
CESAR: a Testbed Infrastructure to Evaluate the E�iciency
of Wireless Automotive So�ware Updates

Marco Steger, Carlo Alberto Boano, Kay Römer, Michael Karner, Joachim Hillebrand, and Werner Rom
‡Virtual Vehicle Research Center, Graz, Austria

†Institute for Technical Informatics, Graz University of Technology, Austria
{marco.steger, michael.karner, joachim.hillebrand, werner.rom}@v2c2.at – {cboano, roemer}@tugraz.at

ABSTRACT
Connected vehicles allow to update the software (SW) running on
their integrated electronic control units (ECUs) over-the-air. Such
updates are complex procedures that involve several steps, such
as the authentication with a remote device, the secure and reliable
wireless transfer of the new binary, as well as its installation and
veri�cation on the target ECU. Each of these aspects a�ects the
e�ciency of the entire SW update process, and it is important to
evaluate the impact of di�erent solutions on the functionality of
a vehicle and to compare their performance on real hardware. In
this paper we present CESAR, a con�gurable testbed infrastructure
that allows to evaluate the e�ciency of an automotive SW update
system in a highly automated way. CESAR allows to specify di�er-
ent update mechanisms, security con�gurations, wireless protocols
used for the data transfer, and to carefully de�ne the scenario of
interest (i.e., pin down the number of wireless vehicle interfaces, the
network topology, and the target ECU). Furthermore, CESAR can
be used to measure the e�ciency of a SW update on real hardware,
and to derive insights about the weaknesses of a system under test
or about the interaction of a speci�c SW with a given ECU.

KEYWORDS
Automotive Software, IEEE 802.11s, OTA Updates, Testbeds.

1 INTRODUCTION
The ability to wirelessly connect a vehicle to the Internet, to the road
infrastructure, or to other vehicles, allows vehicle manufacturers
(OEMs) to provide a plethora of new safety functions, comfort
features, and services. Among others, automotive OEMs have the
possibility to remotely diagnose a vehicle, as well as to install new
SW on the ECUs over-the-air, which allows to reduce warranty
costs [12]. Besides enabling performance improvements and bug
�xes without the need of expensive vehicle recalls, wireless SW
updates allow OEMs to upgrade or enable new features remotely.

The use of over-the-air (OTA) SW updates is not only limited to
the remote download of up-to-date SW directly by the car owners
(e.g., Tesla OTA updates [4]), but can also be exploited in several
other stages of a vehicle’s lifetime: from the vehicle development

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MSWiM ’17, Miami, FL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5162-1/17/11. . . $15.00
DOI: 10.1145/3127540.3127580

and the manufacturing stage on the assembly line, to the mainte-
nance in a service center [13]. In all these scenarios, the vehicle
uses its wireless vehicle interface (WVI) to connect to a diagnostic
tester (DT) device holding the new SW binary, authorization keys,
as well as other information that is required to perform the update.
The update procedure itself can be conducted using automotive
diagnostic protocols such as Uni�ed Diagnostic Services (UDS) [1].

Due to their potential impact, OTA updates have increasingly
attracted the attention of several researchers, who started analyzing
the vulnerabilities of automotive eco-systems [6], and providing
solutions to orchestrate secure SW updates [14]. Among others, the
research community has proposed architectures to protect a vehicle
from the injection of malicious SW [9, 10], and techniques to ensure
reliable (wireless) inter/intra-vehicle communication [15, 17]. Most
of the existing works, however, focus only on single aspects of an
automotive SW update and not on the entire update process.

Need to evaluate SW updates in their entirety. The update
procedure involves multiple steps ranging from the authentication
with the DT and the wireless data transfer, to the installation and
veri�cation of the new binary on the target ECU. All of these aspects
are interconnected and a�ect the overall e�cacy and e�ciency of
a SW update, which should be always studied in its entirety. The
latter requires a deep investigation of the main aspects a�ecting the
e�ciency of a SW update, such as: i) the wireless network topology
and the number of involved nodes, ii) the applied security con�gu-
ration, iii) the employed SW update mechanism, and iv) the target
ECU and the properties of the connection to the WVI.

