
111

Improving the Timeliness of Bluetooth Low Energy
in Dynamic RF Environments

MICHAEL SPÖRK, Graz University of Technology
CARLO ALBERTO BOANO, Graz University of Technology
KAY RÖMER, Graz University of Technology

The ability to communicate within given delay bounds in noisy RF environments is crucial for Bluetooth Low
Energy (BLE) applications used in safety-critical application domains, such as health care and smart cities. In
this work, we experimentally study the latency of BLE communications in the presence of radio interference,
and show that applications may incur long and unpredictable transmission delays. To mitigate this problem,
we devise a model capturing the timeliness of connection-based BLE communications in noisy RF channels
by expressing the impact of radio interference in terms of the number of connection events necessary to
complete a successful data transmission (nCE). We show that this quantity can be estimated using the timing
information of commands sent over the host controller interface of common BLE devices, hence without
additional communication overhead or energy expenditure. We further show that a BLE device can make use
of our BLE timeliness model and recent nCE measurements to adapt its BLE communication parameters at
runtime, thereby, improving its performance in the presence of dynamic radio interference. We implement
such an adaptive scheme on the popular nRF52840 platform and perform an extensive experimental study in
multiple indoor environments using three different BLE platforms. Our results show that a BLE application
can, indeed, make use of the proposed model and recent nCE measurements to adapt its connection interval
at runtime to increase the timeliness of its communications, reducing the number of delayed packets in noisy
RF environments, by up to a factor of 40.

CCS Concepts: • Networks → Network performance analysis; • Computer systems organization →
Embedded systems; Real-time systems; Reliability.

Additional Key Words and Phrases: Bluetooth Low Energy, BLE, Dependability, Interference

ACM Reference Format:
Michael Spörk, Carlo Alberto Boano, and Kay Römer . 2019. Improving the Timeliness of Bluetooth Low
Energy in Dynamic RF Environments. ACM Trans. Internet Things 1, 1, Article 111 (January 2019), 30 pages.
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

1 INTRODUCTION
The continuous proliferation of wireless devices leads to an increasing congestion of the RF spec-
trum; especially in the 2.4 GHz ISM band, where several technologies share the same frequencies [37].
One of these technologies is Bluetooth Low Energy (BLE), which is increasingly used to build
Internet of Things (IoT) applications due to its wide adoption in consumer devices such as wearables,
tablets, laptops, and smartphones [5].

Authors’ addresses: Michael Spörk, michael.spoerk@tugraz.at, Graz University of Technology, Graz, Austria; Carlo Alberto
Boano, cboano@tugraz.at, Graz University of Technology, Graz, Austria; Kay Römer, roemer@tugraz.at, Graz University of
Technology, Graz, Austria.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
2577-6207/2019/1-ART111 $15.00
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

111:2 Spörk, et al.

BLE systems typically need to co-exist with a large number of Wi-Fi devices, which transmit at
high data rates, use a significantly higher transmission power, and make use of much wider channel
bandwidths (20 or even 40 MHz). Furthermore, Bluetooth-based devices (using either BLE or classic
Bluetooth) such as headphones, headsets, hearing aids, smart watches, and fitness trackers, are
nowadays becoming ubiquitous, which increases their chances to interfere with each other and
experience co-existence issues [1, 21].
Such issues typically manifest in the form of an increased packet loss and a higher amount of

re-transmissions, which may affect in turn key performance metrics such as energy efficiency,
latency, and throughput [6]. As several BLE-based systems are used in safety-critical application
domains such as health care [4, 12] and smart cities [3, 10], it is important to fully understand the
impact of radio interference on their performance and to make sure that delay-sensitive applications
operate correctly even in noisy RF environments.
Limited number of experimental studies under interference. To date, however, still very
little is known about the actual performance of BLE in the presence of interference, especially
when it comes to connection-based BLE systems. Existing works focus indeed mostly on BLE
discovery [11, 36], or are limited to simulations showing the impact of increasing bit error rates [25,
34]. A few measurement reports carried out using real hardware exist, but are either limited to
small-scale experiments in anechoic chambers [30], or only address the interference generated by
co-located BLE devices [35].

Unfortunately, the works available do not allow to get a comprehensive picture of BLE’s perfor-
mance in typical residential and office environments where several wireless networks are co-located.
Even worse, some works do not reach the same conclusions: while most simulation works argue that
BLE’s performance should decrease under interference [25, 34], some of the existing studies do not
confirm this [30]. Because of this lack of experimental evidence, the general belief in the community
is that BLE is highly reliable under radio interference by design, thanks to its autonomous packet
re-transmission and its adaptive frequency hopping (AFH) mechanism [8, 15, 29].
No upper bound on latency. By using autonomous retransmissions and AFH, BLE connections
re-transmit packets on different frequencies until interference is finally avoided and the packet
successfully sent. Although this is proven to be an effective method to mitigate co-existence
problems [24, 30], it only makes sure that every data packet that is added to the transmission buffer
of a BLE radio will eventually get transmitted (as long as a connection is not dropped).

As we show in Sect. 3, the presence of interference can introduce significant delays that may affect
the performance of a BLE application. To minimize the number of data transmissions exceeding a
given delay bound, connection-based BLE applications can adjust their connection parameters at
runtime [31] to increase timeliness at the cost of additional power consumption.
Unsuitable latency models. The ability to adjust connection parameters at runtime, however,
requires proper models capturing the impact of radio interference. Unfortunately, most of the
existing models rely on ideal channel conditions [13, 31]. A few models for noisy channels exist [7,
9, 25], but they cannot be used by most BLE devices, as they rely on information that is not available
on the BLE host (e.g., bit error rate, employed data channels, and number of CRC errors).
Most BLE controllers are indeed drop-in radio peripherals that hide all communication details

to a BLE application running on the host processor. A BLE application may only issue high-
level commands, such as adding data to the transmission buffer of the BLE controller. The latter
essentially acts as a black box, which autonomously handles (re-)transmission and acknowledgment
of link-layer packets, buffer management, as well as data channel selection.
Receiving feedback at runtime.Once data is added to the transmission buffer of a BLE controller,
the application assumes it is successfully transmitted. The BLE specification [5] does not foresee a

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:3

standardized way for an application to get information about the number of link-layer retransmis-
sions during a packet exchange, nor specify a link quality indicator. In other words, applications do
not receive any feedback from the BLE controller about ongoing link-layer transmissions: neither
about loss, nor about latency. Therefore, to be aware of the timeliness of its communications, a
BLE application needs to pro-actively exchange application messages to explicitly monitor delays
(e.g., by means of round-trip time estimations as shown in [14, 15]): an unnecessary communica-
tion overhead leading to an additional energy expenditure. Besides the missing feedback on data
transmissions, BLE applications are also unable to retrieve any link-quality information of a BLE
connection from the BLE black box in a standard-compliant way.
Different AFH behavior. The link-quality information of a BLE connection is indeed monitored
internally by the BLE controller as part of the AFH mechanism. As mentioned above, the AFH
mechanism of BLE autonomously classifies the available portions of the RF spectrum into BLE
channels of good and bad link quality. Once classified as bad, a channel may be blacklisted (disabled)
at runtime and therefore not be used by a BLE connection until it is whitelisted (re-enabled) again.
Although the primitives to black- and whitelist BLE data channels are standardized by the BLE
specification [5], how to measure a channels’ link quality and when to actually blacklist a channel
is not defined and is left up to the vendor of the BLE platform.

This causes different BLE platforms to have vastly diverse performance, especially in the presence
of external radio interference, as we show in Sect. 3. This, as a consequence, exacerbates the problem
of achieving timely BLE communication even further.
Contributions. In this paper, we first experimentally study the impact of radio interference on
the latency of BLE communications. After showing that the RF noise present in common office
environments can significantly decrease the performance of BLE systems, we systematically analyze
the timeliness of BLE communications under different interference patterns. Our analysis reveals
that, in specific scenarios, state-of-the-art implementations of BLE’s AFH mechanism are unable
to cope with the surrounding interference, leading to long delays that may be unacceptable for
applications used in safety-critical domains.
To improve the timeliness of BLE in noisy RF environments, we revise the model proposed by

Spörk et al. [31], such that it can be used by an application to adapt its connection parameters at
runtime. We do so by expressing the impact of interference in terms of the number of connection
events necessary to complete a successful data transmission (nCE). We show that this quantity can be
estimated using the timing information of commands sent over the Host Controller Interface (HCI),
the standardized interface between host processor and BLE controller. This allows applications
compliant to the BLE specification [5] to estimatenCE without introducing any extra communication
overhead or additional energy cost.

We experimentally show that the use of HCI timing information allows a more fine-grained and
efficient nCE estimation than the exchange of application-level messages to compute the round-trip
time. Furthermore, we illustrate how a generic BLE application can efficiently make use of recent
nCE estimations to adapt its connection interval at runtime, in order to improve the timeliness of
its communications in noisy RF environments.
Experiments on popular BLE platforms, such as the Nordic Semiconductor nRF52840 DK [18],

the Broadcom BCM43439 [23], the Qualcomm CSR8510 A10 [22], and the Panasonic PAN1762 [19],
confirm that BLE applications estimating the nCE and adapting their connection parameters at
runtime following the approach presented in this paper are able to cope with radio interference
and to effectively increase their timeliness in noisy RF environments.

After providing the required background information on connection-based BLE communication
in Sect. 2, this paper makes the following contributions:

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:4 Spörk, et al.

• We experimentally study the latency of BLE communications, using three popular BLE
platforms with different AFH implementations in the presence of radio interference, and
show that BLE applications may incur long and unpredictable transmission delays (Sect. 3).

• We revise the timeliness model in [31] by introducing the nCE metric, and show how to
estimate its value using only information available to a BLE host (Sect. 4).

• We implement our approach using Zephyr on the nRF52 radio (Sect. 5), and experimen-
tally evaluate the accuracy and efficiency of the nCE estimation carried out using timing
information of HCI commands (Sect. 6).

• We show how an application using recent nCE measurements and our revised timeliness
model can adapt its connection interval at runtime (Sect. 7) and increase its timeliness in
different noisy RF environments, independently of the used AFH implementation (Sect. 8).

After describing related work in Sect. 9, we conclude our paper in Sect. 10, along with a discussion
on future work.
This is an extended version of [32], which includes a more detailed investigation of BLE’s

transmission latencies in different environments using multiple BLE platforms and an extensive
evaluation of the dynamic behavior of our proposed adaptation scheme in noisy RF environments.

2 CONNECTION-BASED BLE COMMUNICATION
Compared to the simpler connection-less communication mode making use of 3 advertisement
channels to broadcast short data packets, connection-based BLE provides bidirectional data trans-
fer between a slave and a master. After an initial setup phase using connection-less primitives,
connection-based communication takes place during connection events (N0 ... Ni), as shown in Fig. 1.
The time between the start of two consecutive connection events is defined by the connection

interval (conn_int). During a single connection event, master and slave exchange link-layer packets
that may carry application data (yellow). In case no data needs to be sent, master and slave simply
exchange link-layer keep-alive packets (dark blue), which only carry the mandatory link-layer
header and are used to keep the connection active.

The duration of a connection event depends on the number and the size of exchanged link-layer
packets and is limited by the maximum connection event length (tCE). Every connection event starts
with a transmission from the master, to which the slave responds. Master and slave keep exchanging
link-layer data packets until they have all been successfully sent or until tCE is reached. The last
link-layer packet during a connection event is always sent from the slave to the master, after which
both devices turn off their radio and resume communication at the next connection event.
In the example shown in Fig. 1, during connection event N0, the master starts the connection

event by sending a keep-alive packet to the slave. The slave has data to transmit and therefore
responds with a link-layer data packet. Because the slave sends data instead of only a keep-alive
packet, its transmission time is longer than the master’s. During connection event N1, master and
slave have no data to send and therefore only exchange the mandatory keep-alive packets. In
connection event N2, the master transmits data by sending a data packet. Because the transmission
data of the master exceeds the maximum link-layer data packet length, the master waits for a
link-layer packet from the slave before completing its data transmission. The slave responds with a
link-layer keep-alive packet within the same connection event.
Using connection-based BLE, the link layer automatically handles the acknowledgment (ACK)

of packets and link-layer flow control using a 1-bit ACK field and a 1-bit sequence number in the
header of every link-layer packet (both keep-alive and data packets). In case a link-layer packet
is not successfully received, it is automatically re-transmitted by the BLE link layer without any
notification to the upper BLE stack layers or the application.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:5

Master

Slave

conn_int

Event N0

Channel k0

Event N1

Channel k1

Event N2

Channel k2

tCE

t

t

Advertising

Scanning

Connection setup
Adv. Channels (37, 38, 39)

Link-layer data packetsConnection-less BLE Link-layer keep-alive packets

Fig. 1. BLE connection between slave and master.

