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Abstract
Bluetooth Low Energy (BLE) is increasingly used for

time-critical IoT applications, where BLE-based smart ob-
jects need to exchange data with a remote server within strin-
gent end-to-end latency and reliability bounds. While ex-
isting research has investigated how to timely send packets
between pairs of BLE devices, it is still unclear how a BLE
device can sustain time-critical end-to-end communication
with a remote server, for example, hosted in the cloud.

In this paper, we tackle this problem and show how BLE
devices can autonomously measure and cope with end-to-
end network delays and loss along the path to the remote
server. To this end, we first devise an analytical model of
the communication between a BLE end-node and the cloud.
We then leverage this model to dynamically adapt the com-
munication parameters of the BLE device and sustain the
desired end-to-end dependability requirements while mini-
mizing the energy expenditure. Specifically, we design and
implement two adaptation strategies on the popular nRF52
platform, and experimentally show that they both allow to
sustain a given end-to-end reliability and a given end-to-end
latency for data transmissions from/to the BLE node, while
limiting the node’s power consumption.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—Wireless communication;
C.4.6 [Performance of Systems]: Reliability, availability,
and serviceability.

General Terms
Design, Measurement, Performance, Protocols, Reliability.

Keywords
Adaptive Protocols, Bluetooth Low Energy, End-to-end

Latency, End-to-end Reliability, Internet of Things.

1 Introduction
Bluetooth Low Energy (BLE) is one of the most popular

low-power wireless technologies in the IoT landscape, due to
its wide adoption in consumer electronics devices connected
to the Internet such as smart-phones, tablets, and laptops [5].
The resulting ease with which resource-constrained BLE-
based smart objects can interface to such devices and con-
nect to the Internet is a key enabler for the development of
attractive IoT systems based on BLE technology. Many of
these IoT systems operate in time-critical domains: exam-
ples are smart grids [8], smart cities [15], and smart health-
care [16, 22] applications, where resource-constrained BLE
nodes often need to exchange data with a cloud server within
strict end-to-end transmission reliability and latency bounds;
all of this while operating on batteries for months or years.

For example, in remote ECG monitoring systems [22] a
BLE node measures cardiac signals of a patient and sends
these measurements to a router in the same BLE subnet, as
shown in Fig. 1. The router forwards these data packets con-
taining ECG measurements via the external network path,
i.e., the Internet, to a cloud server to be processed or stored.

The data exchange between a BLE node and a remote
server is often subject to dynamic changes in the transmis-
sion delay and loss across the entire network path. In the
BLE subnet, packets may be significantly delayed due to per-
sistent or transient link-layer problems [35, 36]: this is often
due to multipath fading effects and due to the presence of
RF interference from surrounding devices (e.g., co-located
Wi-Fi access points). On the external network path, pack-
ets may be lost due to buffer congestion and CPU-intensive
tasks (e.g., routing table updates) on backbone routers. Data
transmissions can also be significantly delayed due to rout-
ing changes in the Internet backbone or due to link quality
fluctuations in the case of cellular connections [11, 13, 40].

To sustain end-to-end dependability requirements on
communication, BLE nodes need to capture and adapt to all
these changes at runtime. This requires a proper knowledge
about the delay and loss across the entire network path and
appropriate models: only this way, a BLE node can adapt its
parameters at runtime and select the right trade-off between
communication timeliness, reliability, and power efficiency.
Capturing network delay and loss. Although several
works have investigated how to capture and adapt to changes
in delay and loss across the Internet [1, 2, 11, 13, 30], the fo-
cus has always been on devices that have a high-bandwidth



Internet connectivity and that are not constrained in their pro-
cessing capabilities or power supply.

In contrast to the studies above, a large body of research
has investigated how to sustain latency and reliability bounds
in constrained and low-power wireless networks, based for
example on IEEE 802.15.4 [14, 17, 42] or BLE [35, 36].
Building upon these works, nodes can cope with link-layer
problems in the local subnet and sustain a timely and reliable
communication while minimizing their power consumption.
The problem, however, is that none of these studies inves-
tigates how to sustain end-to-end requirements for commu-
nications that go beyond the local subnet, e.g., when a node
exchanges data with a cloud server over the Internet as illus-
trated in Fig. 1. Therefore, how BLE nodes can effectively
capture delays and loss across the entire network path re-
mains an open question. Answering the latter is fundamental
to allow the selection of suitable BLE connection parame-
ters at runtime in order to sustain end-to-end dependability
bounds while limiting a node’s energy expenditure.
Sustaining end-to-end requirements on a budget. Another
open issue is that existing analytical models of BLE’s com-
munication performance as a function of the available con-
nection parameters are unsuitable to design adaptive strate-
gies at runtime. Several models, indeed, require low-level
channel information that is not available on off-the-shelf
BLE devices [23, 29, 34]. Only the model presented by
Spörk et al. [36] is able to use standard BLE information
to monitor the timeliness of BLE communications. Un-
fortunately, however, this model is limited to transmissions
within the local BLE subnet. Furthermore, all the aforemen-
tioned models suffer from two additional limitations: (i) they
focus only on transmitting nodes and neglect how a node
can sustain dependability bounds when acting as a receiver;
(ii) they solely adapt the BLE connection interval, i.e., they
neglect the BLE slave latency, a connection parameter that
can greatly influence the behaviour of a BLE device [5].

There is hence a need for new end-to-end models that
keep the entire network path in the picture and also include
parameters such as the BLE slave latency. This way, one has
the means to properly adapt BLE communication parameters
at runtime to sustain given end-to-end latency and reliability
bounds while preserving power efficiency.
Contributions. In this work, we tackle all these challenges
and show how BLE nodes can sustain time-critical commu-
nication with a remote server on the cloud in both directions.

First, we devise a new end-to-end BLE model, incorporat-
ing a local model by Spörk et al. [36], that captures the addi-
tional latency introduced by the network path outside of the
BLE subnet. In doing so, we also let the model capture the
impact of the BLE slave latency on communication latency
as well as the interplay between the connection interval and
slave latency on the timeliness of packet receptions.

Next, we show how a BLE node can accurately and effi-
ciently estimate the communication latency across the entire
network path by using short and infrequent probing bursts.
Our estimation approach fully adheres to the end-to-end
principle of the Internet, i.e., it requires no changes to any
of the devices routing data on the network path.

BLE subnet External network path

Node Router Internet Server

Figure 1. Network topology when exchanging data be-
tween a BLE node and a cloud server over the Internet.

We further leverage the proposed model and latency esti-
mation scheme to let a node adapt its BLE communication
parameters at runtime and sustain a given end-to-end trans-
mission reliability as well as a given end-to-end latency when
communicating with a cloud server. Specifically, we propose
adaptation strategies for two different use cases: (i) the router
being constrained in its BLE radio duty cycle and (ii) the
router not having radio duty cycle constraints.