Need for suitable automotive testbeds.All these aspects must
be evaluated in a systematic and repeatable way on real hardware
(HW) to study their inter-dependency and to show the applicability
of the tested SW update system. Towards this goal, it is necessary
that the testbed supports not only a number of WVIs, but also their
connection to one or more ECUs using automotive standard HW
and SW interfaces, as well as means to install and verify the SW
running on the ECU by means of diagnostic standards.

Our contributions. In this paper we present CESAR, a Con�g-
urable testbed infrastructure that allows to evaluate the e�ective-
ness and E�ciency of wireless automotive Software updates in an
Automated and Repeatable way. CESAR allows to investigate the
SW update procedure in its entirety, to emulate di�erent SW update
scenarios (e.g., SW updates in a service center or in the assembly
line), and to evaluate the impact of di�erent network as well as
security con�gurations on the update’s e�ciency. The proposed
testbed infrastructure can be further used to analyze di�erent ECU
types, SW update techniques (e.g., the parallel or partial transfer of
a �rmware), and wireless communication standards (e.g., the use
of single-hop or multi-hop networks).

TN
TN

TN

TNTN

CESAR Wireless
Backbone

Local access Remote access

VPN TN

Vehicular bus

ECU

TN

ECUWVI

Testbed Control
PC (TBC)

Figure 1: CESAR architecture: TNs interconnected via a
backbone network allowing to connect ECUs or vehicles.

CESAR provides con�guration pro�les containing di�erent node
con�gurations (emulating di�erent real-world scenarios), sets of
parameters (e.g., key length, vehicle bus bit-rate), as well as SW
update techniques. After describing its design and implementation
in the next section, we show in Sect. 3 a series of case studies
illustrating how CESAR can be used to evaluate the impact of
di�erent security con�gurations, update techniques, and network
protocols on the e�ciency of an automotive SW update process.

2 CESAR: DESIGN AND IMPLEMENTATION
We describe next the design and implementation of CESAR, starting
from the general requirements of such a testbed infrastructure.

2.1 Testbed Requirements
A proper testbed infrastructure should support the evaluation of
the entire automotive SW update process and allow to study the
impact of di�erent aspects on its e�ciency while reducing manual
intervention and allowing remote access. The employed testbed
nodes must be able to support di�erent roles (i.e., act as WVI, as
DT, or as rogue node) and should be connectable to one or more
ECUs from di�erent vendors (which requires automotive HW/SW
interfaces, as well as diagnostic protocols on top). Furthermore, the
testbed should be able to scale up to 100 nodes while providing
multiple con�guration pro�les that allow the user to choose between
di�erent network topologies and wireless communication stacks
(e.g., IEEE 802.11n or 11s). These con�guration pro�les should in-
clude di�erent security con�gurations and allow the user to choose
between di�erent security parameters, such as the authentication
scheme or the key length. Ideally, also the installation e�ort is kept
to a minimum by reusing existing network infrastructures.

2.2 Testbed Architecture
The architecture of CESAR is shown in Fig. 1: at the heart of CESAR
are several testbed nodes (TNs) connected to each other wirelessly
and to a testbed control PC (TBC) through a wired back-channel.

Testbed nodes. Each TN is con�gurable and can hence assume
di�erent roles within the testbed: it can act as a DT, WVI, relay
node, or even as rogue node – a node that is compromised by an
attacker. Depending on the assigned role, a TN runs a dedicated SW
implementation on top of a given HW platform. The latter allows to
connect a TN to an ECU using automotive bus systems (e.g., CAN
or FlexRay) and easily install a new software.

