnecessary when using HCI-based nCE
estimation) of application-level acknowledgments.
7 Increasing the Timeliness of BLE using nCE

To increase the timeliness of BLE applications in noisy
RF environments, we can use nCE information to adapt the
BLE connection interval at runtime in order to mitigate the
presence of interference while minimizing energy consump-
tion (Sect. 7.1). Towards this goal, we can use a series of
recent nCE f estimates to predict the nCE f of upcoming data
fragment transmissions (Sect. 7.2).
7.1 Adapting the BLE Connection at Runtime

Following Eq. 2, a delay-sensitive BLE application is able
to compute the maximum connection interval allowing its
communications to sustain an upper bound on the transmis-
sion delay tmax despite the presence of surrounding interfer-
ence. From Eq. 2 we can indeed derive:

conn intmax ≤
tmax− tCE

dD/Fe ·nCE f ?
. (11)

where nCE f ? is the expected number of connection events
necessary to successfully transmit upcoming data fragments.

Depending on the conn intmax computed using Eq. 11, the
slave application can request a new connection interval from
the master1. conn intmax represents the most energy-efficient
connection interval to be used in order to sustain the up-
per bound on transmission delay tmax — provided that nCE f ?

1To this end, the slave can use the standardized L2CAP CONNECTION
PARAMETER UPDATE REQUEST. A master may change the connection inter-
val by issuing a LL CONNECTION UPDATE command. According to the BLE
specification, there is a fixed delay of at least six connection events between
the slave receiving the new connection interval, and the latter being used.

correctly captures the expected number of connection events
necessary to successfully transmit upcoming data fragments.
We discuss in the next section how an application can make
use of the recent nCE f estimates to predict this value.

7.2 Predicting Future nCE f Values
Using a series of recent nCE f measurements, we can pre-

dict the expected number of connection events necessary
to successfully transmit upcoming data fragments (nCE f ?).
This allows us to find the most efficient connection inter-
val conn intmax and adapt the BLE connection so that fu-
ture data transmissions do not exceed the maximum trans-
mission delay tmax. To achieve this goal, we use a simple fil-
tering approach that calculates the maximum nCE f value out
of a given observation window of L fragments. Research on
IEEE 802.15.4 communication has shown that such a max-
imum filtering approach can be used to select suitable com-
munication parameters that minimize the number of packets
exceeding an upper latency bound [14]. Using such a filter-
ing approach, we can predict nCE f ? as:

nCE f ? = max[nCE f (t), . . . ,nCE f (t−L)], (12)
where nCE f ? is the predicted number of connection events
necessary to successfully transmit upcoming data fragments,
whereas nCE f (t) to nCE f (t - L) are the latest nCE f esti-
mates obtained following the approach explained in Sect. 4.
Finding an optimal L. We next experimentally investigate a
suitable observation window length L. We consider six dif-
ferent lengths (16, 32, 64, 128, 256, and 512) and compute
nCE f ? according to Eq. 12. We then instruct a BLE slave to
adapt its connection interval according to Eq. 11 and exper-
imentally measure (i) the number of delayed packets (i.e.,
the number of packets whose latency exceeds the expected
upper bound tmax), and (ii) the energy consumption of the
slave over time. We make use of the same setup described in
Sect. 3.2, i.e., a slave and a master communicating using tmax
= 260 ms, tCE = 10 ms, and F=128 bytes in the presence of
Bluetooth and Wi-Fi interference near the slave.

In principle, we expect the number of delayed packets
to be high when using a short observation window. When
using a short L, indeed, the limited information about the
amount of interference affecting the channel in the recent
past translates in an optimistic prediction (higher conn int).
At the same time, we also expect that, when using a longer
L, at least one of the observed nCE f values captures a burst
of interference and hence results in a pessimistic prediction
(lower conn int), leading to a higher radio activity and, there-
fore, a higher energy consumption of the system.

Fig. 12 shows the results of our evaluation. As expected,
the percentage of delayed packets decreases for larger ob-
servation windows, whilst the average power consumption
of the system increases. To find the optimal L, we calculate
the power consumption necessary to transmit a timely packet
γ [µW/%] for the different values of L. Fig. 12 (bottom)
shows that selecting L=64 offers a good trade-off between
energy-efficiency and timeliness of BLE transmissions under
both Bluetooth (Fig. 12(a)) and Wi-Fi (Fig. 12(b)) interfer-
ence. With this setting, only 0.6% of all data transmissions
exceed the latency bound, even under Wi-Fi interference.
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Figure 12: Percent of delayed packets (top), average power
consumption (middle), and power cost (bottom) for different
observation window lengths under different interference.

8 Evaluating the Timeliness of BLE in
Noisy RF Environments when using nCE

We finally evaluate the timeliness of BLE applications
adapting their connection parameters using the approach pro-
posed in Sect. 7 systematically (Sect. 8.1) and in common
office environments rich of RF noise (Sect. 8.2).