We implement our adaptation approaches on the popu-
lar Nordic Semiconductor nRF52 platform [26] using Zephyr
OS [37] and experimentally show that both approaches ef-
fectively find suitable BLE parameters at runtime that min-
imize delayed packets and power consumption, outperform-
ing other static or adaptive node configurations. In our im-
plementation we make use of IPv6-over-BLE communica-
tion as specified by the RFC 7668 [25] to exchange data
between a BLE node and cloud as illustrated in Fig. 1.
Nevertheless, our model, estimation, and adaptation ap-
proaches are independent of the used network layer on top
of the BLE connection and can directly be used for IoT ap-
plications using BLE communication based on GATT.

After introducing the necessary background informa-
tion and providing a real-world measurement of the delays
and packet loss in typical cloud-based BLE applications in
Sect. 2, this paper makes the following contributions:
• We devise a new end-to-end BLE model that captures

the end-to-end latency across the whole network path
and embeds the role of the BLE slave latency (Sect. 3).
• We show how a BLE node can autonomously estimate

the latency across the entire network path while com-
plying to the end-to-end principle of IP (Sect. 4).
• We propose two different adaptation strategies that a

node can use at runtime to sustain end-to-end require-
ments under different constraints (Sect. 5).
• We implement both approaches on the nRF52 platform

using Zephyr (Sect. 6), and we experimentally evaluate
their performance in detail (Sect. 7).

After describing related research in Sect. 8, we conclude our
paper and list future work in Sect. 9.
2 Investigating cloud-based BLE applications

We start our work by experimentally investigating the
end-to-end latency and end-to-end reliability of a BLE node
exchanging data with a cloud server on the Internet.

Fig. 1 shows the used network topology, where an IPv6-
over-BLE node device is connected to an IPv6-over-BLE
router providing Internet access. To exchange IPv6 pack-
ets, node and router establish an IPv6-over-BLE connection
according to the RFC 7668 [25]. Once this connection is es-
tablished, the router forwards the packets to the nodes within
the IPv6-over-BLE subnet or to IP devices on the Internet,
such as our server. This common network topology is used



Table 1. Measured latencies between node and server over 7 days in our testbed for an IPv6 packet length of 128 bytes.
The table shows the median (50%), 95 percentile (95%), and maximum experienced latency (100%) for different configurations.

conn. CI SL tT X [ms] tT XBLE [ms] tRX [ms] tRXBLE [ms]
[ms] 50% 95% 100% 50% 95% 100% 50% 95% 100% 50% 95% 100%

wired 50 0 40 88 328 31 79 319 42 92 293 32 82 284
wired 50 4 39 86 732 30 75 258 41 292 1291 32 282 1281
cellular 50 0 73 1157 3026 28 69 237 67 601 2411 34 64 176
cellular 50 4 73 739 4038 27 62 283 268 531 1031 191 257 499

by popular IoT protocols, such as CoAP, MQTT, or MQTT-
SN. One major constraint for low-power IoT applications,
however, is that they usually do not use the heavyweight TCP
transport layer to reliably send data. Instead, these applica-
tions use a UDP transport layer that allows low-power con-
sumption, at the cost of packet loss on the network path [4].

To exchange data, node and router set up a BLE con-
nection, where communication happens during connection
events. During these connection events, node and router
bidirectionally exchange data until both devices have no
more data to send or until the maximum connection event
length (tCE ) has been reached. The connection interval (CI)
defines the time between two consecutive connection events.
Even if no data needs to be transmitted, node and router
exchange short mandatory keep-alive link-layer packets in
every connection event, to keep the BLE connection alive.
As these keep-alive messages cause unnecessary power con-
sumption on the BLE devices, the BLE specification foresees
the BLE slave latency (SL) parameter, which allows the node
to skip up to SL connection events.

BLE connections make use of adaptive frequency hop-
ping and autonomous packet retransmissions to ensure that
every packet that is scheduled to be transmitted over BLE
will be successfully received. These mechanisms, indeed,
lead to a reliability of 100% within the BLE subnet, as shown
in [36], although some packets may be delayed due to link-
layer effects, such as external radio interference.

The timeliness and reliability of IPv6 packets across the
external network path depend on the employed technology
(e.g., Ethernet or 4G) and cannot be controlled by the node.
To sustain an upper bound on the end-to-end latency between
the node and server, the node can only dynamically adapt its
BLE connection interval and slave latency

To investigate the real-world behavior of BLE-based IoT
applications, we perform a first experimental study.
Experimental setup. To measure latency of IPv6 pack-
ets across the whole network topology (Fig. 1), we perform
our measurements in a wireless testbed powered by D-Cube
nodes [31] located in a vacant laboratory.

We use four Nordic Semiconductor nRF52840 DK de-
vices, each running an IPv6-over-BLE node application built
on the Zephyr OS that transmits a UDP packet to the server
once every second. The server is an Amazon Web Service
(AWS) instance located in the AWS center in Frankfurt, Ger-
many, and runs a Python server echoing every UDP packet
received by a node. Both, packet to and from the server,
have an IPv6 packet length of 128 bytes and carry a unique
sequence number to match request to response. We use a
Raspberry Pi 4 (Pi4) as IPv6-over-BLE router running Rasp-
bian OS, which provides Internet access to the nodes. To

make use of the features of BLE version 5, we use another
nRF52840 DK and program it with Zephyr’s BLE HCI-USB
firmware, which allows us to use this nRF device as BLE
radio on our router. For all of our experiments, the BLE
connection uses the 2M PHY mode of BLE, all available 37
BLE data channels and does not adaptively blacklist chan-
nels, which is the default behavior of the HCI-USB firmware.

Every time a BLE node issues a UDP packet, it triggers
a GPIO event that is captured by a D-Cube device (one D-
Cube device per nRF52 node). We further log all IPv6 traf-
fic on the router to measure the communication latency of
IPv6 packets in the BLE subnet. Finally, we also log the
timestamp and source address of UDP packets received by
the server. All devices in our experiment are synchronized
to the same NTP server and, therefore, share the same notion
of time (the average clock offset between nodes and server
is -43 ± 134µs). This allows us to calculate the end-to-end
latency (tT X ) and the latency within the BLE subnet (tT XBLE )
for every packet sent from node to server. Similarly, we cal-
culate the end-to-end latency (tRX ) and the latency within the
BLE subnet (tRXBLE ) for packets sent from server to node.

To test the impact of different technologies providing In-
ternet access to our BLE subnet, our router can make use of
a wired Ethernet or a cellular 4G connection.
Preliminary results. Tab. 1 shows the distribution of the
measured latencies for different BLE connection parameters
and two different Internet connections measured over 7 days.

When comparing a wired Internet connection to a cellular
connection, we can clearly see that the used Internet connec-
tivity significantly affects the overall communication latency
in both directions. In our experiments, the maximum latency
for transmitting and receiving IPv6 packets with a cellular
connection is almost 10 times higher than a wired connec-
tion. Also the median latency in both directions is signifi-
cantly higher for a cellular than for a wired connection. This
shows that a node cannot simply assume a fixed delay across
the external network path to sustain latency bounds.