ECU connection. By using automotive standards, CESAR al-
lows to connect ECUs of di�erent manufacturers and types, hence
giving a user the ability to install SW on an ECU and to verify the
success of an update procedure. In the simplest case, where di�erent

ECU SW versions periodically send CAN frames with di�erent IDs,
the veri�cation is done on the TN acting as WVI by monitoring
the CAN bus. This simple but e�cient mechanism can be used for
all target ECUs, even if there is no way to adapt the bootloader or
�ashing mechanism of the ECU. For more detailed tests, advanced
features like computing the hash of the entire memory on the ECU
after a SW update can be very bene�cial. Therefore, we provide such
features on our main target ECU, which allows CESAR to monitor
the state of the ECU (via CAN) while a SW update is performed.

Con�gurability. CESAR provides con�guration pro�les allow-
ing a simple con�guration of the testbed and all its nodes. A con-
�guration pro�le is a set of con�guration �les that can contain i)
speci�c security and/or network con�gurations, ii) a certain node
setting allowing to emulate speci�c real-world SW update scenarios,
iii) a set of system parameters such as the vehicle bus bit rate or the
employed authentication mechanism, and iv) speci�c SW update
mechanisms. By utilizing the TBC, a developer can easily switch
between di�erent experimental settings and redo an experiment
later by selecting this con�guration pro�le again.

Remote monitoring. The TBC also allows other devices to
access the testbed remotely. We developed a GUI that allows to
monitor the state of the TNs, to set basic parameters (e.g., the
wireless channel), to individually control TNs (e.g., reset TNs), and
to select speci�c con�guration pro�les for planned experiments.

Prototype testing. CESAR allows to analyze the performance
of di�erent SW versions in a highly automated manner by storing
and administrating all developed SW prototypes in a centralized
repository. A developer can choose a speci�c SW version by using
a speci�c con�guration pro�le: prototypes are then automatically
distributed to the TNs and locally con�gured.

SW architecture. The SW architecture of CESAR is shown in
Fig. 2, and encompasses the implementations of di�erent testbed
features, the SW update system under test, and the interfaces used
to interconnect the devices and the implemented prototypes. The
testbed-speci�c SW blocks on the TBC are needed to i) (remotely)
control the testbed and the running experiments, ii) retrieve spe-
ci�c versions of the developed DT/WVI prototypes from a GIT
repository, and iii) automatically collect, pre-process and store the
results of the experiments. On the TNs, testbed-speci�c SW blocks
are required to i) assign the role of the TN, ii) locally con�gure
the TN (e.g., vehicle bus bit-rate when connecting to an ECU), iii)
enable/con�gure local parts of the testbed (e.g., monitoring the ve-
hicle bus or storing debug information w.r.t. the wireless network),
and iv) collect the results of an experiment and send it to the TBC.

2.3 Implementation
CESAR currently makes use of twelve TNs deployed on the ceiling
of our o�ce building, covering an area of approximately 350m2.

Testbed nodes. Each TN consists of a BeagleBone Black (BBB)
board running Debian Linux and a TL-WN722Wi-Fi stick, connected
via USB and enabling wireless connectivity between the TNs (either
IEEE 802.11n or 11s). We connect each BBB to a custom-made PCB
board allowing the TNs to support up to two CAN connections at
the same time [14]. UDS is used to perform the actual SW update
procedure. Given the popularity of CAN and UDS, CESAR allows
to connect a TN to almost any ECU on the market.

Laptop (Windows) PC (Linux) BBB (Linux) BBB (Linux) ECU (e.g., AURIX)

MQTT MQTT MQTT MQTTWI DP WI DP

T
ar

ge
t

E
C

U
(E

C
U

 c
o

n
fi

g.
,

va
li

d
at

o
r,

m

o
n

it
o

r)

Application
(Verify, Diagnose)

B
o

o
tl

o
a

d
e

r
(F

la
sh

 u
p

d
at

e
m

ec
h

an
is

m
s)

W
V

I p
ro

to
ty

p
e

(S
W

 U
p

d
at

e

m
ec

h
an

is
m

s,
 C

A
N

&

 O
B

D
 s

u
p

p
o

rt
,

w
ir

e
l.

d
ia

g
n

o
st

ic
s)

D
T

p
ro

to
ty

p
e

(P
ar

al
le

l &
 p

ar
ti

al

u
p

d
at

e
s,

 v
e

h
ic

le

an
d

 E
C

U
 in

fo
)