Data channel selection. At the beginning of every connection event, one out of 37 possible BLE
data channels is selected by the adaptive frequency hopping (AFH) mechanism. A new channel
is chosen for every connection event and is used by master and slave to transmit and receive all
packets until the end of the ongoing connection event. All 37 possible BLE data channels (0 to
36) are located in the unlicensed 2.4 GHz ISM band. The latter, however, is also used by other
wireless communication technologies, such as Wi-Fi, Classic Bluetooth, and IEEE 802.15.4, that may
interfere with ongoing BLE communications, leading to link-layer packet loss and re-transmissions.
The AFH mechanism may choose only a subset of the 37 data channels, defined by the channel
map (Cmap) set by the BLE master during connection setup.

To mitigate the effect of co-located wireless applications or multi-path fading, implementations
of the AFH mechanism may blacklist any BLE data channel with poor link quality by updating
the Cmap of the BLE connection at runtime. A data channel disabled in the Cmap will not be used
for communication, but may be whitelisted again by updating the connection’s channel map. Both
black- and whitelisting of BLE data channels is performed using standardized BLE commands and
may only be initiated by a BLE master. Although these commands are standardized, how to measure
the link quality of the BLE data channels and when to black- and whitelist individual channels is
not specified by the Bluetooth specification. This means that BLE devices are likely to implement
the AFH mechanism differently, while still being standard-compliant. This may lead to divergent
performance of the BLE connection under external radio interference, depending on which BLE
radio platform, and therefore AFH implementation, is used as a BLE master.

The BLE specification [5] defines a mandatory delay of at least six connection events between a
slave receiving the Cmap , and the latter being used for actual communication. A slave is required
to use the updated channel map, but cannot impose nor suggest changes in Cmap to the master in
a standardized way. This can lead to long transmission delays in case a source of interference is
located near the slave and is not detected by the master, as we show in Sect. 3.
Transmission latency. Several models capturing the transmission latency of application data sent
over a BLE connection exist [9, 13, 25, 31]. However, only the model proposed by Spörk et al. [31]
uses information that is typically available from a BLE radio and can hence be directly used by an
application to adapt its connection parameters at runtime. According to this model [31], the upper
bound on transmission latency of application data sent over a BLE connection on an ideal channel
can be computed as:

tmax = ⌈D/F ⌉ · conn_int + tCE , (1)
where D is the data length in bytes, F is the maximum number of bytes that may be transmitted
during a single connection event, conn_int is the length of the connection interval, and tCE is the
maximum length of a connection event [31].

As we show in Sect. 3, an application cannot rely on this model to compute an upper bound on
its end-to-end latency in noisy environments. In our experiments, interference, indeed, causes
several link-layer re-transmissions leading to transmission delays of up to 1657ms, which is 537%
higher than the maximum expected transmission latency (tmax = 260ms) predicted by this model.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:6 Spörk, et al.

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time [hh:mm]

50

60

70

80

90

100

%
 p

ac
ke

ts

OK Delayed

Fig. 2. Percentage of data packets exceeding tmax across 48 hours in a common office environment when
using a Raspberry Pi 3 with its on-board Broadcom BCM43439 radio as BLE master. During daytime, up to
21.8% of the transmitted packets are delayed due to surrounding interference.

3 BLE LATENCY IN NOISY RF ENVIRONMENTS
To demonstrate the impact of radio interference on a BLE connection, we experimentally show that
RF noise in a common office environment leads to high transmission latencies over BLE connections
(Sect. 3.1). We use a testbed with 9 BLE nodes (Sect. 3.2) to measure the latency of individual data
packets in detail. Furthermore, we perform our tests with three popular BLE platforms acting as
BLE master in order to investigate how different implementations of BLE’s AFH mechanisms adapt
the data channel map over time (Sect. 3.3). Based on our results, we highlight the specific scenarios
in which the tested AFH implementations are unable to cope with the surrounding interference,
leading to long delays (Sect. 3.4).

3.1 Latency in a Common Office Environment
We start by evaluating the transmission latency of a BLE application running in a common office
environment for 48 hours. We use a nRF52840 DK [18] node as slave and connect it via IPv6-over-
BLE to a Raspberry Pi 3 (RPi3) master [23] that uses its on-board Broadcom BCM43439 radio for BLE
communication. Master and slave have a distance of approx. 2 meters with direct line of sight. After
the IPv6-over-BLE connection is set up, the slave transmits a 29-bytes long UDP packet (resulting in
80 bytes of link-layer payload) to the master once every second. For each UDP packet, we measure
the transmission latency (tlatency) as the time difference between the slave’s application issuing the
send command to the BLE radio and the master’s application being notified about the successful
reception of the packet from the slave.

The two BLE nodes can send F = 128 bytes during a single connection event and have a maximum
connection event length of 10ms. When using the model shown in Eq. 1 with conn_int = 250ms,
an application would expect a maximum transmission latency tmax = 260ms for each UDP packet.

Fig. 2 shows the percentage of data packets that exceed this upper bound on transmission latency
over the 48 hours. Each bar refers to 15minutes, i.e., 900UDP transmissions. During daytime, when
the office is populated with employees, up to 21.74% of the UDP packets sent within 15 minutes
experience a transmission latency higher than tmax . Several packets even experienced a latency
above 1000ms, i.e., four times higher than tmax . During nighttime, instead, when the office is at its
quietest, only a minimal number of packets exhibit a latency above 260ms.
These results show that the RF noise present in a common office environment can have a

significant impact on the transmission latency of connection-based BLE, despite the use of the AFH
mechanism. To get a deeper understanding of the impact of different sources of radio interference
on the BLE transmission delay, we investigate next the performance of BLE in a systematic way.

3.2 Experimental Setup
We perform our experiments on our testbed facility, which allows us to have fine-grained control
over the RF noise experienced by each BLE node in our testbed.
Testbed facility. The testbed consists of nine RPi3 equally distributed over a University lab (6x10
meters) that is kept vacant during our experiments. Each RPi3 runs the Raspbian OS and is connected

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:7

via USB to one BLE node (nRF52840 DK device). All RPi3 are connected via Ethernet and use NTP
for time synchronization, providing us with the same notion of time across the testbed. Each RPi3
is also augmented with the open-source D-Cube board [26, 27], which allows us to accurately
measure the power consumption of each nRF52840 DK device over time.
Generating interference. All RPi3 in the testbed are used to re-program the BLE nodes and to
monitor the status of each experiment by logging data in persistent memory. We further use the
RPi3s in the testbed to generate Bluetooth and Wi-Fi interference using their on-board Broadcom
BCM43439 radio chip [23]. To generate Bluetooth interference, we configure each RPi3 to create a
point-to-point Bluetooth connection with another RPi3, and to transmit RFCOMM packets with a
length of 1000 bytes every 11.034ms, resulting in a RFCOMMdata rate of 725 kbits/s. To createWi-Fi
interference, we let each RPi3 generate IEEE 802.11 b packets of configurable length and configurable
rate on a given Wi-Fi channel and with a transmission power of 30mW, using JamLab-NG, an
open-source tool to generate repeatable and reproducible Wi-Fi interference et al. [28].
BLE master.We use one of the RPi3 as BLE master for all our tests. In addition to the nRF52840
DK node, this RPi3 is connected to three additional BLE devices: (i) the RPi3’s on-board Broadcom
BCM43439 radio [23], (ii) a Qualcomm CSR8510 A10 USB-BLE dongle [22], and (iii) a Panasonic
PAN1762 USB-BLE dongle [19]. For every experiment, the RPi3 selects one of these three connected
radios to connect to nearby IPv6-over-BLE slaves. When an IPv6-over-BLE connection is established,
the master starts a UDP server that waits for incoming UDP packets. Every time a UDP packet is
received, its payload and reception time are logged locally via the serial interface of the node.
BLE slave.We use each of the nRF52840 devices (except the one connected to the RPi3 acting as a
master) as BLE slave. Each slave waits for the BLE master to initiate an IPv6-over-BLE connection
and sends a UDP message to the master every second, once the connection is established. Each
UDP message has a length of 29 bytes (resulting in a BLE link-layer packet length of 80 bytes)
and carries an 8-digit sequence number in its payload. Whenever the slave sends a UDP message,
transmission time and sequence number are logged locally via the serial interface of the node. The
slave application sits on top of the Zephyr OS [33] and uses its existing IPv6-over-BLE stack. Note
that only one slave is used in an experiment, in order to avoid self-interference.

3.3 Experimental Results
Using our testbed setup, we experimentally investigate the loss induced by radio interference on
link-layer data packets and their resulting transmission latency (tlatency) of individual data packets
sent from slave to master. For every experiment, the RPi3 uses one of its three BLE radios. Both
master and slave make use of conn_int = 250ms , F = 128bytes , and tCE = 10ms . As discussed in
Sect. 3.1, we expect the upper bound on each transmission tmax to be 260ms (see Eq. 1).

3.3.1 No external interference. We first analyze the latency of data transmissions in the presence
of no external interference in our testbed. We measure the packet latency (tlatency) of every data
transmission as the time difference between the slave issuing the send command and the master
being notified about the successful packet reception, as described in Sect. 3.1.

Each plot in Fig. 3 shows tlatency (top) and the data channel map (bottom) of a BLE connection
between a master and a slave communicating at a distance of 10 meters with direct line of sight.
Data packets exceeding tmax = 260ms (shown as horizontal dashed line), are marked as delayed.
After initializing the IPv6-over-BLE connection, we wait 30 seconds for the system to be stable
before we start to analyze the data transmission latencies (time 0 in Fig. 3).
Our results show that every data packet is successfully transmitted, but some transmissions

occasionally exceed the threshold tmax = 260ms , even though no external radio interference is
being generated artificially. These delays are likely caused by packet loss resulting from multipath

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:8 Spörk, et al.

0.0

0.5

1.0

t la
te

nc
y [

s]

tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(a) Broadcom BCM43439 radio.

0.0

0.5

1.0

t la
te

nc
y [

s]

tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(b) Qualcomm CSR8510 A10 radio.

0.0

0.5

1.0

t la
te

nc
y [

s]

tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(c) Panasonic PAN1762 radio.
Fig. 3. Packet latency (tlatency) and data channel map of a BLE connection under no external interference for
three different BLE radios used at the Raspberry Pi 3 acting as master.

Table 1. Performance of the three BLE radios acting as a BLE master under no external interference. The table
shows the percentage of delayed packets (DELAYED), the average (AVG), median (MED), 90 and 99 percentile
(90% and 99%), and maximum experienced transmission delay (MAX) over 10 test runs per radio.
Radio DELAYED [%] AVG [ms] MED [ms] 90% [ms] 99% [ms] MAX [ms]
Broadcom 6.33 158.8 165.0 248.0 467.0 629.0
CSR 2.82 150.7 153.0 233.0 400.0 501.0
Panasonic 10.14 173.2 179.0 261.0 419.0 519.0

fading in our testbed or beaconing activities of nearby Wi-Fi access points. As Fig. 3 shows, these
delays occur for each of the three BLE platforms used. Table 1 summarizes the results obtained
after performing this experiment 10 times for each employed BLE platform. We can observe that,
depending on the used BLE master radio, a fraction of the data transmissions (≤ 10%) exceed tmax .