When investigating different BLE connection parameters,
the data in Tab. 1 shows that the SL parameter does not sig-
nificantly affect the latency in the BLE subnet of packets sent
by the node (tT XBLE ). As expected, the SL, however, signif-
icantly affects the latency of packets received by the node
(tRXBLE ). The reason for that is the node skipping up to SL
connection events when it has no data to transmit, which
means that the router may need to wait up to SL connection
events for the node to wake up and receive packets1.

During our experiment, the wired Internet connection ex-
perienced an average end-to-end transmission reliability of

1The actual slave latency behavior depends on the node’s BLE link-layer
implementation and may differ between different BLE chip vendors.



99.35%, with at least 97% of any 100 subsequent transmis-
sions successfully sent. The cellular connection sustained an
average end-to-end transmission reliability of 97.65% and a
minimum reliability of 92% for any 100 transmissions. Sim-
ilar to [36], no packet was lost within the BLE subnet.

Based on the experimental data, we can see that the end-
to-end latency and reliability of packets sent by a BLE node
depend on (i) the used BLE connection parameters and (ii)
the behavior of the external network path. To sustain a given
end-to-end reliability and a given end-to-end latency while
limiting unnecessary power consumption, a node needs to
dynamically adapt its BLE connection parameters to changes
in the overall network path. To find the most suitable BLE
connection parameters, however, new BLE models are re-
quired that, in addition to capturing the effects of both the
connection interval and slave latency, need to cope with the
behavior of the entire network path.

One approach to sustain given end-to-end latency bounds
would be to use application-level round-trip time (RTT) mea-
surements on the node to adapt the BLE connection param-
eters. The main problem, however, is that existing applica-
tion traffic cannot be used to accurately estimate the one-way
communication latencies tT X or tRX . During normal opera-
tion, the BLE node uses a BLE slave latency greater than 0,
which allows the node to limit power consumption while sus-
taining given latency bounds. A value SL > 0 leads to packet
receptions being unpredictably delayed, which significantly
affects the accuracy of individual tT X and tRX estimates.

In this work, we follow another approach, where we first
devise new end-to-end models that captures the delay across
the entire network path (Sect. 3) and show how a BLE node
can use infrequent probing bursts to accurately estimate the
network latency across the entire network path in Sect. 4. In
Sect. 5, we combine our model and network latency estima-
tion to sustain given end-to-end dependability requirements.

3 Modeling BLE communication
In this section, we devise a new end-to-end model, which

incorporates the local BLE model from [36], to fit the use
case shown in Fig. 1. Towards this goal, we do not only ex-
tend the timeliness model to account for delays across the In-
ternet, but also investigate how the BLE connection interval
and slave latency affect timeliness when the node transmits
(Sect. 3.1) and receives data (Sect. 3.2).
3.1 Transmitting IPv6-over-BLE data

First, we model the end-to-end latency (tT X ) for a node
transmitting a data packet to a cloud server.

Fig. 2 shows two exemplary transmissions from the BLE
node via a router to the server. In both examples, the applica-
tion on the BLE node (Node App.) issues a data transmission
(D) between connection event N0 and N1. When no link-
layer errors occur (shown by Fig. 2(a)), the BLE link-layer
(LL) of the node and router successfully exchange the data
in connection event N1. In case there are link-layer errors,
i.e., due to external Wi-Fi interference (shown in Fig. 2(b)
in connection event N1), the link-layer of the BLE node re-
transmits the packet until successfully received by the router.
After successfully receiving the packet, the router forwards
the packet via the Internet to the server, which takes tT XNET .
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(b) One link-layer error during BLE data transmission.
Figure 2. Timing for a BLE node transmitting a data
packet (D) to a cloud server over the Internet.

In these examples, the packet length (DT X ) is smaller than
the maximum packet length that can be sent during a single
connection event (FT X ) and, therefore, only one successful
connection event is used to transmit the packet. If DT X >
FT X , the packet is split into multiple data fragments, where
every fragment requires its own successful connection event.

As Fig. 2 shows, the end-to-end latency (tT X ) for sending
a data packet from node to server consists of:

tT X = tT XBLE + tT XNET , (1)

where tT XBLE is the transmission latency of the packet be-
tween node and router and tT XNET is the transmission latency
of the packet from router to server. The tT XNET delay de-
pends on the used Internet connection and will be estimated
in Sect. 4. We model the tT XBLE delay as shown in [36] as:

tT XBLE =

(
dDT X/FT X e

∑
f=1

nCE f ·CI

)
+ tCE , (2)

where DT X is the length of the sent packet and FT X is the
maximum packet length that can be sent from node to router
within a single BLE connection event. nCE f is the number of
connection events necessary to successfully transmit an indi-
vidual packet or fragment, capturing any link-layer retrans-
missions. CI represents the BLE connection interval, and tCE
is the maximum duration of a single connection event.

When combining Eq. 1 with Eq. 2, we can calculate the
end-to-end transmission latency tT X as:

tT X =

(
dDT X/FT X e

∑
f=1

nCE f ·CI

)
+ tCE + tT XNET . (3)

To calculate the upper bound on the end-to-end transmis-
sion latency (tT XMAX ), we assume that every individual packet
fragment is sent with nCE f = nCEMAX , i.e., every link-layer
transmission experiences the same link-layer error proba-



bility. Furthermore, we assume that the packet experiences
the maximum current delay across the external network path
(tT XNET = tNETMAX ), which we discuss in Sect. 4. Applying
these assumptions to Eq. 3, we derive that:

tT XMAX ≥ nCEMAX ·
⌈

DT X

FT X

⌉
·CI + tCE + tNETMAX . (4)

Note that the slave latency (SL) does not impact tT X and
tT XMAX . Indeed, the slave latency allows a BLE node to skip
connection events if no data has to be transmitted. If the
node, however, has data to transmit (as it is the case here),
the node simply does not make use of the slave latency.
3.2 Receiving IPv6-over-BLE data

Next, we model the end-to-end latency (tRX ) for a node
receiving a data packet from the server.

Fig. 3 shows two scenarios involving a packet sent from
the server to the BLE node. In both examples, the server is-
sues a data transmission between connection event N0 and
N1 and the router application (Router App.) successfully
receives the packet between event N1 and N2, which takes
tRXNET . Next, the router forwards the packet to the node and
therefore issues a transmission on its link layer (Router LL).
In connection event N2, the router LL tries to send the packet
over BLE to the node, but the node makes use of its con-
figured slave latency (SL = 2) and does not wake up during
event N2 to receive any data. The router LL retransmits the
packet to the node until it is successfully received. In the
example in Fig. 3(a), this happens during connection event
N3. In Fig. 3(b), router and node wake up during connection
event N3, but due to a link-layer problem (e.g., external radio
interference), the packet is not successfully received by the
node. As the node has not received a valid BLE link-layer
packet from the router, it follows the behavior required by
the BLE specification [5] and wakes up during every sub-
sequent connection event until a valid BLE packet from the
router is received. In our example (Fig. 3(b)) this happens
during event N4, after which the packet from the server is
successfully received by the application on the BLE node.