T
e

st
b

e
d

 n
o

d
e

(C
o

n
fi

g
. i

n
te

rf
ac

e
s,

ru

n
 e

xp
e

ri
m

e
n

ts
,

lo
gg

in
g)

T
es

tb
e

d
 n

o
d

e
(C

o
nf

ig
. i

n
te

rf
a

ce
s,

ru

n
 e

xp
e

ri
m

e
n

ts
,

lo
gg

in
g

)

T
e

st
b

e
d

 G
U

I
(M

o
n

it
o

r
&

 c
o

n
tr

o
l

C
E

SA
R

 e
xp

e
ri

m
e

n
t)

P
ro

to
ty

p
e

d

e
ve

lo
p

m
e

n
t

(D
T

, W
V

I,
 E

C
U

b

o
o

tl
o

ad
e

r)

TBC
(TN configuration,

control experiment,
collect results)

GIT repository

VBWNVPN

WI Wireless Interface DP Diagnostic protocol Wireless Network WN Vehicle BusVBLegend: Ethernet backbone

Figure 2: Software architecture. Main blocks of the testbed (green blocks, single solid line) and of the update system under test
(orange blocks, dashed line). Interface are shown in blue and the employed devices using a gray block and double solid line.

ECUCANBBB
1

2
3

4 5

6

7

9

8
12

11

10

TBC

Figure 3: Position of the twelve nodes used in our testbed.

We connected the testbed nodes to two di�erent types of ECU:
the Volvo FlexECU, a prototype ECU used by Volvo Trucks and other
automotive OEMs to test new vehicular features, and the In�neon
AURIX ECU, a multi-core ECU used in various research and industry
projects. In contrast to the Volvo FlexECU, which we had to use
as black-box device without the possibility to develop our own
ECU application SW, the AURIX comes with a free development
tool-chain and can be powered via the I/O pins of the BBB board.
This allowed us to easily connect the AURIX to the TN and to have
full control on both the ECU application SW and the bootloader.

Backbone network and TBC. Each BBB board is connected to
the backbone network using its Ethernet interface. To minimize the
cabling e�ort, we exploit the existing 100 Mb/s LAN infrastructure
of our o�ce building. The TNs are decoupled from the rest of
the company network infrastructure by using a dedicated subnet
supporting up to 250 static IPv4 addresses. Each BBB board uses its
Ethernet interface as a back-channel to communicate with the TBC.
The latter is a desktop computer running Debian Linux equipped
with a dual Ethernet card to connect to both the TNs and the o�ce
network infrastructure. This allows the TBC to access the Internet
and other company services, such as a GIT server for source code
management. To interact with the TNs, the TBC runs a Message
Queue Telemetry Transport (MQTT) server. The MQTT publish-
subscribe protocol allows to address all TNs at once (e.g., to start a
measurement) and to con�gure a TN individually (e.g., assigning a
speci�c role). Our implementation also allows to access the TBC
remotely by using a VPN connection to the company network.

3 CASE STUDIES
We illustrate next a few use cases showing how CESAR can be used
to study the e�ciency of automotive wireless SW updates and to
analyze the impact of di�erent system con�gurations.

3.1 Impact of di�erent Security Mechanisms
We �rst use CESAR to analyze the impact of di�erent security
mechanisms and key lengths on the duration of a SW update.

Impact of network and application layer security. We se-
lect di�erent security con�guration pro�les at both application
and network layer, and let CESAR automatically con�gure the
testbed nodes with the speci�ed security settings, while measuring
the update duration and the detailed, per-step latency, using the
logging ability of the DTs and the WVIs. We employ security mech-
anisms on the application layer implemented in SW utilizing the
Java Bouncy Castle, whereas we use simultaneous authentication
of equals (SAE) to protect the network layer1. We use the testbed
deployment shown in Fig. 3 and con�gure node 9 to work as a
DT and node 8 to act as WVI with a Volvo FlexECU connected via
CAN. We choose this con�guration, as it ensures a direct stable link
between the DT and the WVI2. We perform a wireless SW update
of a binary of 445 kB and measure the duration of the following
steps ten times: i) Init: including WVI discovery, connection and
authentication process between WVI and DT, and SW update ini-
tialization and authorization step on the ECU; ii) Upload: wireless
data transfer from DT to WVI; iii) Download: data download via
CAN and validation of the installed SW on the ECU.