8.1 Systematic Evaluation
We compare the performance of a slave S f ixed running an

application using a fixed connection interval to a slave Sadapt
using the approach shown in this paper. S f ixed selects its con-
nection interval statically according to Eq. 1 in order to sus-
tain a maximum transmission delay tmax = 260ms. Sadapt ,
instead, uses Eq. 11 and an observation window length L=64
to adapt its connection interval as described in Sect. 7.
Setup. Using the same setup described in Sect. 3.2, we let
each of the two slaves transmit 500 UDP packets to a master
located at 10 meters distance with direct line of sight. We
run only one slave at a time and repeat each experiment ten
times. We analyze the performance of S f ixed and Sadapt in ab-
sence of RF noise, in the presence of Bluetooth interference,
and with Wi-Fi interference located close to the slave.
Results. Fig. 13 shows the percentage of delayed packets
and the average power consumption of S f ixed (orange) and
Sadapt (red). We can clearly see that, whilst S f ixed experi-
ences an amount of delayed packets between 6.8 and 24.6%,
almost the entirety of packets transmitted by Sadapt (at least
99.45%) are within the expected delay bounds. Adapting the
connection interval at runtime to mitigate the effects of sur-
rounding radio interference comes, as expected, at the cost
of an increased energy consumption. Our experiments show
that Sadapt incurs an additional power consumption of 7.42%
in absence of interference, and of 9.51 and 17.96% in the
presence of Bluetooth and Wi-Fi interference, respectively.

8.2 Common Office Environments
To finally prove the efficacy of our proposed method, we

re-run the same application described in Sect. 3.1 in the same
office environment populated with employees (same location
of nodes). We configure the BLE slave to adapt its connec-
tion interval at runtime as described in Sect. 7, and make use
of an observation window of length L=64.
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Figure 13: Delayed packets and average power consumption
of a slave with and without connection interval adaptation.

Fig. 14 shows the number of delayed packets and the
adaptation of the connection interval across 48 hours. At
most 1.34% of the UDP packets sent within 15 minutes ex-
ceed the latency bounds. In Fig. 2, the number of delayed
packets was up to 21.74%. The average number of packets
delayed is 0.54% (compared to 6.18% obtained in Fig. 2).
These results show the effectiveness of our approach, which
allows BLE applications to significantly increase the timeli-
ness of their communications in noisy RF environments.
9 Related Work

Several studies have investigated the performance of low-
power wireless technologies under interference [2, 17].
While these works mostly focus on IEEE 802.15.4, only a
few studies investigate the performance of BLE under inter-
ference or the latency of its communications.
BLE performance under interference. Most of the works
studying the performance of BLE in the presence of interfer-
ence carry out analytic investigations. Existing works focus
either on the performance of device discovery [11, 27, 29],
or of BLE connections [9, 13, 19, 25]. Only a few works
actually measure the performance of BLE under interference
experimentally [15, 24, 28]. These studies, however, lack
practicality, as they are performed in a small anechoic cham-
ber [24], or artificially constrain the performance of BLE’s
AFH algorithm by disabling channel blacklisting [15, 28].

In this paper, to the best of our knowledge, we provide the
first comprehensive study investigating the performance of
BLE connections under different interference patterns. We
carry out not only experiments in common office environ-
ments, but also a systematic evaluation in testbeds.
Modeling BLE latency. In this paper we also develop
the first model capturing the timeliness of connection-based
BLE communications in noisy environments that can be
used on any BLE host device. Existing works, indeed,
model the latency of BLE connections using information
that is not available to the application, such as bit error
rate, number of CRC errors, or data transmission probabil-
ity [9, 13, 19]. Differently from these works, we only embed
in our model quantities that a standard host device is able to
measure. Other timeliness models either focus on device dis-
covery [11, 29], or assume perfect channel conditions [7, 25].
10 Conclusions and Future Work

In this work, we experimentally study the latency of
BLE communications in the presence of radio interference,
and show that BLE applications may incur long and unpre-
dictable transmission delays. To mitigate this problem, we
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Figure 14: When adapting its connection interval at runtime using an observation window of 64 fragments, a slave is able to
significantly increase the timeliness of its communications, resulting in at most 1.34% of UDP packets delayed.

devise a model capturing the timeliness of connection-based
BLE communications in noisy RF environments that can be
used on any BLE host device. We do so by expressing the
impact of interference in terms of the number of connec-
tion events necessary to successfully transmit individual data
fragments (nCE ), a quantity that can be measured – among
others – by using the timing information of commands sent
over the HCI interface between host processor and BLE con-
troller. This allows any BLE application to adapt its con-
nection parameters at runtime without additional communi-
cation overhead, and to increase its timeliness also in noisy
environments. Hence, our work paves the way towards the
use of Bluetooth Low Energy for real-time IoT applications.

Future work includes the refinement of nCE estimation, as
well as the improvement of the performance of BLE’s adap-
tive frequency hopping algorithm under interference. Both
of these potential improvements, however, require control
over the inner workings of the BLE controller black box.
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