Furthermore, we see that non-delayed data transmissions (marked as OK in Fig. 3) experience a
tlatency between tCE and tmax . This is caused by the unsynchronized schedules of BLE application
and BLE connection. As discussed in Sect. 2, an application can issue a data transmission at any time,
but the data will actually be sent during the next upcoming connection event. In our experiments,
the application issues data transmissions slightly faster than the schedule of the BLE connection.
This causes the time between the application issuing and the BLE connection actually transmitting
a packet (shown as tF in Fig. 9 and 10) to rise, which results in a linearly increasing tlatency . When
the time between issuing and transmitting a packet gets higher than tmax , the packet is sent one
connection event earlier, which results in a tlatency of approximately tCE in such a case.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:9

0.0

0.5

1.0

t la
te

nc
y [

s] Bluetooth RFCOMM tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(a) Broadcom BCM43439 radio.

0.0

0.5

1.0

t la
te

nc
y [

s] Bluetooth RFCOMM tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(b) Qualcomm CSR8510 A10 radio.

0.0

0.5

1.0

t la
te

nc
y [

s] Bluetooth RFCOMM tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(c) Panasonic PAN1762 radio.
Fig. 4. Packet latency (tlatency) and data channel map of a BLE connection under Bluetooth RFCOMM
interference for three different BLE radios acting as a BLE master.

Table 2. Performance of the three BLE radios acting as a BLE master under Bluetooth RFCOMM interference.
The table shows the percentage of delayed packets (DELAYED), the average (AVG), median (MED), 90 and 99
percentile (90% and 99%), and maximum experienced transmission delay (MAX) over 10 test runs per radio.
Radio DELAYED [%] AVG [ms] MED [ms] 90% [ms] 99% [ms] MAX [ms]
Broadcom 10.62 166.9 163.0 265.0 502.0 732.0
CSR 12.17 160.8 147.0 266.0 510.0 825.0
Panasonic 14.88 184.3 179.0 271.0 519.0 755.0

3.3.2 Bluetooth interference. Next, we analyze the latency of data transmissions in the presence of
classic Bluetooth interference. Similar to BLE, Bluetooth also uses the 2.4 GHz ISM band and makes
use of frequency hopping to mitigate external interference by hopping to a new channel every
625 µs [5]. As described in Sect. 3.2, we use the RPi3 in the testbed to create three simultaneous
Bluetooth connections, each transmitting with an RFCOMM bandwidth of 725 kbits/s. Similar to the
experiments in Sect. 3.3.1, we measure the packet latency (tlatency) as the time difference between
the slave issuing the send command and the master being notified about packet reception.

Each plot in Fig. 4 shows tlatency (top) and the data channel map (bottom) of a BLE connection
between a master and a slave communicating at a distance of 10 meters with direct line of sight.
Again, packets exceeding tmax = 260ms (shown as horizontal dashed line), are marked as delayed.
After initializing the IPv6-over-BLE connection, we wait 30 seconds for the system to be stable,
before we simultaneously start interfering on all three Bluetooth connections (time 10 in Fig. 4).

Our results show that every UDP packet is, eventually, successfully received. However, Bluetooth
interference causes between 10% and 15% of all transmissions to be delayed, as shown in Table 2.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:10 Spörk, et al.

Furthermore, Fig. 4(a) shows that the AFH implementation of the Broadcom BCM43439 is trying
to update the data channel map to mitigate the effect of the Bluetooth interference on the BLE
connection. However, the master is not able to accurately predict the frequencies used by Bluetooth
and its blacklisting strategy does not help in mitigating the impact of Bluetooth interference on the
BLE connection. The Qualcomm CSR8510 A10 radio only occasionally updates the data channel
map, because of the nearby Bluetooth interference, leading to 1.55% more packets being delayed
compared to the Broadcom radio. Fig. 4(b) shows a test run where the Qualcomm radio does not
update its data channel map under Bluetooth interference, the observed behavior of this platform
in our tests. The Panasonic PAN1762, shown in Fig. 4(c), does not update the channel map, which
leads to almost 15% of all data transmissions being delayed, as summarized in Table 2.

Note that the same effect shown in Fig. 4 is experienced by every BLE slave in our testbed, even
those that are only 3 meters away from the master and have direct line of sight.

3.3.3 Wi-Fi interference. We investigate next the impact of Wi-Fi interference on a BLE connection.
Following the setup described in Sect. 3.2, we generate Wi-Fi interference near master and slave.
Wi-Fi interference near the master. The plots in Fig. 5 show the measured tlatency (top) and
used data channel map (bottom) of a BLE connection in the presence of Wi-Fi interference located
near the master. Also in this case, master and slave are at a distance of 10 meters with direct line
of sight. After an initial delay of 30 seconds to let the IPv6-over-BLE connection being set up, we
let a RPi3 near the BLE master generate Wi-Fi traffic on channel 11 in bursts of 30 seconds (time
10 to 41 s). We pause the Wi-Fi interference for 30 seconds before starting to interfere again for
approx. 30 seconds (time from 70 to 100 s). This inference pattern mimics a rate-limited Wi-Fi
device downloading two large files from the Internet, with a pause between the two files.
Similar to the previous experiments, our results show that every UDP packet is eventually

received. We further see that the AFH implementations of the Broadcom and Qualcomm radios,
shown in Fig. 5(a) and Fig. 5(b), respectively, are successfully able to detect the Wi-Fi interference
and mitigate its effects on the BLE connection. Despite the heavy traffic generated onWi-Fi channel
11, indeed, both BLE radios blacklist the affected BLE data channels (18 to 31) as soon as they detect
their poor link quality. As Table 3 shows, this results in only 13% and 8% of all transmissions being
delayed for the Broadcom BCM43439 and Qualcomm CSR8510 A10, respectively.

The AFH implementation of the Panasonic PAN1762, however, does not seem to update the data
channel map according to the experienced Wi-Fi interference and is therefore not able to mitigate
its effect on the BLE connection. This leads to 27% of transmissions being delayed and a maximum
delay of 1657ms, which is approximately 6.4 times tmax .
Wi-Fi interference near the slave. Using the above setup, we now let the RPi3 near the slave
generate the same Wi-Fi pattern. The plots in Fig. 6 show the measured tlatency (top) and used data
channel map (bottom) of a BLE connection in the presence of Wi-Fi interference near the slave.
Once again, every UDP packet is, eventually, successfully received. However, compared to the

experiments shown in Fig. 5, this time all three AFH implementations are mostly unable to mitigate
the effects of Wi-Fi interference on the BLE connection. DuringWi-Fi bursts, several UDP messages
are significantly delayed, some even with tlatency ≥ 6 · tmax , independent from the used BLE radio.
As Fig. 6(a) shows, the Broadcom BCM43439 radio does not effectively detect the Wi-Fi inter-

ference and therefore only blacklists a subset of the BLE data channels affected by Wi-Fi. The
QualcommCSR8510 A10 is able to successfully blacklist more of the BLE data channels experiencing
Wi-Fi interference1 after a longer delay of approximately 90 seconds between the beginning of
1 Our measurements suggests that the Broadcom BCM43439 and the Qualcomm CSR8510 A10 use the signal-to-noise value
of each BLE data channel to estimate its link quality. Further, our data indicates that the Qualcomm radio is using a more
sensitive signal-to-noise threshold and therefore blacklists BLE data channels more aggressively, as shown in Fig. 6.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:11

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0.0
0.5
1.0
1.5

t la
te

nc
y [

s]

Wi-Fi Channel 11 Wi-Fi Channel 11 tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(a) Broadcom BCM43439 radio.

0.0
0.5
1.0
1.5

t la
te

nc
y [

s] Wi-Fi Channel 11 Wi-Fi Channel 11 tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(b) Qualcomm CSR8510 A10 radio.

0.0
0.5
1.0
1.5

t la
te

nc
y [

s] Wi-Fi Channel 11 Wi-Fi Channel 11 tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(c) Panasonic PAN1762 radio.
Fig. 5. Packet latency (tlatency) and data channel map of a BLE connection under Wi-Fi interference near the
master for three different BLE radios acting as a BLE master.

Table 3. Performance of the three BLE radios acting as a BLE master underWi-Fi interference near the master.
The table shows the percentage of delayed packets (DELAYED), the average (AVG), median (MED), 90 and 99
percentile (90% and 99%), and maximum experienced transmission delay (MAX) over 10 test runs per radio.
Device DELAYED [%] AVG [ms] MED [ms] 90% [ms] 99% [ms] MAX [ms]
Broadcom 12.42 175.9 171.0 361.0 629.0 881.0
CSR 8.09 155.1 144.0 253.0 483.0 949.0
Panasonic 27.22 247.2 205.0 502.0 1011.0 1657.0

Wi-Fi interference and the data channel map being updated, as shown at time 91 in Fig. 6(b). This
delayed data channel map adaptation, however, does not significantly improve the performance of
the Qualcomm radio in this scenario. Similar to the previous experiments, the Panasonic PAN1762
does not update BLE data channel map underWi-Fi interference near the slave, as shown in Fig. 6(c).
As Table 4 summarizes, between 26% and 30% of all data transmissions are delayed in this

experiment with maximum transmission delays between 1168ms and 1921ms. All three BLE radios
used as master fail to mitigate the effect of Wi-Fi interference near the slave on the BLE connection.
The reason for this outcome lies in the inability of the BLE radios to effectively detect the Wi-Fi
interference and the lack of a subsequent data channel map update. The BLE slave would be able to
detect the poor quality of the data channels affected by Wi-Fi traffic. However, it cannot update the
data channel map in a standardized way according to the BLE specification, as discussed in Sect. 2.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:12 Spörk, et al.

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0.0
0.5
1.0
1.5

t la
te

nc
y [

s]

 Wi-Fi Channel 11 Wi-Fi Channel 11 tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(a) Broadcom BCM43439 radio.

0.0
0.5
1.0
1.5

t la
te

nc
y [

s] Wi-Fi Channel 11 Wi-Fi Channel 11 tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(b) Qualcomm CSR8510 A10 radio.

0.0
0.5
1.0
1.5

t la
te

nc
y [

s] Wi-Fi Channel 11 Wi-Fi Channel 11 tmax OK Delayed

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time [s]

0
5

10
15
20
25
30
35

D
at

a
ch

an
ne

l i
nd

ex

Enabled Disabled

(c) Panasonic PAN1762 radio.
Fig. 6. Packet latency (tlatency) and data channel map of a BLE connection under Wi-Fi interference near the
slave for three different BLE radios acting as a BLE master.

Table 4. Performance of the three BLE radios acting as a BLE master under Wi-Fi interference near the slave.
The table shows the percentage of delayed packets (DELAYED), the average (AVG), median (MED), 90 and 99
percentile (90% and 99%), and maximum experienced transmission delay (MAX) over 10 test runs per radio.

Device DELAYED [%] AVG [ms] MED [ms] 90% [ms] 99% [ms] MAX [ms]
Broadcom 28.7 289.5 236.0 923.0 1871.0 1921.0

CSR 26.7 255.6 198.0 578.0 1114.0 1168.0
Panasonic 30.2 307.4 208.0 661.0 1496.0 1624.0

3.4 Lessons Learned
Our experiments show that, regardless of the platform used, BLE connections are eventually able
to successfully transmit all data packets, even under heavy Wi-Fi or Bluetooth interference, hence
confirming BLE’s high reliability highlighted by [30]. Although no data packet is lost, however, we
have observed that the transmission latency significantly increases under interference, even up to
a value of almost 2 seconds, i.e., eight times tmax , as shown in Table 4.
Inefficiency of AFH implementations. In particular, our experiments highlight that, in two
situations, the implementations of the AFH algorithm used by the three tested BLE radio platforms
are unable to cope with surrounding interference, leading to long delays. First, the AFH mechanism
loses its efficacy in the presence of interference generated by other radio technologies making use of
frequency hopping, such as Classic Bluetooth. Second, in the presence of Wi-Fi interference located
close to the slave, the master is mostly unable to efficiently detect the RF noise and mitigate its

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:13

effects by updating the list of blacklisted channels. We expect this to be the case also for surrounding
networks making use of channel hopping (e.g., networks based on TSCH).