Table 1 shows the measured overall duration and the per-step-
latency w.r.t. the used security mechanisms and reveals that the
data transfer from the WVI to the ECU via CAN takes the largest
portion: about 75% of the overall duration with all security features
enabled, and up to 87% if these mechanisms are disabled. The results
also expose that the security functions have a signi�cant impact on
the update duration: plus 18.5% when all mechanisms are enabled.

Impact of the key length on the update duration. We use
the aforementioned experimental setup and con�gure CESAR to
disable the security mechanisms on the network layer. Di�erent
con�guration pro�les are then used to evaluate the impact of the
key length on the update duration. Speci�cally, we use di�erent key
lengths for both the RSA-based authentication and AES-based data
encryption, and perform 10 sequential wireless SW updates using
the AURIX ECU for each con�guration. Table 2 shows the duration
of a SW update depending on the employed key length: varying the
key length of the RSA-based authentication has a stronger impact
on the update duration than di�erent AES encryption key lengths.
1For more details on the utilized security mechanisms, we refer the reader to [13].
2CESAR would also allow a more di�cult setup with links of intermediate quality.

Table 1: Duration in ms of the di�erent wireless SW update
steps depending on the employed security mechanism.

Security Total Init&Auth. Upload Download
Appl. + Net. 49195.4 4782.3 6585.4 37817.7
Application 47167.1 4859.7 5414.2 36885.3

Network 43745.6 2277.7 3756.0 37703.3
None 41528.6 2277.9 2445.0 36797.5

Table 2: Impact of the key length on the update duration
RSA AES Duration Delta
1024 128 16271.0 ± 323.4 ms -
1024 256 16375.1 ± 222.3 ms 104.1 ms (+0,6%)
2048 128 18342.7 ± 357.4 ms 2071.7 ms (+12.7%)
2048 256 18359.1 ± 292.3 ms 2088.1 ms (+12.8%)

Table 3: Update duration w.r.t di�erent update mechanisms.
Traditional Parallel Partial

20768.8 ± 882.4 ms 25881.8 ± 324.5 ms 3570.7 ± 1189.3 ms

3.2 Impact of di�erent ECU Hardware
We illustrate CESAR’s ability to support ECUs of di�erent vendors
by connecting a WVI device to both a Volvo FlexECU and an AURIX
ECU via CAN (at 500 kb/s). We employ node 9 as DT and node 8
as WVI according to the testbed deployment shown in Fig. 3. As
the Volvo FlexECU can only be used as a black-box, we create a
dummy application for the AURIX that has the same binary size
as the one available for the Volvo FlexECU (i.e., a size of 445 kB).
We then run twenty wireless SW updates on each of the two ECUs,
and let CESAR measure their average duration a discussed earlier.

The gathered results show that the AURIX ECU can be updated
about three times faster than the Volvo FlexECU: the SW update
takes indeed 20.77±0.88 and 48.68±0.81 seconds on the AURIX and
the FlexECU, respectively. This is due to (i) the higher CPU power
and faster storage modules of the AURIX ECU, and (ii) the fact that
the FlexECU uses a two-stage update procedure encompassing a
secondary bootloader and the application SW itself.

3.3 Impact of di�erent Update Techniques
CESAR can also be used to evaluate the e�ciency of di�erent SW
update mechanisms: traditional, parallel, and partial updates.

Parallel updates. We �rst compare the duration of the update
process when using traditional SW updates sequentially with the
duration of a parallel SW update. A parallel SW update is performed
on two or more ECUs integrated in two or more vehicles at the same
time. For an experiment within CESAR this means that new SW is
installed on several (in this particular experiment two) ECUs at the
same time by one DT (node 9). Therefore, each ECU is connected to
a testbed node acting as WVI (nodes 8 and 11) and the SW update
is �rst done sequentially (�rst node 8 is updated and then node 11)
and then in parallel, meaning on both ECUs at the same time.