In both examples, the packet length (DRX ) is smaller than
the maximum packet length that can be received during a
single connection event (FRX ). If DRX > FRX , multiple suc-
cessful connection events are necessary to send the packet
from router to node. In such a case, the node is informed
about more data on the router via the MD-field in the BLE
link-layer header and does not make use of its slave latency
until all data from the router is successfully received.

As shown in Fig. 3, the end-to-end latency (tRX ) for a node
receiving a packet from a remote server consists of:

tRX = tRXNET + tRXBLE , (5)

where tRXNET is the latency of the packet between server and
router and tRXBLE is the latency of the packet from router to
node. Similar to Sect. 3.1, tRXNET is dependent on the qual-
ity of the Internet connection and will be studied in Sect. 4.
tRXBLE can be modeled as:

tRXBLE =

(
dDRX/FRX e

∑
f=1

nCE f ·CI

)
+ tCE + tSL, (6)
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Figure 3. Timing for a BLE node receiving a data packet
(D) from a cloud server over the Internet.

where DRX is the length of the data packet and FRX is the
maximum packet length that can be received by the node
within a single BLE connection event. nCE f is the num-
ber of connection events necessary to successfully transmit
an individual packet or fragment (capturing any necessary
link-layer retransmissions), CI is the BLE connection inter-
val, and tCE is the maximum duration of a single connection
event. tSL measures the additional time the router needs to
wait until the node is waking up after skipping up to SL con-
nection events, which has a maximum value of:

tSLMAX =CI ·SL. (7)

When combining Eq. 5 with Eq. 6, we can calculate the
overall end-to-end reception latency tRX as:

tRX = tRXNET +

(
dDRX/FRX e

∑
f=1

nCE f ·CI

)
+ tCE + tSL. (8)

Similar to Sect. 3.1, we adapt Eq. 8 to calculate the upper
bound on the end-to-end reception latency (tRXMAX ) by using
nCE f = nCEMAX , tRXNET = tNETMAX , and Eq. 7 to obtain:

tRXMAX ≥ (nCEMAX ·
⌈

DRX

FRX

⌉
+SL) ·CI + tCE + tNETMAX . (9)

Compared to Sect. 3.1, we can see that the slave latency
(SL) impacts tSL and hence the time it takes for a node to
receive a packet from the server. Using a value of SL > 0,
the BLE node skips connection events to minimize power
consumption when it has no data to transmit. This, however,
means that the router may need to wait up to SL connection
events until the node wakes up to receive data.

The models presented in Sect. 3.1 and 3.2 allow us to cal-
culate the latency for transmitting and receiving data packets
on the BLE node. One critical aspect missing, however, is
the delay that is caused by the network path outside the BLE
subnet (tNET ), which we investigate next.



4 Estimating Network Latency
In this section, we discuss how a BLE node can estimate

tNET in a way that is fully compliant to the end-to-end prin-
ciple of IP. Following this principle, our tNET estimation ap-
proach allows nodes to estimate tNET without requiring any
changes to devices on the network path, such as the router.
Therefore, our estimation approach can easily be used on any
node and works with any IPv6-over-BLE router that adheres
to the specification in [25]. Approaches violating the IP end-
to-end principle, i.e., requiring changes to the routers in the
network, lead to huge setup and deployment costs and are
therefore seldomly used in practice [41].

Our tNET estimation is fully technology-agnostic and esti-
mates tNET independently of the applied technology to con-
nect to the Internet. Furthermore, our estimation approach
can also be used to estimate tNET in applications of any net-
work scope, e.g., applications spanning only a local Intranet.

While we use our estimation approach to estimate the
maximum latency across the entire network path, our ap-
proach may also be used to calculate the average latency in
order to synchronize a node’s clock, e.g., via NTP.

The main problem in estimating network latency in our
use case, however, is that existing application traffic cannot
be used to accurately estimate tNET . During normal oper-
ation, the BLE node uses a long BLE connection interval
(CI) and a BLE slave latency (SL) greater than 0 that allow
the node to sustain end-to-end latency bounds while limiting
power consumption, but cause two problems while estimat-
ing tNET . As described in Sect. 3.2, SL> 0 leads to packet re-
ceptions being unpredictably delayed, affecting the accuracy
of individual tNET estimates. Furthermore, a large CI value
leads to a coarse sampling resolution of the application-level
round trip time and therefore leads to coarse tNET estimates.
4.1 Probing network latency

To estimate tNET on a node, we periodically perform short
probing bursts, where we exchange short probe and corre-
sponding acknowledgment packets between node and server.

At the start of every probing burst, the node updates its
BLE connection parameter to the smallest possible CI and
SL = 02. With the smallest possible CI, the node is able to
sample tNET with the lowest possible sampling resolution.
By using SL = 0 during probing, we eliminate any unpre-
dictable delay caused by SL during reception (as captured by
tSL in Eq. 8) that would impact our estimation accuracy.

After the BLE connection parameters for probing are
successfully set, the node transmits a short probing packet
to the server, to which the server responds with a short
acknowledgment packet. The node issues a new probing
packet as soon as the previous probing packet has been ac-
knowledged by the server. These probe packets can be or-
dinary application data packets or also distinct IPv6-based
packets solely used for probing, such as ICMPv6 echo re-
quests and responses. To get the most accurate tNET esti-
mations, however, probe and acknowledgment packets need
to fit within a single connection event, i.e., DT X ≤ FT X and
DRX ≤ FRX . When node and server have exchanged LProbe

2This is done by using the standardized BLE connection parameter ne-
gotiation process defined by the BLE specification [5].

probe/acknowledgment packets, the node reverts the BLE
connection parameters to the settings used before probing
and continues with its normal behavior.

For every exchanged probe/acknowledgment pair, the
BLE node measures the round trip time (tRT T ) and the BLE
transmission time (tT XBLE ). tRT T is measured as the time be-
tween the node application issuing the probe transmission
and the node successfully receiving the corresponding ac-
knowledgment. To measure tT XBLE , the BLE node monitors
the communication on the standardized BLE Host Controller
Interface (HCI) of the BLE controller, as shown by [36]. By
measuring the time between the node application issuing the
BLE data transmission and the BLE controller actually free-
ing the corresponding data buffer, the node application is
able to measure tT XBLE in a standard-compliant way.