In all these situations, the number of re-transmissions performed by a BLE connection drastically
increases, leading to high latencies thatmay be unacceptable for safety-critical BLE applications such
as health care monitoring [4, 12]. In order to get any information about transmission latencies, a BLE
application needs to explicitly monitor the connection, e.g., using application acknowledgments.
Diversity of BLE radios. Furthermore, the three used BLE radios, each having its specific – yet
standard-compliant – implementation of the AFH mechanism, behave differently under the tested
interference scenarios. On the one hand, the Broadcom BCM43439 and Qualcomm CSR8510 A10
platforms are able to effectively and rapidly mitigate the effects of Wi-Fi interference near the
master on the BLE connection, as shown in Sect. 3.3. Indeed, in this scenario, the Broadcom and
Qualcomm radios are both able to sustain a rate of delayed packets below 12.5%. On the other hand,
the Panasonic PAN1762 radio never updates the BLE data channel map in all of our experimental
settings shown above. This leads to a significantly higher percentage of delayed packets, between
10% and 31% in our four interference scenarios, when using the Panasonic PAN1762 compared to the
other two BLE radio platforms. Such high rates of delayed packets, however, may be unacceptable
for real-time applications with stringent bounds on data transmission latencies [3, 4, 10, 12].
This diverse behavior of various BLE radios makes it almost impossible to statically select

suitable BLE communication parameters depending on the application’s latency requirements.
During development of a BLE slave application, for example, a developer needs to first predict the
noise in the RF environment of the future application to choose the right connection parameters,
which is often not possible. Furthermore, the AFH behavior of the BLE master, to which the slave
will connect to, needs to be anticipated in order to choose connection settings that are able to
sustain the maximum latency. Failing to select suitable connection parameters will likely result in
several transmissions with increased latencies and calls for runtime adaptation.
Need for runtime adaptation. In order to avoid such long latencies, delay-sensitive BLE appli-
cations need to adjust the connection parameters of their ongoing connections, e.g., by lowering
the connection interval according to changes in the link-quality. However, this task is complicated
by the fact that the BLE specification [5] does not provide a standardized way for an application
to directly get feedback about ongoing link-layer (re-)transmissions or about the quality of a BLE
connection. As a consequence, to be aware about the timeliness of its communications, a BLE
application needs to pro-actively let the communicating nodes exchange application-level messages
to explicitly monitor delays, e.g., by means of round-trip time estimations. Pro-actively exchanging
application messages, however, is an unnecessary communication overhead and an additional
energy expenditure that is undesirable for resource-constrained BLE nodes. This, however, only
hints an application whether there is a need to adjust its connection parameters (e.g., select a lower
connection interval to decrease the latency), but not how these parameters should be modified.
Without a model supporting this decision, an application can only try to significantly lower the
connection interval (at the cost of a higher energy expenditure), or slightly lower the connection
interval (preserving its energy budget, but at the risk of suffering poor performance).

In the next section, we show that any application compliant to the BLE specification [5] can esti-
mate the impact of interference on an ongoing connection by estimating the number of connection
events necessary to complete a successful data transmission. We show how this quantity can be
measured without any extra communication overhead or energy cost using the timing information
of HCI commands. To adapt the connection interval on the BLE host, however, models like [9] and
[25], are not usable, because they require information that is only available on the BLE controller. A
model needs to only use information available on BLE hosts, to be usable by most BLE applications.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:14 Spörk, et al.

4 MEASURING AND MODELING BLE LATENCY
In this section, we first revise the model shown in Eq. 1 in order to capture the nCE , i.e., the
number of connection events necessary to complete a successful data transmission (Sect. 4.1). After
discussing the unavailability of link-layer information on standard-compliant BLE host devices
(Sect. 4.2), we show how a BLE application can estimate nCE autonomously in two ways. First, we
show how to relate nCE to the round-trip time measured by introducing application-layer ACKs
(Sect. 4.3). As this method is inaccurate and increases the communication overhead as well as the
energy expenditure of BLE devices, we propose a second way to estimate nCE that makes use of
the timing information of commands sent over the standardized Host Controller Interface between
host processor and BLE controller (Sect. 4.4).

4.1 Revising the BLE Timeliness Model
We start by revising the timeliness model from [31] shown in Eq. 1. The latter describes how an
application data packet of length D (bytes) is split into data fragments with a maximum size of F
(bytes), where each fragment is transmitted during a separate connection event. As discussed in
[31], the model relies on ideal channel conditions and neglects the effects of link-layer packet loss
on the transmission delay of the individual fragments.

To model the effects of link-layer packet loss and retransmissions, we introduce the nCE metric,
which expresses the number of connection events necessary to successfully transmit individual data
fragments, into the model as:

tmax =

(
⌈D/F ⌉∑
f =1

nCEf · conn_int
)
+ tCE , (2)

where ⌈D/F ⌉ captures the fragmentation of data with length D into one or multiple data fragments
of length F , and nCEf is the nCE of a single data fragment f .

By knowing the nCE of each fragment, Eq. 2 now captures the impact of RF noise on the quality
of a BLE connection, and is hence able to provide an upper bound on transmission delay. This,
however, requires a precise nCE measurement.

4.2 Challenges in Measuring nCE

The main challenge in measuring nCE on a standard-compliant host device is the nature of the
BLE communication stack. The latter is split into two separate parts, a BLE controller and a BLE
host [5], that exchange commands via a standardized Host Controller Interface (HCI) (see Fig. 7).
To simplify the development of BLE applications, the controller implements the physical and link
layer – practically acting as a black box to the host running the application.
The controller, indeed, provides all services needed for connection-based BLE communication,

such as autonomous link-layer retransmissions and acknowledgments, timing of connection events,
and data channel selection (including blacklisting) using the AFH mechanism. Controllers are often
separate chips that are closed-source and cannot be accessed or modified by developers. The only
way for a host to interact with a controller is to provide high-level parameters and listen for HCI
events. No info about the BLE connection, like the number of retransmissions, is passed to the host.

The BLE host implements the upper communication layers of the BLE stack, including the L2CAP
layer, the ATT/GATT protocols, and support for IPv6 communication. The BLE HCI driver provides
all upper host layers with the functionality to interact with the BLE controller, by exchanging HCI
commands and events. In contrast to the closed BLE controller, the open-source host provides
access to all the upper BLE stack layers, allowing developers to extend the controller to add new
functionality that may be needed.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:15

BLE Host

BLE
Controller BLE PHY Layer

BLE Link Layer

BLE L2CAP

ATT 6LoWPAN

GATT IPv6

GAP TCP/UDP

Application

HCI
BLE HCI driver

Fig. 7. Standard BLE and IPv6-over-BLE stack.

Due to the nature of the BLE stack, several challenges arise when measuring nCE on a host:
Packet transmission. The controller autonomously handles the scheduling of transmissions and
the ACK of packets in its transmission buffer. The host can use HCI commands to add a new data
packet to the transmission buffer of the controller, but has no implicit control over its timing and
no information about when it has actually been sent. The host hence assumes that each packet will
be sent, eventually, as long as the underlying BLE connection is not dropped.
Buffer management. The controller implements its own management of both reception and
transmission buffer. The BLE host (and hence the application developer) has no direct control over
the controller’s buffers and can only request the available number of reception and transmission
buffers in the controller and their individual buffer length.
Channel selection.At connection setup, the link layer of the BLEmaster provides the data channel
map to the slave. During an active connection, the controller of both slave and master autonomously
handles BLE data channel selection, including the blacklisting of data channels with poor link
quality. The BLE host, however, has no control or information over the data channel used in the
current or the upcoming connection events.
Link quality information. The BLE specification [5] does not provide any standardized primi-
tive allowing a host to retrieve link quality information about an ongoing BLE connection. Any
information about the received signal strength (RSS), the signal-to-noise ratio (SNR), or the number
of retransmissions on a BLE data channel is limited to the link layer of the BLE controller. The BLE
host is hence unable to retrieve any of these low-level measurements in a standardized way.

Due to these challenges, directly measuring the nCE of an ongoing connection from the BLE host
is not possible. A host may, however, estimate the nCE using application-layer acknowledgments or
HCI information, as we show next.

4.3 Estimating nCE using Round-Trip Time
An application can estimate the number of connection events necessary to successfully transmit
individual data fragments by using application-layer ACKs and by measuring the round-trip time
(tRTT): we refer to this form ofnCE estimation as RTT-based nCE . When carrying out an RTT-based
nCE estimation, every data transmission initiated by an application (master or slave) is confirmed
by an ACK from the other party’s application, as shown in Fig. 8.
An application measures tRTT as the time between the instant in which it adds a data packet P

to the transmission buffer of the controller, and the time in which it receives the application-layer
ACK A in its reception buffer. The measured tRTT can be expressed as the sum of tP and tA:

tRTT = tP + tA,

where tP is the time it takes between P being added to the controller’s transmission buffer and
being received in the other party’s reception buffer. tA, instead, captures the time between P being
received into the receiving buffer, and the subsequent application-layer ACK being received by the

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:16 Spörk, et al.

t

t

Slave App.

Master LL

t

Slave LL

Master App.

Event N0 Event N3

P

P

Event N1

A

A

Event N2

conn_int

tCE

t

tP

tRTT

tA
App. ack
App. data

LL data
LL keep-alive

(a) No link-layer errors (nCEf = 1).

t

t

Slave App.

Master LL

t

Slave LL

Master App.

Event N0

P

P

Event N1

A

A

Event N2

conn_int

tCE

t

tP

tRTT

Event N3

tA
App. ack
App. data

LL data
LL keep-alive

(b) Error during the link-layer data transmission (nCEf = 2).

Fig. 8. RTT-based nCE estimation for a slave transmitting a data packet (P) and receiving an ACK (A).

application that originally sent P . Fig. 8 shows an example in which a slave sends a data packet
consisting of a single fragment, and a master replies with an application-level ACK.
Both data exchanges (actual packet and application-layer ACK) can be modeled as individual

data transmissions, each with an upper latency bound tmax that is calculated using Eq. 2. For our
model, we assume that data packet and ACK have the same length D. Furthermore, because an
application has no insight about the performance of each individual fragment, it can only derive a
nCEf that is the same for all fragments involved in the data exchange (data packet and ACK). For
our model, we assume that data packet and ACK have the same length D and can hence calculate
tRTT as:

tRTT ≤ 2 · tmax or tRTT ≤ 2 · ⌈D/F ⌉ · nCEf · conn_int + 2 · tCE .
By measuring tRTT , an application can hence estimate the average nCEf for all fragments in the

data exchange as:

nCEf =

⌈
tRTT − 2 · tCE

2 · ⌈D/F ⌉ · conn_int

⌉
. (3)

Limitations. A basic requirement to be able to carry out RTT-based nCE estimation is that the
developer has full control over the application running on both master and slave (in order to
generate the ACK and to measure the round-trip time). This may not necessarily be the case, for
example, when a slave acting as IPv6-over-BLE node transmits IPv6 messages to an IPv6-over-BLE
router (master). Although a developer could force a round-trip time measurement using L2CAP
ping messages as in [14, 15], using RTT-based nCE estimation might not be suitable for energy-
constrained slaves that need to limit the overall communication overhead. The same observation
applies when introducing application-layer ACKs, as they increase communication overhead and
hence cause an additional power consumption, as we show in Sect. 6.2.
Another limitation of RTT-based nCE estimation is that it assumes the same nCEf for all

fragments involved in the data exchange. On the one hand, this assumes the link to be symmetric,
which may lead to an underestimation of nCEf in case the data packet is retransmitted for several
connection events, but the ACK is received immediately. On the other hand, by estimating an
average nCEf for all fragments, RTT-based nCE estimation cannot capture the case in which
interference leads to a high nCEf for specific fragments. For example, data consisting of three
segments is sent and fragments 1,2 experience an nCE of 1 and fragment 3 and nCE of 4. This
approach estimates an nCE of 2 and therefore overestimates the quality of the BLE connection.