Table 3 shows that the overall duration of one parallel SW update
(for two ECUs) is increased by about 25% compared to a traditional
wireless SW update (for one of the ECUs). This overhead is due to
the fact that not all steps of a SW update can be done in parallel.
However, carrying out parallel SW updates is signi�cantly faster
(approximately 75% quicker) compared to a sequential updates.

Table 4: Update duration w.r.t. di�erent network protocols.
802.11s duration 802.11n duration TN RSSI
16590.4 ± 286.1 ms 16545.0 ± 360.8 ms 6 -83 dBm
16943.0 ± 453.1 ms 16504.7 ± 238.4 ms 4 -87 dBm
16918.2 ± 518.4 ms 21274.8 ± 4632.9 ms 2 -90 dBm
17620.1 ± 1696.6 ms Unreachable 1 >90

Partial updates. A SW update is often only changing speci�c
parameters of an ECU, leaving most of the remaining SW untouched.
For this reason, it may be advisable to only update the changed SW
portion, instead of the entire binary. We compare next the duration
of a traditional SW update with a custom implementation of a
partial update in which only the portion of code that has changed
is installed. We prepare two SW applications with a parameter �eld
stored in a dedicated memory section of the AURIX ECU of size 1
kB: this parameter �eld is the only di�erence between the binaries.
When utilizing a partial SW update, only this section is transferred
to the ECU. Instead, when using a traditional SW update, the entire
binary (of size 445 kB) needs to be transferred. The case study was
performed using node 9 as DT and node 8 as WVI connected to
an AURIX ECU. We performed twenty SW updates using both the
traditional and the partial SW update mode.

Table 3 highlights that, as expected, the SW update duration is
signi�cantly reduced: the partial update is about six times faster.
This decrease in duration of 83% is especially due to the lower
amount of data transferred from the WVI to the ECU via CAN.

3.4 Impact of di�erent Network Protocols
In this case study, we evaluate the e�ciency of SW updates of two
di�erent wireless protocols: IEEE 802.11n and IEEE 802.11s. The key
di�erence between these two protocols is the ability to build mesh
networks: IEEE 802.11n is the traditional, access point based Wi-Fi
protocol. Instead, IEEE 802.11s allows to form multi-hop networks
increasing the reliability and availability of the entire network.

In our experimental setup illustrated in Fig. 3, we select node
11 as DT and di�erent TNs (nodes 1, 2, 4, and 6) connected to an
AURIX ECU. For the IEEE 802.11n evaluation, the DT node is also
acting as wireless access point. It is important to highlight that,
in this con�guration, the links between 11 and the other TNs are
of di�erent quality. Furthermore, node 1 is the furthest away, and
is not in the communication range of node 11. As a result, when
employing IEEE 802.11n, no communication can be established
between the two nodes. In contrast, when using IEEE 802.11s, the
nodes can decide to hop through additional nodes to use only very
good links and maximize the reliability of communications.

We then perform ten SW updates for each con�guration and let
CESAR measure the SW update duration (Table 4). For good links
(node 4 and 6), both protocols nearly exhibit the same performance.
For node 4, IEEE 802.11n, on average, is about 400 ms faster than
IEEE 802.11s. The experimental results show an average path length
of 1.06 hops when using IEEE 802.11s. This means that IEEE 802.11s
has employed some multi-hop paths during the SW update process
(due to lost packets) leading to a slightly increased packet latency.
In case of intermediate links (node 2), IEEE 802.11s outperforms
IEEE 802.11n by a factor of 25%.