The measured time tRT T can be modeled as:

tRT T = tProbe + tACK , (10)

where tProbe is the end-to-end transmission latency of a probe
packet from node to server and tACK is the end-to-end trans-
mission latency of the acknowledgment from server to node.
By using Eq. 1 and Eq. 5 for modeling tProbe and tACK , re-
spectively, we get:

tRT T = tT XBLE + tT XNET + tRXNET + tRXBLE . (11)

One simplification for our estimation approach is that we
assume the delay across the Internet is symmetric and call
this delay tNET , i.e., tNET = tT XNET = tRXNET , which gives us:

tRT T = tT XBLE +2 · tNET + tRXBLE . (12)

The network delay tNET can thereby be calculated as:

tNET =
tRT T − tT XBLE − tRXBLE

2
. (13)

Although we assume a symmetric Internet delay, our tNET es-
timation approach can also accurately capture the actual one-
way network latency of asymmetric Internet connections,
such as 4G communication, as we show in Sect. 4.3.

While the node can measure tRT T and tT XBLE for every
probe, tRXBLE cannot be measured by monitoring HCI com-
munication, but needs to be estimated by using the infor-
mation available on the BLE node. For our estimation ap-
proach, we assume that tRXBLE = tT XBLE , as both probing and
acknowledgment packets fit within one single connection
event and tT XBLE provides us with the most recent link-layer
information. Furthermore, we assume that receiving a packet
from the router takes at least CI, which is the smallest time
unit we can measure with our probing approach, resulting in:

tRXBLE = MAX(tT XBLE ,CI). (14)

4.2 Estimating maximum network latency
After measuring the network latency (tNET ) of individ-

ual packet exchanges during probing, we use these measure-
ments to estimate the maximum network latency (tNETMAX ) of
future packet exchanges. With tNETMAX estimations and our
proposed model in Sect. 3, we are able to sustain end-to-end
communication requirements, as we show in Sect. 5.

Fortunately, estimating upper bounds on transmissions on
the Internet is a well-researched topic [11, 19, 20]. While



most recent research uses sophisticated statistical analy-
sis [11, 30], only a subset of these studies propose solu-
tions that are suitable for devices that are constrained in
their processing capabilities and power supply, such as BLE
nodes. For our estimation, we adapt the efficient and well-
established round-trip time estimation approach of TCP as
specified by Jacobson [18] and standardized in [28].

Instead of using an exponentially weighted moving aver-
age as proposed in [28], we store all individual tNET mea-
surements during a probe burst and calculate their average
(tNETAV G ) and variance (tNETVAR ) at the end of every burst.
Using the average and variance, we can calculate tNETMAX as:

tNETMAX = tNETAV G +K · tNETVAR , (15)

where we use a fixed K = 4 as specified in [28].

4.3 Choosing a probe burst length
We study next the most suitable probe burst length

(LProbe) that provides an accurate tNETMAX estimation while
limiting unnecessary energy consumption on the BLE node,
caused by probing. We do this empirically by letting an
nrf52-based BLE node exchange probe/acknowledgment
packets once every second with a server in four different en-
vironments for eight hours per environments.
Experimental environments. For our measurements, we
use the following four different experimental environments:
Wired & No Interf. In this scenario, we use a wired Internet
connection on the router with very low variability in combi-
nation with no Wi-Fi interference in the BLE subnet.
Wired & Wi-Fi Interf. This scenario uses the same wired In-
ternet connection as above. To generate link-layer problems
and, therefore, delays in the BLE subnet, we introduce con-
tinuous Wi-Fi interference on two different Wi-Fi channels
(sending 1500 bytes of Wi-Fi data every 10 ms with a TX
power of 50 mW) using two different co-located Rasperry Pi
3 devices in our testbed running Jamlab-NG [32].
Cellular & No Interf. In this scenario, we use a 4G connec-
tion to connect our router to the Internet. Compared to the
wired Internet connection, the 4G connection experiences
longer and more variable tNET values, as we show in Sect. 2.
This scenario does not introduce any Wi-Fi interference.
Cellular & Wi-Fi Interf. This scenario uses the 4G Internet
connection and introduces continuous Wi-Fi interference in
the BLE subnet. This leads to delays in the BLE subnet,
caused by link-layer retransmissions due to Wi-Fi, and on
the external network path, caused by the cellular connection.

To evaluate different probing settings, we measure the
one-way tNET delay of every sent probe using our NTP-
synchronized router and cloud server, as described in Sect. 2.
Additionally, the node estimates a tNET value, as described in
Sect. 4.1, for every exchanged probe/acknowledgment pair.

We step through the recorded tNET estimates of the node
and use Eq. 15 to calculate a new tNETMAX after every tNET es-
timate. For every new tNETMAX value, we check how many of
the future tNET measurements, i.e., the actual one-way tNET
measurements, exceed the tNETMAX estimate and are therefore
underestimated. For our evaluation we use a very conserva-
tive prediction window, i.e., the probing interval (IProbe), of
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Figure 4. Percentage of underestimated tNET values (top),
power consumption PProbe (middle), and cost α (bottom)
for different LProbe values in four different environments.

1000 seconds. With this configuration, a node initiates a new
probing burst every 1000 seconds to estimate tNET .

Fig. 4 shows the performance of different LProbe values
in four different environments. The top of Fig. 4 shows the
average number of underestimated future tNET values. For
example, when using a cellular Internet connection and no
interference, LProbe = 10 results in approximately 7% of all
future tNET values being underestimated. PProbe shows the
calculated average power consumption of a node for probing
with different LProbe and a IProbe = 1000s. The bottom of
Fig. 4 shows the cost α for every LProbe as the number of
underestimated tNET predictions multiplied by PProbe.

Fig. 4 shows that a short LProbe = 10 has the lowest cost
α in all four environments, i.e., it provides the most suit-
able tNET estimation of future packet exchanges while limit-
ing unnecessary energy consumption on the BLE node. For
wired Internet connectivity, even LProbe = 5 would provide
an accurate tNETMAX . For cellular Internet connectivity, a
larger LProbe would slightly improve the tNETMAX estimation,
at the cost of a higher average power draw on the BLE node.

Next, we investigate the performance of our tNET estima-
tion for different IProbe values and LProbe = 10. We reuse
the recorded data to calculate the percentage of underesti-
mated tNET values, the average power consumption for prob-
ing (PProbe), and the cost α of different probing intervals.

Fig. 5 shows that IProbe = 1000s performs best in all four
experimental environments, as it has the lowest cost α. In
our setting, a smaller IProbe does not significantly reduce the
percentage of underestimated tNET values. Using a smaller
IProbe, however, significantly increases the power consumed
by the node for probing tNET .