4.4 Estimating nCE using HCI Timing Info
In order to tackle the limitations of RTT-based nCE estimations, we present another approach
that estimates the number of connection events necessary to successfully transmit a data fragment
by using HCI timing information. We refer to this form of nCE estimation as HCI-based nCE

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:17

t

t

conn_int tCE

Event N0 Event N3Event N2Event N1

tF

tTX

tLL

tN

Slave LL

Master LL

t
P

t
PMaster App.

Slave App.

App. data

LL data

LL keep-alive

HCI commands

TADD

TRX

TFREE

(a) No link-layer errors (nCEf = 1).

t

t

conn_int

Slave LL

Master LL

TADD

TRX

tCE

TFREE

Event N0 Event N3Event N2Event N1

tF

tTX

tLL

tN

t
P

t
PMaster App.

Slave App.

App. data

LL data

LL keep-alive

HCI commands

(b) Error during the link-layer data transmission (nCEf = 2).

Fig. 9. HCI-based nCE estimation for a BLE slave transmitting a packet (P) consisting of one data fragment.

estimation. As HCI commands and events are standardized, any BLE-compliant host can make use
of this approach. Unlike RTT-based nCE estimation, which calculates a single nCE value over the
whole data transmission of D bytes, HCI-based nCE estimates the nCE of every individual data
fragment sent during the data exchange.

4.4.1 Estimating nCE on a BLE slave. Fig. 9 shows the inner working of HCI-based nCE estimation
for a BLE slave transmitting a packet P consisting of a single data fragment to the master. Compared
to Fig. 8, one can notice that the master is no longer sending application-layer ACKs after receiving a
packet. Fig. 9 also highlights a number of time-stamps (TADD ,TFREE , andTRX) that can be retrieved
from the communication exchanges on the HCI.
Whenever an application needs to transmit data over the BLE connection, it uses the HCI

ACL data packet command to add data to the transmission buffer of the controller. We de-
fine this instant TADD and measure it in the HCI driver of the host. We also define TFREE as
the instant in which the buffer of the controller changes state and measure it by listening for
HCI_Number_Of_Completed_Packets events. The latter are issued from the controller when a
transmission buffer is freed, due to successful data transmission.

Both in the absence (Fig. 9(a)) and in the presence (Fig. 9(b)) of link-layer errors, the only available
timing information that can be derived by the slave via the HCI is the time tTX elapsed between
the data packet being added to the controller’s transmission buffer (TADD) and the buffer being
actually freed (TFREE):

tTX = TFREE −TADD . (4)
According to Fig. 9, tTX can be expressed as the sum of two components tF and tLL :

tTX = tF + tLL, (5)

where tF is the latency of a single data fragment (which may carry up to F bytes) into the master’s
reception buffer, whereas tLL captures the time between the reception of the data fragment into the
master’s reception buffer and the slave receiving the link-layer ACK and freeing the buffer (TFREE).

The latency of a single data fragment tF can be derived from Eq. 2 by setting D = F , as:

tF ≤ nCEf · conn_int + tCE . (6)

Compared to the data fragment that may have a length of up to 255 bytes according to the
BLE specification [5], the link-layer acknowledgment only has a length of 16-bits. We therefore
assume that the link-layer acknowledgment is successfully transmitted within the first transmission
attempt and neglect its duration, resulting in tLL = conn_int . In cases where the data is successfully
transmitted but the link-layer acknowledgment is interfered, HCI-nCE overestimates the nCE value
of the packet transmission. With this assumption, we can calculate tTX (using Eq. 5) as:

tTX ≤ (1 + nCEf) · conn_int + tCE . (7)

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:18 Spörk, et al.

t

t

conn_int tCE

Event N0 Event N3Event N2Event N1

tF

tTX

tLL

tN

Slave LL

Master LL

t

P
t

P

Master App.

Slave App.

TADD

TRX

TFREE

App. data

LL data

LL keep-alive

HCI commands

Fig. 10. HCI-based nCE estimation for a BLE master transmitting a single data fragment (nCEf = 1).

A BLE application using the HCI communication to measure tTX (using Eq. 7) can hence estimate
the current nCEf as:

nCEf =

⌈
tTX − tCE
conn_int

⌉
− 1. (8)

4.4.2 Estimating nCE on a BLE master. HCI-based nCE estimation can be used on a master
device using the same approach and HCI timing information described in Sect. 4.4.1 (i.e., tTX =
TFREE −TADD). The main difference compared to HCI-based nCE estimation on a slave is that the
link-layer ACK for the data fragment sent by the master comes within the same connection event,
as shown in Fig. 10. Therefore, tLL is already captured by the maximum connection event length
tCE value in Eq. 6. This allows us to calculate tTX as:

tTX ≤ nCEf · conn_int + tCE . (9)
An application running on the BLE master can hence estimate the current nCEf value using the
measured tTX as:

nCEf =

⌈
tTX − tCE
conn_int

⌉
. (10)

Compared to Eq. 8, Eq. 10 does not need to account for the delayed link-layer acknowledgment
received by the BLE slave (modeled by decreasing nCEf by 1 in Eq. 8).
We now have described two approaches, RTT-based nCEand HCI-based nCE , that allow BLE

applications to estimate the timeliness of their communication in a standard-compliant way and
do not need any link-layer information limited to the BLE controller. We describe next the imple-
mentation of RTT-based or HCI-based nCE estimation on the nRF52840 DK platform using the
Zephyr operating system (OS).

5 IMPLEMENTING nCE ESTIMATION ON BLEHOSTS
In this section, we present the implementation of a BLE slave using RTT-based or HCI-based nCE
estimation on the Nordic Semiconductor nRF52840 DK platform [18]. The latter embeds an ARM
Cortex-M4F application processor, a nRF52840 chip with 1024 kB of flash and 256 kB of memory, as
well as a radio supporting BLE communication up to version 5. Note that the same implementation
can be used out-of-the-box on all nRF52 variants, including the nRF52832 with 512 kB of flash and
64 kB of RAM or even the nRF52810 with 192 kB of flash and 24 kB of RAM.
Since we use only standardized BLE functionality, our implementation can be ported on every

hardware platform that is compliant to the BLE specifications v4.1 and above. Even devices using
a proprietary communication interface between BLE host and controller such as the TI CC26xx
platform can use our approaches with just minor adaptations.

We use the Zephyr operating system [33] for implementing the BLE slave using our estimation ap-
proaches. The Zephyr OS used for our implementation already includes a BLE communication stack
(including IPv6-over-BLE support) that is fully compliant to the BLE specification. Furthermore,

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:19

the Zephyr BLE stack on the nRF52 platform uses the standardized HCI to exchange information
between the BLE controller and the BLE host.
For our work, we focus on estimating the nCE on BLE slave devices, which are usually much

more constrained in their energy budget and processing power than BLE masters. By showing that
a constrained slave is able to accurately estimate nCE values, we also show that the more powerful
BLE master is able to do so. Furthermore, the latter receive link-layer acknowledgments for data
transmissions within the same connection event, as discussed in Sect. 4.4. This means that a master
is able to estimate nCE more accurately, because the master’s link-layer receives feedback almost
immediately after the data was successfully sent and does not need to wait for the link-layer ACK
till the next connection event, which may be also be interfered leading to an overestimation of nCE .

5.1 RTT-based nCE Estimation
We start by implementing the RTT-based nCE estimation approach in the slave application
described in Sect. 3.2. For every UDP data message (with a UDP length of 29 bytes) sent by the slave,
the master responds with an 8-byte long UDP acknowledgment. We measure the transmission
time of every UDP message right before it is added to the transmission buffer of the controller.
The reception time is measured immediately after the application was notified about the incoming
application-layer acknowledgment from the master. Both timestamps measure the current system
uptime in milliseconds, which we retrieve by calling k_uptime_get().

After every successful data transmission, the BLE application calculates the round-trip time tRTT
of the recent data exchange and estimates the current nCEf value using Eq. 3.

5.2 HCI-based nCE Estimation
We next implement HCI-based nCE estimation reusing the slave application from Sect. 3.2
and adding the nCE measurements to the BLE host in the HCI driver layer (hci_core). Every
time the host sends a HCI ACL Data Packet command to the BLE controller in order to trans-
mit application data, we store the current system uptime as TADD . When the BLE controller
issues an HCI_Number_Of_Completed_Packets event to notify the host about the successful data
transmission, we store TFREE as the current system uptime. TADD and TFREE are retrieved using
k_uptime_get() and measured in milliseconds.
The nCE estimation is performed in the HCI driver layer on the host using Eq. 8 each time the

controller has successfully transmitted a data fragment. To provide BLE applications with the
possibility to retrieve the current nCEf when using HCI-based nCE estimation, we extend the HCI
driver with the function bt_hci_get_nce(), which returns the most recent nCEf estimate. This
function is a custom addition to the BLE stack and can be added to any BLE platform, independently
of the type of communication used between BLE host and controller (HCI or proprietary).

6 EVALUATING THE ACCURACY AND EFFICIENCY OF nce ESTIMATION
We experimentally evaluate the estimation accuracy (Sect. 6.1) and energy efficiency (Sect. 6.2) of
RTT-based or HCI-based nCE estimation. We focus our evaluation on the BLE slave device, since
(i) it is typically more constrained in its energy budget and processing power than the BLE master,
and since (ii) the HCI-based nCE estimation on a slave is by design less accurate than on a master,
due to the delayed link-layer ACK, as discussed in Sect. 4. In the experiments of this section, we
configure the BLE slave running on a nRF52 device to use one estimation approach at a time and
connect it to a Pi 3 master using its on-board Broadcom BCM43439 radio for communication.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:20 Spörk, et al.

1 2 3 4
Baseline nCEf

0

25

50

75

100

%
 o

f p
ac

ke
ts

HCI-based nCE

Exact
Over
Under

1 2 3 4
Baseline nCEf

0

25

50

75

100
RTT-based nCE

Exact
Over
Under

(a) Connection interval = 62.5ms

1 2 3 4
Baseline nCEf

0

25

50

75

100

%
 o

f p
ac

ke
ts

HCI-based nCE

Exact
Over
Under

1 2 3 4
Baseline nCEf

0

25

50

75

100
RTT-based nCE

Exact
Over
Under

(b) Connection interval = 125ms
Fig. 11. Accuracy of HCI-based and RTT-based nCE estimation for two connection intervals.

6.1 Accuracy
Wemake use of the same experimental setup described in Sect. 3.2. We use the Broadcom BCM43439
radio as BLE master, run one estimation approach at a time, and measure the nCEf for each data
fragment by computing the end-to-end latency from slave to master tlatency as follows:

tlatency = TRX −TADD .

We then compute our baseline nCEf for each data fragment based on the measured tlatency as:

nCEf =

⌈
tlatency − tCE

⌈D/F ⌉ · conn_int

⌉
.

Note that, as described in Sect. 3.2, the RPi3 nodes connected to the master and the slave are
NTP-synchronized, giving us the same notion of time across the two nodes.

For both RTT-based and HCI-based nCE estimation, slave andmaster exchange 600UDP packets
consisting of a single fragment using two connection intervals (62.5 and 125ms) in the presence of
Wi-Fi interference near the slave. We repeat our measurements ten times for each setting.

Fig. 11 plots the percentage of UDP packets for which the nCEf has been correctly estimated,
overestimated, or underestimated (marked in green, orange, and red, respectively). We can clearly
see that the number of correctly-estimated nCEf values is higher when using HCI-based nCE
estimation, especially in the presence of highly unreliable BLE connections (Baseline nCEf ≥ 2).
Overall, HCI-based nCE estimation outperforms the RTT-based one by 0.42, 8.06, 60.87, and

47.82% for a nCEf of 1, 2, 3, and 4, respectively, in estimating the exact nCEf value (conn_int=62.5
ms). Furthermore, Fig. 11 also hints that HCI-based estimation is far less likely to underestimate
the nCEf value of a fragment than RTT-based estimation. HCI-based nCE estimation reduces the
number of underestimations by 29, 80, and 83% for a nCEf of 2, 3, and 4, respectively (conn_int=62.5
ms). Similar trends are observed when using a conn_int=125 ms (Fig. 11(b)). The few cases in which
HCI-based nCE estimation underestimates the baseline nCEf value (≤ 0.9% of all cases) are caused
by uncontrollable notification delays introduced by the OS on the master (shown as tN in Fig. 9).