3.5 Connectivity issues of IEEE 802.11s
CESAR can also be used to investigate the connectivity of wireless
nodes and thereby, as presented in this case study, to reveal scal-
ability issues. When con�guring CESAR to use IEEE 802.11s, we
observed that some TNs were not reachable by other nodes, despite
being in close proximity. The observed issue is critical as typical
SW update scenarios can encompass several vehicles in a dynamic
environment frequently joining and leaving the network. To ana-
lyze the problem, snapshots of the connectivity in the network (i.e.,
link and path information) were captured using CESAR. These tests
reveal two major problems of the default open11s implementation
caused by its limited neighbor table size:
Ine�cient network structure. In IEEE 802.11s, peer links are es-
tablished between two nodes if i) the nodes can hear each other and
ii) the nodes have a free spot in their neighbor table. Hence, the net-
work topology of 11s is mainly in�uenced by the sequence of nodes
joining the network (and not if a node is close or far away) and
thus leads to ine�cient links a�ecting the network performance.
Isolated node. In the worst case the limited neighbor table size
(e.g., size=3) can even lead to isolated nodes: a node (e.g., node 5)
willing to join an already established network, will fail to connect
as the other nodes (e.g., nodes 1 to 4) already have three neigh-
bors stored in their neighbor table. The nodes will decline the join
requests and node 5 will be isolated from the network.

We solved this issue by adapting the latest open11s implementa-
tion: i) adding new messages to inform the network about isolated
nodes, and ii) implementing algorithms to solve the isolated node
problem. The adapted open11s version can be chosen and con�g-
ured by CESAR besides the default open11s version.

4 RELATEDWORK
In this section, we summarize the body of existing works focusing
on wireless automotive SW updates and compare the functionality
of existing automotive testbeds to the ones o�ered by CESAR.

Wireless automotive SW updates. Most of the work on au-
tomotive OTA updates has focused on security aspects and pro-
posed security architectures protecting a vehicle from malicious
updates [9, 11] or investigated remote SW updates [7, 10]. These
works, however, do not consider other scenarios where updates
are performed locally (such as within a service center), nor allow
testing of advanced update mechanisms such as the parallel transfer
of a binary. Solutions are also often evaluated only through simula-
tion [5, 11] or formal methods [9, 10, 13], and very few systems are
evaluated on real HW. In this and our previous works [8, 14], auto-
motive ECUs are used to evaluate a SW update framework, verify
the update process, and compare di�erent update mechanisms.

Automotive testbeds. Several infrastructures have been pro-
posed to test automotive SW updates. Drolia et al. [3] have designed
a testbed consisting of several automotive ECUs interconnected by
CAN. Although the testbed provides a basic SW update function, it
is not capable of evaluating the entire wireless SW update process.
In [16] and [2], authors have proposed Vehicle-to-Vehicle testbeds
(either indoor [16] or outdoor [2]) to simulate di�erent V2V scenar-
ios. However, these testbed do not support automotive ECUs and
cannot be used to evaluate any aspect w.r.t wireless SW updates.

5 CONCLUSIONS
In this paper we propose CESAR, a testbed infrastructure that allows
to investigate the e�ciency and dependability of an entire wireless
automotive SW update process. After describing the testbed archi-
tecture and design, we show through a series of case studies that
CESAR allows to derive insights about the impact of di�erent secu-
rity con�gurations, update techniques, and network protocols on
the e�ciency of an automotive SW update process. In the future, we
plan to use CESAR to evaluate the reliability of IEEE 802.11s and to
run di�erent attacks on the SW update framework presented in [13],
in order to evaluate its robustness and expose its weaknesses.
Acknowledgments.This work was partially funded by the SCOTT
project. SCOTT (http://www.scott-project.eu) has received funding
from the Electronic Component Systems for European Leadership
Joint Undertaking under grant agreement No 737422. This joint
undertaking receives support from the European Unions Horizon
2020 research and innovation programme and Austria, Spain, Fin-
land, Ireland, Sweden, Germany, Poland, Portugal, Netherlands,
Belgium, Norway. SCOTT is also funded by the Austrian Federal
Ministry of Transport, Innovation and Technology (BMVIT) under
the program “ICT of the Future” between May 2017 and April 2020.
More information at https://iktderzukunft.at/en/. The authors also
acknowledge the �nancial support of the COMET K2 Program of
the Austrian Federal Ministries BMVIT and BMWFW, the Province
of Styria, and the Styrian Business Promotion Agency (SFG).