IoT applications that experience vast and sudden changes
in delay across the Internet, e.g., a 4G-based mobile router
experiences link quality degradation and needs to change to
a 3G backhaul, may use a shorter probe interval (IProbe) at
the cost of a higher power consumption of the BLE node.
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5 Sustaining End-to-End Requirements
In this section, we discuss how a BLE node can use our

model (Sect. 3) and tNET estimations (Sect. 4) to sustain a
given end-to-end latency and a given end-to-end reliability,
while minimizing its power consumption. Therefore, we in-
vestigate how a node can cope with network loss (Sect. 5.1)
and sustain end-to-end requirements when connected to a
router with (Sect. 5.2) or without radio duty cycle constraints
(Sect. 5.3). We also discuss how a node can sustain bounds
on packet transmissions and receptions (Sect. 5.4).
5.1 Sustaining Reliability

First, we investigate how a BLE node can sustain a given
transmission reliability (r̂MIN) by dynamically adapting the
number of necessary transmissions of application packets
based on the current transmission reliability (rNET ) over the
network path. As shown in Sect. 2, no packets are dropped
within the BLE subnet, due to the autonomous packet re-
transmission and flow control of the BLE link layer. Since
we use the light-weight UDP transport layer, as most con-
strained IoT applications do [4], packets may be dropped on
the Internet. To cope with this loss, we may need to send
additional data packets to sustain our given reliability.
Estimating transmission reliability. To estimate the cur-
rent reliability across the network (rNET ), we use a moving
average filter with a window length WLOSS on ordinary data
transmissions. When we receive an acknowledgment for an
application data packet within a timeout tTimeout , we count
this transmission as successful (rPKT = 1). Otherwise, we
assume the transmission has failed (rPKT = 0). After every
transmission, the current rNET is calculated as:

rNET =
1

WLOSS

WLOSS

∑
j=1

rPKT ( j). (16)

Adapting transmission attempts. By knowing the current
rNET value of the network path, we can dynamically adapt

the number of application transmission attempts necessary to
achieve the given minimum transmission reliability (r̂MIN).
Compared to other Internet traffic, our data and acknowledg-
ment packets are short and rather infrequent, which means
that the BLE nodes will hardly cause congestion in the Inter-
net path just because of few additional packets.

Similar to other research [39, 40], we assume that packet
loss over the network path is independent and identically dis-
tributed with a success rate of rNET , which means we can
model it with the binomial distribution as:

P(X = k) =
(

n
k

)
rk

T X (1− rNET )
n−k, (17)

where P(X = k) is the probability that exactly k out of n
transmission attempts are successful.

In our case, we need at least one transmission attempt to
have a successful packet exchange between node and server.
The end-to-end reliability r̂MIN can be calculated as:

r̂MIN = P(X ≥ 1) = 1−P(X = 0). (18)

By using Eq. 17 and
(n

0

)
= 1, r̂MIN can be calculated as:

r̂MIN = 1− (1− rNET )
n. (19)

For a given r̂MIN < 1 and an estimated rNET , we calculate
the number of necessary transmission attempts (NT X ) as:

NT X = n =

{⌈
log(1−r̂MIN)
log(1−rNET )

⌉
if rNET < 1

1 if rNET = 1
(20)

By sending NT X data packet attempts, we can sustain the
given application reliability (r̂MIN). Next, we investigate the
necessary timing of the NT X transmissions so that the appli-
cation also sustains a given maximum end-to-end latency.
5.2 Sustaining Latency: Adapting CI & SL

Next, we investigate how a BLE node can sustain a given
upper end-to-end latency bound when connected to a router
that needs to limit its BLE radio duty cycle.

Some router devices do not have a continuous power sup-
ply (e.g., smartphones) and/or need to sustain a BLE con-
nection with a large number of BLE nodes simultaneously.
In such cases, it it necessary that a BLE node requires as lit-
tle BLE radio time on the router as possible. If BLE nodes
would require huge portions of the BLE radio duty cycle of
the router, e.g., because the router needs to check every 10 ms
if the node has data to send, the node would drain the router’s
battery or would limit the number of simultaneous BLE con-
nections that can be offered on the router.

In these scenarios, a BLE node needs to adapt the BLE
connection interval (CI) and the BLE slave latency (SL) to
sustain its latency bounds while limiting its power draw and
the radio duty cycle on the router.
5.2.1 Transmitting Data

We show how a BLE node can choose suitable CI and
SL values to transmit data with a given end-to-end latency
(̂tT XMAX ) and a given end-to-end reliability (r̂MIN) to a server.

From Sect. 5.1, we know that we need to transmit NT X
application packets within t̂T XMAX to sustain r̂MIN . Therefore,
we split t̂T XMAX into NT X equal time slots. In each of these
time slots one transmission attempt is initiated.



We can now use Eq. 4 to calculate the bound on the con-
nection interval (CI) that allows us to sustain the latency re-
quirements for transmitting packets from node to server as:

CI ≤
t̂T XMAX /NT X − tNETMAX − tCE

nCEMAX · dDT X/FT Xe
. (21)

To minimize the power consumption on the BLE node,
we can also choose its BLE slave latency (SL) as:

SL = nCEMAX · dDT X/FT Xe−1. (22)

This allows the node to skip unnecessary connection events,
where only mandatory keep-alives would be exchanged.
5.2.2 Receiving Data

In this section, we show how a BLE node can choose suit-
able CI and SL values to receive data within a given end-to-
end latency (̂tRXMAX ) and a given end-to-end reliability (r̂MIN)
from a server. In this case, the server needs to account for any
loss over the Internet and adapt its transmission attempts, as
discussed in Sect. 5.1. The node gets NRX from the server,
after it has calculated the necessary transmission attempts.

Using Eq. 9, we can calculate the bound on CI that allows
to sustain the given end-to-end latency as:

CI ≤
t̂RXMAX /NRX − tNETMAX − tCE

nCEMAX · dDRX/FRXe+SL
. (23)

Furthermore, we choose SL = 0 for this scenario. This
allows the node to sustain a given upper bound on the recep-
tion latency while limiting unnecessary BLE radio time on
the router due to skipped connection event.
5.3 Sustaining Latency: Adapting SL Only

In contrast to Sect. 5.2, we next investigate how a BLE
node can sustain a given upper end-to-end latency bound on
transmitting or receiving messages when the router has no
constraints on its BLE radio duty cycle (i.e., the router is not
constrained in its power consumption) and scalability (i.e.,
the number of connected BLE devices) is not an issue.

In this scenario, the router provides the BLE node with the
smallest possible BLE connection interval (CI) during BLE
connection setup that the router can sustain. The BLE node
uses the provided CI and only adapts the BLE slave latency
(SL) according to its application latency requirements.
5.3.1 Transmitting Data

Similar to Sect. 5.2.1, the BLE node first calculates the
number of necessary data transmission attempts (NT X ) to
sustain the given application reliability (r̂MIN).

In contrast to Sect. 5.2, where the node needs to calculate
a suitable CI, the BLE node already uses the fastest CI possi-
ble and only needs to adapt SL to conserve power by limiting
unnecessary empty connection events. To limit these unnec-
essary connection events, we set SL as:

SL = dIT X/CIe−1, (24)

where IT X is the interval at which the application is issuing
packet transmissions and CI is the used BLE connection in-
terval. dIT X/CIe measures the maximum number of connec-
tion events between two data packet transmissions.