6.2 Power Consumption
We measure the average power consumption of both RTT-based and HCI-based nCE estimation
under different interference patterns, following the same experimental setup described in Sect. 3.2.
We measure the power consumption of a nRF52840 slave using the D-Cube board [27].

Fig. 12 shows the average power consumption for different connection intervals in absence and
in the presence of Wi-Fi interference. We can observe that, regardless of the connection interval
uses, and of the presence of Wi-Fi interference, the RTT-based nCE estimation adds an extra 18%
power consumption on the slave. This higher power consumption is due to the additional exchange
of application-level acknowledgments, which is unnecessary for HCI-based nCE estimation.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:21

62.5 125 250
conn_int [ms]

2.0

2.5

3.0

3.5

4.0

4.5

Av
g.

 P
ow

er
 [m

W
]

+17.6% +19.1% +17.9%

NO interference
RTT HCI

62.5 125 250
conn_int [ms]

2.0

2.5

3.0

3.5

4.0

4.5

+18.4% +18.4% +18.6%

Wi-Fi interference
RTT HCI

Fig. 12. Average power consumption of the nCE estimators for different connection intervals and interference.

When comparing the two nCE estimation approaches, we can clearly see that the HCI-based
nCE estimation is (i) more accurate (see Fig. 11) and (ii) more power efficient (see Fig. 12) than the
RTT-based nCE estimation approach. Other existing BLE link-quality estimation approaches [14,
15] use application-level round-trip-time measurements and work similar to our RTT-based nCE
estimation approach, i.e., experience the same increased power consumption and less accurate nCE
values compared to HCI-based nCE estimation. For this reason, we will use only the HCI-based
nCE estimation approach to increase BLE timeliness for the remainder of this work.

7 INCREASING THE TIMELINESS OF BLE USING nce

To increase the timeliness of BLE applications in noisy RF environments, we can usenCE information
to adapt the BLE connection interval at runtime in order to mitigate the presence of interference
while minimizing energy consumption (Sect. 7.1). Towards this goal, we can use a series of recent
nCEf estimates to predict the nCEf of upcoming data fragment transmissions (Sect. 7.2).

7.1 Adapting the BLE Connection at Runtime
Following Eq. 2, a delay-sensitive BLE application is able to compute the maximum connection
interval allowing its communications to sustain an upper bound on the transmission delay tmax
despite the presence of surrounding interference. From Eq. 2 we can indeed derive:

conn_intmax ≤
tmax − tCE

⌈D/F ⌉ · nCEf ⋆
. (11)

where nCEf ⋆ is the expected number of connection events necessary to successfully transmit
upcoming data fragments.
Depending on the conn_intmax computed using Eq. 11, the slave application can request a new

connection interval from the master2. conn_intmax represents the most energy-efficient connection
interval to be used in order to sustain the upper bound on transmission delay tmax — provided
that nCEf ⋆ correctly captures the expected number of connection events necessary to successfully
transmit upcoming data fragments. We discuss in the next section how an application can make
use of the recent nCEf estimates to predict this value.

7.2 Predicting Future nCEf Values
Using a series of recent nCEf measurements, we can predict the expected number of connection
events necessary to successfully transmit upcoming data fragments (nCEf ⋆). This allows us to find
the most efficient connection interval conn_intmax and adapt the BLE connection so that future data
transmissions do not exceed the maximum transmission delay tmax . To achieve this goal, we use a
filtering approach that calculates the maximum nCEf value out of a given observation window of L
2To this end, the slave can use the standardized L2CAP CONNECTION PARAMETER UPDATE REQUEST. A master may change
the connection interval by issuing a LL CONNECTION UPDATE command. According to the BLE specification, there is a fixed
delay of at least six connection events between the slave receiving the new connection interval, and the latter being used.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:22 Spörk, et al.

fragments. Research on IEEE 802.15.4 communication has shown that such a maximum filtering
approach can be used to select communication parameters that minimize the number of packets
exceeding an upper latency bound [16]. Using such a filtering approach, we can predict nCEf ⋆ as:

nCEf ⋆ =max[nCEf (t), . . . ,nCEf (t − L)], (12)
where nCEf ⋆ is the predicted number of connection events necessary to successfully transmit
upcoming data fragments, whereas nCEf (t) to nCEf (t - L) are the latest nCEf estimates obtained
following the approach explained in Sect. 4.
As we show in Sect. 8.3, our simple and aggressive filtering approach is able to efficiently

and accurately detect changes in the RF environment and triggers a BLE connection parameter
adaptation accordingly. By using such a simple filtering approach, we can run our prediction
mechanism even on platforms with a very constrained energy budget and limited processing
capabilities. Using a more complex filtering approach, such as linear regression, may provide similar
or slightly more accurate nCEf predictions at the cost of additional processing overhead leading to
an increased power consumption, which is undesirable for constrained IoT devices.
Finding an optimal L. We next experimentally investigate a suitable observation window length
L. We consider six different lengths (16, 32, 64, 128, 256, and 512) and compute nCEf ⋆ according
to Eq. 12. We then instruct a BLE slave to adapt its connection interval according to Eq. 11 and
experimentally measure (i) the number of delayed packets (i.e., the number of packets whose latency
exceeds the expected upper bound tmax), and (ii) the energy consumption of the slave over time.
We make use of the same setup described in Sect. 3.2, i.e., a slave and a master (using the Broadcom
BCM43439 BLE platform) communicating using tmax = 260 ms, tCE = 10 ms, and F=128 bytes in
the presence of Bluetooth and Wi-Fi interference near the slave.

In principle, we expect the number of delayed packets to be high when using a short observation
window. When using a short L, indeed, the limited information about the amount of interference
affecting the channel in the recent past translates in an optimistic prediction (higher conn_int). At
the same time, we also expect that, when using a longer L, at least one of the observed nCEf values
captures a burst of interference and hence results in a pessimistic prediction (lower conn_int),
leading to a higher radio activity and, therefore, a higher energy consumption of the system.
Fig. 13 shows the results of our evaluation. As expected, the percentage of delayed packets

decreases for larger observation windows, whilst the average power consumption of the system
increases. To find the optimal L, we calculate the power consumption necessary to transmit a
timely packet γ [µW /%] for the different values of L. Fig. 13 (bottom) shows that selecting L=64
offers a good trade-off between energy-efficiency and timeliness of BLE transmissions under both
Bluetooth (Fig. 13(a)) and Wi-Fi (Fig. 13(b)) interference. With this setting, only 0.6% of all data
transmissions exceed the latency bound, even under Wi-Fi interference.

8 EVALUATING BLE TIMELINESS IN NOISY RF ENVIRONMENTS WHEN USING nce

In this section, we evaluate the adaptive scheme that we proposed in Sect. 7 in terms of the
percentage of data packets exceeding the maximum packet latency. First, we systematically compare
a BLE slave using the proposed adaptation approach to a BLE slave using no connection parameter
adaptation (Sect. 8.1). Second, we evaluate the adaptation approach in two different environments
over 48 hours using three different BLE platforms (Sect. 8.2). Third, we investigate in detail how
the adaptation approach reacts dynamically to changes in the RF environment (Sect. 8.3).

8.1 Systematic Evaluation
We compare the performance of a slave Sf ixed running an application using a fixed connection
interval to that of a slave Sadapt employing the adaptation approach proposed in this paper.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:23

16 32 64 128 256 512
0.0
2.5
5.0
7.5

10.0

De
la

ye
d

pa
ck

et
s [

%
]

16 32 64 128 256 512
2.0
2.5
3.0
3.5
4.0

Av
g.

 P
ow

er
 [m

W
]

16 32 64 128 256 512
Observation window (L)

30

32

34

γ
[μ

W
/%

]

(a) Bluetooth interference

16 32 64 128 256 512
0.0
2.5
5.0
7.5

10.0

De
la

ye
d

pa
ck

et
s [

%
]

16 32 64 128 256 512
2.0
2.5
3.0
3.5
4.0

Av
g.

 P
ow

er
 [m

W
]

16 32 64 128 256 512
Observation window (L)

30

32

34

γ
[μ

W
/%

]
(b) Wi-Fi interference

Fig. 13. Percent of delayed packets (top), average power consumption (middle), and power cost (bottom) for
different observation windows under Bluetooth and Wi-Fi interference.

Idle BT Wi-Fi
0

10

20

30

%
 d

el
ay

ed
 p

ac
ke

ts

6.81
12.82

24.57

0.48 0.50 0.55

No adaptation With adaptation

Idle BT Wi-Fi
0

2

4

6

Av
g.

 p
ow

er
 [m

W
]

2.83 2.84 2.843.04 3.11 3.35
No adaptation With adaptation

Fig. 14. Delayed packets and power consumption of a slave with and without connection interval adaptation.

Sf ixed selects its connection interval statically according to Eq. 1 in order to sustain a maximum
transmission delay tmax = 260ms . Sadapt , instead, makes use of Eq. 11 and an observation window
length L=64 to adapt its connection interval as described in Sect. 7.
Setup. Using the same setup described in Sect. 3.2, we let each of the two slaves transmit 500 UDP
packets to a master (using the Broadcom BCM43439 radio) located at 10 meters distance with direct
line of sight. We run only one slave at a time and repeat each experiment ten times. We analyze the
performance of Sf ixed and Sadapt in absence of RF noise, in the presence of Bluetooth interference,
and with Wi-Fi interference located close to the slave.
Results. Fig. 14 shows the percentage of delayed packets and the average power consumption of
Sf ixed (orange) and Sadapt (red). We can clearly see that, whilst Sf ixed experiences an amount of
delayed packets between 6.8 and 24.6%, almost the entirety of packets transmitted by Sadapt (at
least 99.45%) are within the expected delay bounds. Adapting the connection interval at runtime to
mitigate the effects of surrounding radio interference comes, as expected, at the cost of an increased
energy consumption. Our experiments show that Sadapt incurs an additional power consumption
of 7.42% in absence of interference, and of 9.51 and 17.96% in the presence of Bluetooth and Wi-Fi
interference, respectively. This increased energy consumption is caused by using shorter connection
interval settings during periods of high RF noise, which lead to a higher power draw.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:24 Spörk, et al.

95

96

97

98

99

100

%
 p

ac
ke

ts

OK Delayed

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time [hh:mm]

0

200

400

co
nn

_i
nt

 [m
s] Minimum Maximum Median

Fig. 15. When adapting its connection interval at runtime using an observation window of 64 fragments, a
slave connected to a Broadcom BCM43439 master is able to significantly increase the timeliness of its BLE
communications. Note the more granular y-axis of the top plot in this figure compared to Fig. 2.

8.2 Long-term Evaluation
To prove the efficacy of our proposed method, we run the same application described in Sect. 3.1 in
different indoor environments on three different BLE platforms.

8.2.1 Common Office Environments. We start by re-running the application in the office environ-
ment shown in Sect. 3.1 populated with employees and use the same location of the nodes. We
configure the BLE slave to adapt its connection interval at runtime as described in Sect. 7, and
make use of an observation window of length L=64 and an upper latency bound tmax = 260ms .
Fig. 15 shows the number of delayed packets and the adaptation of the connection interval at

runtime across 48 hours. It is quite remarkable how at most 1.34% of the UDP packets sent within
15 minutes exceed the maximum latency bounds. In Fig. 2, the number of delayed packets was up
to 21.74%. The average number of packets delayed in this experiment is 0.54% (compared to an
average of 6.18% obtained in Fig. 2 when using no adaptation of BLE connection parameters). This
shows an improvements of a factor of 11.5 for the average number of packets delayed.

8.2.2 Student Laboratory. Next, we run our experiments in a student laboratory (as described
in Sect. 3.2) and compare the performance of a slave Sf ixed using a fixed connection interval to
a slave Sadapt using the proposed adaptation approach. Similar to the systematic evaluation in
Sect. 8.1, both Sf ixed and Sadapt try to sustain a maximum latency bound tmax = 260ms for their
data transmissions. While Sf ixed uses Eq. 1 to select a fixed connection interval, Sadapt uses Eq. 11
and a window length L=64 to adapt its connection interval at runtime as described in Sect. 7.

For these experiments, however, we concurrently run Sf ixed and Sadapt in our student laboratory
over the same 48 hour periods and connect each slave to a separate master. To ensure that both
slaves experience similar changes in the RF environment, we position both slaves next to each
other and put both masters at approximately the same location. Each slave has a distance of approx.
10 meters and direct line of sight to their BLE master. As both BLE connections use all 37 data
channels and exchange data infrequently (sending a packet every second), the infererence from one
BLE connection on the other is insignificant compared to the RF noise present in the student lab.

In contrast to the experiments shown in Sect. 3, the lab is used by different student groups during
our experiments. We repeat this experiment for all three BLE platforms connected to our masters.
Broadcom BCM43439 radio. For our first long-term lab experiment, each slave connects to one
of the Broadcom BCM43439 radios acting as master. Fig. 16 shows the percentage of delayed
packets of Sf ixed over 48 hours. Over this period, on average 2.7% of all transmissions exceed tmax ,
with a maximum of 8.65% of packets being delayed within a 15 minutes period. Fig. 17 shows the

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:25

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time [hh:mm]

50

60

70

80

90

100

%
 p

ac
ke

ts

OK Delayed

Fig. 16. Percentage of packets exceeding tmax across 48 hours in a student laboratory, when using a fixed
connection interval and a Broadcom BCM43439 radio as BLE master.

95

96

97

98

99

100

%
 p

ac
ke

ts

OK Delayed

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time [hh:mm]

0

200

400

co
nn

_i
nt

 [m
s] Minimum Maximum Median

Fig. 17. Percentage of delayed packets (top) and adapted connection interval conn_int (bottom) over 48 hours
in a student lab when using our adaptive approach and a Broadcom BCM43439 as BLE master. Please note the
more granular y-axis of the top plot in this figure compared to Fig. 16.

18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time [hh:mm]

50

60

70

80

90

100

%
 p

ac
ke

ts

OK Delayed

Fig. 18. Percentage of packets exceeding tmax across 48 hours in a student laboratory, when using a fixed
connection interval and aQualcomm CSR8510 A10 radio as BLE master.

95

96

97

98

99

100

%
 p

ac
ke

ts

OK Delayed

18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time [hh:mm]

0

200

400

co
nn

_i
nt

 [m
s] Minimum Maximum Median

Fig. 19. Percentage of delayed packets (top) and adapted connection interval conn_int (bottom) over 48 hours
in a student lab when using our adaptive approach and a Qualcomm CSR8510 A10 as BLE master. Please note
the more granular y-axis of the top plot in this figure compared to Fig. 18.

percentage of delayed packets (top) and the used BLE connection interval (bottom) over the same
two day period. We see that the connection interval is successfully adapted, resulting in an average
of 0.42% of all packets and a maximum of 0.99% of packets within 15 minutes being delayed.
Qualcomm CSR8510 A10 radio. Next, we perform the same experiment, but connect each slave
to a Qualcomm CSR8510 A10 radio acting as master. Fig. 18 shows the percentage of delayed data
transmissions when using Sf ixed . We see that overall 7.23% of all packets are classified as delayed,
with a maximum of 14.32% packets being delayed within a 15 minutes period. The reason for this
higher number of delayed packets, compared to the previous experiment, is that the lab was used
by students (and their Wi-Fi devices) during daytime.

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:26 Spörk, et al.

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time [hh:mm]

50

60

70

80

90

100

%
 p

ac
ke

ts

OK Delayed

Fig. 20. Percentage of packets exceeding tmax across 48 hours in a student laboratory, when using a fixed
connection interval and a Panasonic PAN1762 radio as BLE master.

95

96

97

98

99

100

%
 p

ac
ke

ts

OK Delayed

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time [hh:mm]

0

200

400

co
nn

_i
nt

 [m
s] Minimum Maximum Median

Fig. 21. Percentage of delayed packets (top) and adapted connection interval conn_int (bottom) over 48 hours
in a student lab when using our adaptive approach and a Panasonic PAN1762 as BLE master. Please note the
more granular y-axis of the top plot in this figure compared to Fig. 20.

Nevertheless, we see that the slave using our adaptation approach (shown in Fig. 19) is able to
cope with this increased RF noise. Over the same period, only 0.62% of all packets and a maximum
of 1.22% packets within a 15 minute period are delayed when using our approach.
Panasonic PAN1762 radio.We repeat the experiment using two Panasonic PAN1762 radios as
BLE masters. Fig. 20 shows the percentage of delayed packets of Sf ixed over 2 days, where the
student lab was extensively used during daytime. Overall, 8.09% of all packets exceed tmax with a
maximum of 46.67% of delayed transmissions in a 15 minutes period. This high rate of transmission
delays is caused by (i) an increased student activity during the test period and (ii) the fact that the
Panasonic PAN1762 did not adapt the BLE channel map to changes in RF noise during this test.

Nonetheless, Fig. 21 shows that, when using our adaptive approach, only 0.65% of the total data
transmissions and at most 1.77% of the packets sent during 15 minutes are classified as delayed.

Overall, our experiments show that our adaptation approach significantly improves the timeliness
of BLE connections, independently of the used BLE platform and the type of co-located RF noise.

8.3 Dynamic Behavior
To investigate the dynamic behavior of our adaptation approach, we use the long-term measure-
ments from Sect. 8.2.2 and evaluate how long it takes to (i) detect RF noise changes using HCI-based
nCE estimation and (ii) to adapt the connection interval to these changes in the RF environment.

Fig. 22(a) shows an exemplary time period, during which the RF noise suddenly changes due
to a co-located Wi-Fi device transmitting data. This leads to multiple long packet transmission
delays (marked as red bars) at time 22:40:23. Fig. 22(b) shows this specific time period in more detail
and highlights two phases of our nCE estimation and parameter adaptation approach: (i) the time
necessary to detect that the link quality has changed (tdetect) and (ii) the time needed to adapt the
connection interval of the BLE connection to this change (tadapt).
tdetect measures the time difference between the instant of time in which a data transmission is

issued and the instant in which the corresponding BLE connection update request is sent by the
slave. We see in Fig. 22(b) that the nCE value increases in steps over time until reaching the actual
nCE value of 10. This behavior can be explained by the implementation of our nCE estimation (see
Sect. 5) and parameter adaptation (see Sect. 7), where before every new data packet transmission,

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:27

0.0
0.5
1.0
1.5
2.0
2.5

t la
te

nc
y [

s] tmax OK Delayed

0
2
4
6
8

10

n C
E

nCEf nCE

22:40:20 22:40:30 22:40:40 22:40:50 22:41:00 22:41:10 22:41:20 22:41:30 22:41:40 22:41:50 22:42:00
Time [hh:mm:ss]

0

100

200

300

co
nn

_i
nt

 [m
s]

(a) Overview over the whole time period, including an adaptation to a faster and a slower conn_int setting.

0.0
0.5
1.0
1.5
2.0
2.5

t la
te

nc
y [

s] tmax OK Delayed

0
2
4
6
8

10

n C
E

nCEf nCE

22:40:20 22:40:25 22:40:30 22:40:35 22:40:40
Time [hh:mm:ss]

0

100

200

300

co
nn

_i
nt

 [m
s]

tdetect tadapt

(b) Adaptation to a faster conn_int setting.

0.0
0.1
0.2
0.3
0.4
0.5

t la
te

nc
y [

s] tmax OK

0
2
4
6
8

10

n C
E

nCEf nCE

22:41:25 22:41:30 22:41:35 22:41:40 22:41:45
Time [hh:mm:ss]

0

100

200

300

co
nn

_i
nt

 [m
s]

tadapt

(c) Adaptation to a slower conn_int setting.
Fig. 22. Transmissions latency (tlatency), their corresponding nCE estimations, and the adapted connection
interval (conn_int) during a heavy and sudden change in RF noise using a Broadcom BCM43439 master.

our application reads the most recent nCE value from our HCI-based nCE estimator. At time
22:40:24, the application adds the next data packet to the transmission buffer, detects that the
previous packet experienced an nCE of at least 3, and, therefore, issues a BLE connection parameter
update request to adapt the connection interval. This step is repeated two additional times, until the
initial delayed packet (issued at approx. 22:40:23) is successfully transmitted and its actual nCE value
becomes available. Note that every subsequent BLE connection parameter update request overrides
the previous ones. In the example in Fig. 22(a), the detection phase takes tdetect = 2983ms .
tadapt measures the time between issuing the latest BLE connection update request and the new

BLE parameters actually being used. As described in Sect. 7.2, the BLE specification requires a delay
of at least six connection events between the slave receiving the new connection interval, and the
latter being used. In this example, adapting the connection parameters takes tadapt = 5758ms . The
reason for this long adaptation time is that the slave can only request new parameters, but the
master may ignore this request. Therefore, the application repeatedly requests new parameters,
until the master approves, which may lead to tadapt greater than six times the connection interval.
After successfully handling the initial burst of RF noise, the subsequent data transmissions

experience an nCE of at most 5. Therefore, a new BLE connection parameter request is issued
at 22:41:30 (approx. L fragments after the initial burst) and the connection interval is updated
accordingly, as shown in Fig. 22(c). In this case, the filtering of our adaptation approach immediately
detects the change in link quality (tdetect = 0) and the adaptation takes tadapt = 329ms . This makes
adapting to a slower connection interval much faster, as during this adaptation a fast connection
interval is used and, therefore, the mandatory delay of at least six connection events is shorter.

Table 5 summarizes the timing values of tdetect and tadapt measured in the experiments performed
in Sect. 8.2.2. As the data shows, detecting a change in the RF environment takes on average between

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

111:28 Spörk, et al.

Table 5. Measured timing values for tdetect and tadapt during the long-term tests from Sect. 8.2.2. The table
shows the average (AVG), 90 percentile (90%), and maximum (MAX) measured timing value in milliseconds
for the three different BLE radio platforms used over 48 hours.

Broadcom BCM43439 Qualcomm CSR8510 A10 Panasonic PAN1762
Timings AVG 90% MAX AVG 90% MAX AVG 90% MAX
tdetect [ms] 1007.9 986.0 4977.0 1184.8 987.0 4987.0 1116.5 986.0 4979.0
tadapt [ms] 2092.4 2853.0 6208.0 1927.1 2107.4 5117.0 3469.2 4948.0 5226.0

1007.9 and 1184.8 ms, with a maximum duration of about 4987.0 ms. The subsequent parameter
adaptation is performed within 1927.1 and 3469.2 ms on average and takes at most 6208.0 ms.
During our 48-hours test, at most 4 subsequent data transmissions were delayed when using

the Broadcom BCM43439 or the Qualcomm CSR8510 A10 as BLE master radios. When using the
Panasonic PAN1762, a maximum of 13 subsequent data transmissions were delayed.

9 RELATEDWORK
Several studies have investigated the performance of low-power wireless technologies under
interference [2, 20]. While these works mostly focus on IEEE 802.15.4, only a few studies investigate
the performance of BLE under interference or the latency of its communications.
BLE performance under interference.Most of the works studying the performance of BLE in
the presence of interference carry out analytic investigations. Existing works focus either on the
performance of device discovery [11, 34, 36], or of BLE connections [9, 13, 25, 31]. Only few works
actually measure the performance of BLE under interference experimentally [17, 30, 35]. These
studies, however, lack practicality, as they are performed in a small anechoic chamber [30], or
artificially constrain the performance of BLE’s AFH by disabling channel blacklisting [17, 35].