Using this SL, the node only needs to wake up when it has
data to transmit. During the remaining connection events, the
node sleeps for SL events to minimize power draw.

5.3.2 Receiving Data
Similar to the data transmission case, the BLE node uses

the CI value provided by the router and only adapts the SL
according to the end-to-end timing requirements for receiv-
ing packets from the server. To sustain the given end-to-end
reception latency, we use Eq. 9 and solve for SL as:

SL≤
t̂RXMAX /NRX − tNETMAX − tCE

CI
−nCEMAX ·

⌈
DRX

FRX

⌉
. (25)

Using such a SL allows the node to skip most BLE con-
nection events while sustaining the desired latency bound.
5.4 Discussion

To sustain end-to-end latency bounds on transmitting and
receiving packets simultaneously, a node independently cal-
culates suitable parameters for transmitting (CIT X and SLT X )
and receiving (CIRX and SLRX ) using the formulas above.

To ensure that both end-to-end latency bounds are sus-
tained, the node uses a value of CI = MIN(CIT X ,CIRX ) and
SL = MIN(SLT X ,SLRX ) as its BLE connection parameters.

6 Implementation
In this section, we present the implementation of our

proposed adaptation strategies on the Nordic Semiconduc-
tor nRF52840 DK [26]. This platform uses an ARM Cortex-
M4F CPU, comes with 1024 kB of flash and 256kB of RAM,
and embeds a radio supporting BLE communication up to
version 5. While we use the nRF52840 platform, our imple-
mentation also runs on all nRF52 platform variants.

For our adaptation mechanisms, we use only fully stan-
dardized BLE functionality, which means that our imple-
mentation can be easily ported to other hardware platforms
that support BLE version 4.1 and above, such as the Texas
Instruments CC26xx platform.

We use the Zephyr OS [37] for our implementation, be-
cause this OS already includes a BLE and IPv6-over-BLE
communication stack fully compliant to the BLE specifica-
tion and uses the standardized HCI to exchange data between
the BLE controller and host. We extend Zephyr’s IPv6-over-
BLE application on the node, which is located on the BLE
host, by our proposed adaptation mechanisms. Our node ap-
plication waits for the router to initiate an IPv6-over-BLE
connection. After the connection is initiated, the node trans-
mits a UDP packet with an IPv6 packet length of 128 bytes
to the server, which runs a Python UDP server application in
an Amazon Web Service (AWS) instance in Frankfurt. As
soon as the node receives the first valid server acknowledg-
ment, it starts to probe tNETMAX using a probe burst length of
LProbe = 10. After a first tNETMAX estimation is available, the
node calculates the most suitable CI and SL configuration, as
described in Sect. 5, and configures these values by sending
a BLE LL CONNECTION UPDATE REQUEST to the router.

For both adaptation approaches, we use an ACK timeout
tTimeout = 2000ms and a probing interval IProbe = 1000s. We
monitor the nCE values of the underlying BLE connection
by following the approach presented in [36]. Therefore, we
add nCE estimation on the BLE host in the HCI driver layer
(hci core) and monitor the HCI ACL Data Packet com-
mand and HCI Number of Completed Packets event to
get tT XBLE and nCE f for every transmitted application packet.



Table 2. Delayed packet and maximum number of sub-
sequently delayed packets (max. delays) of the different
node configurations under heavy Wi-Fi interference.

Node config. delayed [%] max. delays
CI = 7.5 ms & SL = 0 0.00 ± 0.00 0
Adapt SL only 0.00 ± 0.00 0
Adapt CI & SL 0.61 ± 0.22 2
CI = 1000 ms & SL = 0 50.64 ± 2.64 25

Whenever a new nCE f value is available, the node application
is notified via a callback and can update the BLE connection
parameters according to Sect. 5.

The current nCEMAX value of the BLE connection is cal-
culated via a moving maximum filter with a window length
of 100 most recent nCE f measurements, as described in [36].
We further use a lower bound of nCEMAX = 2 in our imple-
mentation, which means that we slightly overestimate loss
over the BLE connection, even when no link-layer errors
happen during recent packet transmissions.

Our BLE connections do not make use of BLE data chan-
nel blacklisting and use the 2M PHY Mode of BLE.
7 Evaluation

We evaluate our proposed adaptation strategies experi-
mentally. We start by evaluating the detailed behavior of
both proposed approaches, which we call Adapt CI & SL
(Sect. 5.2) and Adapt SL only (Sect. 5.3). We do so in the
presence of dynamic changes on the network path (Sect. 7.1)
and further provide a comparison with other BLE node con-
figurations (Sect. 7.2). Specifically, we compare our ap-
proaches against a node using the fastest possible static BLE
connection parameters (CI = 7.5ms & SL = 0) and a node
using static and power efficient BLE connection parameters
(CI = 1000ms & SL = 0).
7.1 Systematic Evaluation

To show how our proposed solutions can cope with dy-
namic changes in the BLE subnet and on the external net-
work path, we focus on a node transmitting packets to the
server using a wired Internet connection. All BLE nodes are
configured to sustain a r̂MIN = 99% and a t̂T XMAX = 1000ms.
7.1.1 Changes in the BLE subnet

First, we investigate how a node can adapt to sudden
changes (e.g., Wi-Fi interference) in the local BLE subnet.
Setup. We use the experimental setup described in Sect. 2
and start the experiment by setting up the connection be-
tween node and server and wait for 60 s until all initial adap-
tations are done. After this initial phase, we introduce heavy
and continuous Wi-Fi interference on two different Wi-Fi
channels (sending 1500 bytes of Wi-Fi data every 10 ms with
a TX power of 50 mW) using two different Rasperry Pi 3 de-
vices in our testbed running Jamlab-NG [32].
Results. Tab. 2 shows the number of delayed UDP packets
(delayed) for each of the four different node configurations
over the 10 min after the Wi-Fi jamming was started, across
5 runs for every node configuration. Furthermore, the table
shows the maximum number of subsequently delayed pack-
ets (max. delays) across all test runs for every configuration.