In this paper, to the best of our knowledge, we provide the first comprehensive study investigating
the performance of BLE connections under different interference patterns. We carry out not only
experiments in common office environments, but also a systematic evaluation in testbeds.
Modeling BLE latency. In this paper we also develop the first model capturing the timeliness
of connection-based BLE communications in noisy environments that can be used on BLE host
devices. Existing works, indeed, model the latency of BLE connections using information that is
not available to the application, such as bit error rate, number of CRC errors, or data transmission
probability [9, 13, 25]. Differently from these works, we only embed in our model quantities
that a standard host device is able to measure. Other timeliness models either focus on device
discovery [11, 36], or assume perfect channel conditions [7, 31].
Estimating BLE link quality. A few works have investigated how to estimate the link quality
of BLE connections. Lee et al. [15] use round-trip time measurements of periodic L2CAP ping
messages on Linux-based devices to capture the link quality of a BLE connection and dynamically
change the routing topology of RPL over BLE. The authors estimate the connections’ link quality
every 10 seconds, which they show to be a suitable period to detect changes in the routing topology
(i.e., selecting a new parent), and conclude that BLE is reliable due to its AFH mechanism (even
under Wi-Fi interference). Lee et al. [14] investigate the energy consumption and the stability of a
BLE connection in environments with variable link quality (e.g., due to the presence or absence of
line-of-sight caused by doors opening and closing). The authors measure the round trip time of
frequent L2CAP ping messages and adapt the connection interval to keep the connection alive (not
triggering the BLE supervision timeout) while minimizing energy consumption.

Differently from these works, we estimate the link quality of a BLE connection without introduc-
ing any additional communication overhead. We further use our link quality estimation scheme to

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

Improving the Timeliness of BLE in Dynamic RF Environments 111:29

dynamically adapt the connection parameters of a BLE connection and provide an upper latency
bound on individual data packet transmissions.

10 CONCLUSIONS AND FUTUREWORK
In this work, we experimentally study the latency of BLE communications in the presence of radio
interference, and show that BLE applications may incur long and unpredictable transmission delays.
To mitigate this problem, we devise a model capturing the timeliness of connection-based BLE
communications in noisy RF environments that can be used on any BLE host device. We do so by
expressing the impact of interference in terms of the number of connection events necessary to
successfully transmit individual data fragments (nCE), a quantity that can be measured – among
others – by using the timing information of commands sent over the HCI interface between host
processor and BLE controller. This allows any BLE application to adapt its connection parameters
at runtime without additional communication overhead, and to increase its timeliness also in
noisy environments. Hence, our work paves the way towards the use of Bluetooth Low Energy for
real-time IoT applications.

Future work includes the improvement of the performance of BLE’s adaptive frequency hopping
mechanism and its channel blacklisting under interference. This, however, requires control over
the inner workings of the BLE controller.

11 ACKNOWLEDGMENTS
We thank Usman Raza and Toshiba Research Europe Limited for providing us with the Panasonic
PAN1762 platforms used in our experiments. This work has been performed within the LEAD
project “Dependable Internet of Things in Adverse Environments” funded by Graz University of
Technology. This work was also partially funded by the SCOTT project. SCOTT (http://www.scott-
project.eu) has received funding from the Electronic Component Systems for European Leadership
Joint Undertaking under grant agreement No 737422. This joint undertaking receives support
from the European Unions Horizon 2020 research and innovation programme and Austria, Spain,
Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium, Norway. SCOTT is
also funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT)
under the program “ICT of the Future” between May 2017 and April 2020. More information at
https://iktderzukunft.at/en/.

REFERENCES
[1] N. Amanquah and J. Dunlop. 2003. Improved Throughput by Interference Avoidance in Co-Located Bluetooth Networks.

In Proc. of the 5th European Personal Mobile Communications Conference (EPMCC).
[2] N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef, C. A. Boano, and M. Alves. 2012. Radio Link Quality

Estimation in Wireless Sensor Networks: a Survey. ACM Transactions on Sensor Networks 8, 4 (2012).
[3] A. K. Bhattacharjee, D. Bruneo, S. Distefano, F. Longo, G. Merlino, and A. Puliafito. 2017. Extending Bluetooth Low

Energy PANs to Smart City Scenarios. In Proc. of the Conference on Smart Computing (SMARTCOMP).
[4] BLE Home. 2017. iAlert Sensing Motion: Quick Start Guide. http://www.blehome.com/ialert.htm.
[5] Bluetooth SIG. 2018. Bluetooth Core Specification v5.0. https://www.bluetooth.com/specifications/bluetooth-core-

specification.
[6] C. A. Boano and K. Römer. 2013. External Radio Interference. In Radio Link Quality Estimation in Low-Power Wireless

Networks.
[7] K. Cho, W. Park, M. Hong, G. Park, W. Cho, J. Seo, and K. Han. 2014. Analysis of Latency Performance of Bluetooth

Low Energy (BLE) Networks. Sensors 15, 1 (2014).
[8] M. Collotta and G. Pau. 2015. A Solution Based on Bluetooth Low Energy for Smart Home Energy Management.

Energies 8 (2015).
[9] M. H. Dwijaksara, W. S. Jeon, and D. G. Jeong. 2016. A Channel Access Scheme for Bluetooth Low Energy to Support

Delay-Sensitive Applications. In Proc. of the 27th Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC).

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

http://www.scott-project.eu
http://www.scott-project.eu
https://iktderzukunft.at/en/
http://www.blehome.com/ialert.htm
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

111:30 Spörk, et al.

[10] B. Islam, M. Uddin, S. Mukherjee, and S. Nirjon. 2018. Rethinking Ranging of Unmodified BLE Peripherals in Smart
City Infrastructure. In Proc. of the 9th ACM Multimedia Systems Conference (MMSys).

[11] W. S. Jeon, M. H. Dwijaksara, and D. G. Jeong. 2017. Performance Analysis of Neighbor Discovery Process in Bluetooth
Low-Energy Networks. IEEE Transactions on Vehicular Technology 66, 2 (2017).

[12] H. Karvonen, K. Mikhaylov, M. Hämäläinen, J. Iinatti, and C. Pomalaza-Ráez. 2017. Interference ofWireless Technologies
on BLE Based WBANs in Hospitals. In Proc. of the Symposium on Personal, Indoor, and Mobile Radio Communications.

[13] P. Kindt, D. Yunge, M. Gopp, and S. Chakraborty. 2015. Adaptive Online Power-Management for Bluetooth Low Energy.
In Proc. of the Conference on Computer Communications (INFOCOM).

[14] T. Lee, J. Han, M.-S. Lee, H.-S. Kim, and S. Bahk. 2017. CABLE: connection interval adaptation for BLE in dynamic
wireless environments. In Proc. of the 14th IEEE Conference on Sensing, Communication, and Networking (SECON).

[15] T. Lee, M.-S. Lee, H.-S.Kim, and Saewoong S. Bahk. 2016. A synergistic architecture for RPL over BLE. In Proc. of the
13th IEEE Conference on Sensing, Communication, and Networking (SECON).

[16] S. Munir, S. Lin, E. Hoque, S. Nirjon, J. Stankovic, and K. Whitehouse. 2010. Addressing Burstiness for Reliable
Communication and Latency Bound Generation in Wireless Sensor Networks. In Proc. of the 9th ACM/IEEE Conference
on Information Processing in Sensor Networks (IPSN).

[17] R. Natarajan, P. Zand, and M. Nabi. 2016. Analysis of Coexistence between IEEE 802.15. 4, BLE and IEEE 802.11 in the
2.4 GHz ISM band. In Proc. of the 42nd IEEE Conference of the Industrial Electronics Society (IECON).

[18] Nordic Semiconductors. 2018. nRF52840 Specifications. https://www.nordicsemi.com/eng/Products/nRF52840.
[19] Panasonic Industrial Devices Europe GmbH. 2019. PAN1762 - Bluetooth 5.0 Low Energy Module. https://pideu.

panasonic.de/products/bluetooth/pan1762-bluetooth-50-low-energy-module.html.
[20] M. Petrova, J. Riihijarvi, P. Mahonen, and S. Labella. 2006. Performance study of IEEE 802.15. 4 using measurements

and simulations. In Proc. of the IEEE Wireless Communications and Networking (WCNC) Conference.
[21] P. Popovski, H. Yomo, S. Guarracino, and R. Prasad. 2004. Adaptive Mitigation of Self-Interference in Bluetooth

Scatternets. In Proc. of the 7th Conference on Wireless Personal Multimedia Communications (WPMC).
[22] Qualcomm. 2019. CSR8510 Chipset. https://www.qualcomm.com/products/csr8510.
[23] Raspberry Pi Foundation. 2018. Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/raspberry-pi-3-model-

b/.
[24] R. Rondón, M. Gidlund, and K. Landernäs. 2017. Evaluating Bluetooth Low Energy Suitability for Time-Critical

Industrial IoT Applications. Journal of Wireless Information Networks 24, 3 (2017).
[25] R. Rondón, K. Landernäs, and M. Gidlund. 2016. An Analytical Model of the Effective Delay Performance for BLE. In

Proc. of the 27th Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).
[26] M. Schuß, C.A. Boano, and K. Römer. 2018. Moving Beyond Competitions: Extending D-Cube to Seamlessly Benchmark

Low-Power Wireless Systems. In Proc. of the Workshop on Benchmarking Cyber-Physical Networks and Systems.
[27] M. Schuß, C.A. Boano, M. Weber, and K. Römer. 2017. A Competition to Push the Dependability of Low-Power Wireless

Protocols to the Edge. In Proc. of the 14th Conference on Embedded Wireless Systems and Networks (EWSN).
[28] M. Schuß, C. A. Boano, M. Weber, M. Schulz, M. Hollick, and K. Römer. 2019. JamLab-NG: Benchmarking Low-Power

Wireless Protocols under Controlable and Repeatable Wi-Fi Interference. In Proc.of the 16th Conference on Embedded
Wireless Systems and Networks (EWSN).

[29] Silicon Labs. 2018. Application Development Fundamentals: Bluetooth Smart Technology.
https://www.silabs.com/documents/login/user-guides/ug103-14-fundamentals-ble.pdf.

[30] S. Silva, S. Soares, T. Fernandes, A. Valente, and A. Moreira. 2014. Coexistence and interference tests on a Bluetooth
Low Energy front-end. In Proc. of the Science and Information Conference (SAI).

[31] M. Spörk, C.A. Boano, M. Zimmerling, and K. Römer. 2017. BLEach: Exploiting the Full Potential of IPv6 over BLE
in Constrained Embedded IoT Devices. In Proc. of the 15th ACM Conference on Embedded Network Sensor Systems
(SenSys).

[32] M. Spörk, C. A. Boano, and K. Römer. 2019. Improving the Timeliness of Bluetooth Low Energy in Noisy RF Environ-
ments. In Proc. of the 16th Conference on Embedded Wireless Systems and Networks (EWSN).

[33] The Zephyr Project. 2018. Zephyr OS: An RTOS for IoT. https://www.zephyrproject.org/.
[34] J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino, and D. Formica. 2017. Evaluating Bluetooth Low Energy Suitability

for Time-Critical Industrial IoT Applications. Sensors 17, 12 (2017).
[35] J. J. Treurniet, C. Sarkar, R. V. Prasad, and W. d. Boer. 2015. Energy Consumption and Latency in BLE Devices under

Mutual Interference: An Experimental Study. In Proc. of the 3rd Conference on Future Internet of Things and Cloud.
[36] J. Wyffels, J.-P. Goemaere, B. Nauwelaers, and L. De Strycker. 2014. Influence of Bluetooth Low Energy on Wi-

Fi Communications and Vice versa. In Proc. of the European Conference on the Use of Modern Information and
Communication Technologies (ECUMICT).

[37] G. Zhou, J. A. Stankovic, and S. H. Son. 2006. Crowded Spectrum in Wireless Sensor Networks. In Proc. of the 3rd
Workshop on Embedded Networked Sensors (EmNets).

ACM Trans. Internet Things, Vol. 1, No. 1, Article 111. Publication date: January 2019.

https://www.nordicsemi.com/eng/Products/nRF52840
https://pideu.panasonic.de/products/bluetooth/pan1762-bluetooth-50-low-energy-module.html
https://pideu.panasonic.de/products/bluetooth/pan1762-bluetooth-50-low-energy-module.html
https://www.qualcomm.com/products/csr8510
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.zephyrproject.org/