We can see that both of our proposed adaptation ap-
proaches (Adapt SL only and Adapt CI & SL) are able to
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Figure 6. Measured end-to-end application reliability for
different node configurations and configured packet loss.

effectively cope with link-layer errors in the BLE subnet.
While the Adapt SL only approach results in no end-to-end
packet delays, also the Adapt CI & SL approach results in
below 1% of all packet transmissions being delayed.
7.1.2 Changes in network loss

Next, we evaluate the performance of our adaptation ap-
proaches when the transmission reliability of the external
network path (rNET ) changes.
Setup. We use the setup from Sect. 2 to establish a connec-
tion between node and server and wait for 60 s until all initial
adaptation is done. Next, we lower rNET by either 1, 2, 5, 10,
15, or 20% and measure the resulting end-to-end application
reliability, i.e., how many node packets are successfully re-
ceived within t̂T XMAX , for 600 s. To reproducibly lower rNET ,
we use the standard Traffic Control (tc) tool with its Net-
work Emulator (netem), which are both part of Linux distri-
butions. We use tc on the all outgoing IPv6 packets on the
router and the AWS server to mimic symmetric network loss.
Results. Fig. 6 shows the average transmission reliability
of our application packets for three different node configura-
tions across 5 experimental runs per configuration. We can
see that both of our adaptive approaches successfully sustain
the configured r̂MIN = 99%, by increasing the transmission
attempts sent for every application data packet.
7.2 Comparison

We next investigate how our approaches perform in com-
parison to other node configurations.
Setup. Again, we use our testbed setup (see Sect. 2) to mea-
sure end-to-end latency and power consumption of nodes.
We program a node with one of the different node configu-
rations, setup the communication between node and server,
and initially wait 60 s before we start our data collection.

To measure the performance of the different node con-
figurations, we measure the number of application packets
that exceed the specified latency bound (delayed pkts.). We
further measure how the different node configurations affect
the BLE radio duty cycle of the router (RDCRouter) by mon-
itoring GPIO events of our router’s USB-BLE radio, which
triggers a GPIO event whenever the BLE radio is enabled.
To investigate the power efficiency of the different node con-
figurations, we measure the current consumption of the BLE
node (INode) using D-Cube [31]. For this experiments, all log
messages and unused peripheral devices on the BLE node are
disabled to minimize the overall power consumption.

In addition to the two static and two adaptive node con-
figurations, we also measure the performance of the adap-
tation approach presented in [36] in this experiment. This
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Figure 7. Performance of fixed and adaptive node config-
urations for sustaining t̂T XMAX = 1000ms on transmitting
packets with a length of 128 bytes to a cloud server.

approach, which we call NCE only, only reacts to changes
in the BLE subnet and does not account for any network de-
lay. As the NCE only approach only sustains transmission
bounds, it is not included in our packet reception experiment.
Results. Fig. 7 shows the performance of four differ-
ent node configurations when the node tries to sustain a
t̂T XMAX = 1000ms in the four different experimental envi-
ronments from Sect. 4.3. Every experimental run was re-
peated 5 times. We can clearly see that our Adapt CI & SL
approach results in at most 0.1% of transmission being de-
layed, while also limiting the router’s radio duty cycle and
the slaves current consumption. If we follow the Adapt SL
only approach, no transmissions are delayed. This, how-
ever, comes with the cost of at least a factor 10 increase of
the RDC on the router. Furthermore, we can see that both of
our approaches also significantly outperform the NCE only
approach in sustaining t̂T XMAX , by at least 100%.

Similarly, Fig. 8 shows the performance of the differ-
ent node configurations when the node tries to sustain a
t̂RXMAX = 1000ms. Also in this setting, we can clearly see that
both of our adaptation approaches result in at most 1.4% of
packets receptions being delayed, while limiting the power
consumption of the BLE node. Similar to Fig. 7, the Adapt
SL only approach results in less delayed packets than the
Adapt CI & SL approach, at the cost of a higher RDCRouter.

8 Related Work
Cloud-based BLE applications. There exists a vast number
of BLE-based applications that communicate with a cloud
server in time-critical domains, such as smart-grid [8], smart
city [15], or smart health applications [3, 16, 22, 38]. None
of these works, however, adapt their communication to delay
or loss in the BLE connection or the remaining network path.

Contrary to these works, our paper shows how BLE-
based IoT applications can sustain end-to-end reliability and
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Figure 8. Performance of fixed and adaptive node con-
figurations for sustaining t̂RXMAX = 1000ms on receiving
packets with a length of 128 bytes from a cloud server.

latency bounds for communication between nodes and a
server, while limiting the power draw of the BLE devices.
BLE Modeling. Existing BLE timeliness models cannot be
used on off-the-shelf BLE devices, as they require BLE link-
layer information, such as CRC error count or bit error rate,
which are not available to BLE applications [23, 29, 34].
Only a few works [27, 36] make use of information that is
available on every standard BLE device to estimate and con-
trol the transmission delay on a BLE connection. The major
problem with these models, however, is that they only model
the transmission delay of packets in a BLE subnet, and hence
cannot be used for communication spanning across multiple
networks. Furthermore, these models either only investigate
the effects of a single BLE connection parameter on commu-
nication latency [27, 36, 34] or do not apply to packets that
need to be received within given latency bounds [23, 29].

This paper, to the best of our knowledge, presents the first
model capturing the effect of all BLE communication param-
eters on the timeliness of traffic from and to a BLE node.
Dependable low-power wireless communication. A
plethora of low-power wireless research studies have investi-
gated how to sustain time-critical communication while min-
imizing power consumption in IEEE 802.15.4 [14, 17, 42]
and WirelessHART applications [7, 10, 24]. These works,
however, only focus on sustaining latency and reliability
within their low-power networks. Some low-power wireless
research have investigated dependable communication over
multiple networks, but neglect end-to-end timeliness [4, 6]
or explicitly exclude communication on the Internet [9].

In this work, instead, we investigate how low-power and
constraint nodes can sustain end-to-end dependability re-
quirements on traffic from and to a cloud server.
Estimating Internet characteristics. Capturing and miti-
gating loss and delays across the Internet has been exten-
sively studied over the last decades. The proposed mech-



anisms to estimate end-to-end delay or loss, however, rely
on complex primitives, such as multiple Kalman filters [20],
machine learning [30] or two-level markov models [11].

In this paper, we present a simple and efficient approach
that accurately estimates the maximum network delay across
the Internet. We use the well-established RTT estimation of
TCP [18] as a base and revise it to be use on low-power,
asymmetric links, such as BLE connections.
Tactile Internet. Research works on the Tactile Internet
have investigated how to sustain minimal end-to-end latency
and maximum reliability on the Internet [12]. These works,
however, focus on optimizing 5G communication to reach
high data rates and round trip latencies below 1 ms [21, 33].

Contrary to these studies, our work focus on sustaining
given end-to-end dependability requirements while minimiz-
ing the power consumption of BLE devices.
9 Conclusion and Future Work

State-of-the-art BLE-based IoT applications are not able
to cope with delays or loss along the whole network path
between nodes and cloud. In this work, we show how BLE
nodes can estimate and mitigate network loss and delay by
dynamically adapting their BLE parameters. Using our ap-
proaches, nodes are able to sustain end-to-end latency and
reliability requirements while minimizing their power draw.

Our next steps include combining our adaptation ap-
proaches with sophisticated BLE channel management, such
as the work presented in [35], to improve the performance
of nodes sustaining end-to-end dependability requirements
even further. Furthermore, our adaptation approaches can
be used in combination with application-level improvements,
such as data reduction, compression, and prediction mecha-
nisms used in Tactile Internet applications [21].
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