REFERENCES
[1] ISO 14229:2006(E). 2006. ISO 14229:2006: Road vehicles – Uni�ed diagnostic

services (UDS) – Speci�cation and requirements. (2006).
[2] M. Cesana, L. Fratta, M. Gerla, E. Giordano, and G. Pau. 2010. C-VeT the UCLA

Campus Vehicular Testbed: Integration of VANET and Mesh Networks. In Proc.
of the European Wireless Conference.

[3] U. Drolia, Z. Wang, S. Vemuri, M. Behl, and R. Mangharam. 2011. AutoPlug –
An automotive test-bed for Electronic Controller Unit Testing and Veri�cation.
In Proc. of the IEEE Intelligent Transportation Systems Conference (ITSC).

[4] N. Gabe. 2016. Over-the-Air Updates on Varied Paths. Automotive News (2016).
[5] I. Hossain, S.M. Mahmud, and M.H. Hwang. 2010. Performance Evaluation of

Mobile Multicast Session Initialization Techniques for Remote SW Upload in
Vehicle ECUs. In Proc. of the IEEE Vehicular Technology Conference.

[6] K. Koscher et al. 2010. Experimental Security Analysis of a Modern Automobile.
In Proc. of the IEEE Symposium on Security and Privacy.

[7] M. Khurram et al. 2016. Enhancing Connected Car Adoption: Security and OTA
Update Framework. In Proc. of the 3rd World Forum on Internet of Things.

[8] M. Steger et al. 2017. An E�cient and Secure Automotive Wireless Software
Update Framework. Under submission (2017).

[9] M.S. Idrees et al. 2011. Secure Automotive On-board Protocols: A Case of Over-
the-air Firmware Updates. (2011).

[10] D.K. Nilsson and U.E. Larson. 2008. Secure Firmware Updates Over the Air in
Intelligent Vehicles. IEEE Conference on Communications (2008).

[11] R. Petri et al. 2016. Evaluation of Lightweight TPMs for Automotive SW Updates
over the Air. In Proc. of the Conference on Embedded Security in Cars.

[12] Redbend Software. 2011. Updating Car ECUs Over-The-Air (FOTA). (2011).
[13] M. Steger, C.A. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Roemer. 2016.

SecUp: Secure and E�cient Wireless Software Updates for Vehicles. In Proc. of
the Conference on Digital System Design (DSD).

[14] M. Steger, M. Karner, J. Hillebrand, W. Rom, C.A. Boano, and K. Roemer. 2016.
Generic Framework Enabling Secure and E�cient Automotive Wireless SW
Updates. In Proc. of the Conf. on Emerging Technologies and Factory Automation.

[15] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaâniche, and Y. Laarouchi.
2013. Survey on Security Threats and Protection Mechanisms in Embedded
Automotive Networks. In Proc. of the Conf. on Dependable Systems and Networks.

[16] W. Vandenberghe, I. Moerman, P. Demeester, and H. Cappelle. 2011. Suitability of
the wireless testbed w-iLab.t for VANET research. In Proc. of the 18th Symposium
on Communications and Vehicular Technology in the Benelux.

[17] T.L. Willke, P. Tientrakool, and N.F. Maxemchuk. 2009. A Survey of Inter-Vehicle
Communication Protocols and their Applications. IEEE Communications Surveys
& Tutorials 11, 2 (2009).

http://www.scott-project.eu
https://iktderzukunft.at/en/

	Abstract
	1 Introduction
	2 CESAR: Design and Implementation
	2.1 Testbed Requirements
	2.2 Testbed Architecture
	2.3 Implementation

	3 Case Studies
	3.1 Impact of different Security Mechanisms
	3.2 Impact of different ECU Hardware
	3.3 Impact of different Update Techniques
	3.4 Impact of different Network Protocols
	3.5 Connectivity issues of IEEE 802.11s

	4 Related work
	5 Conclusions
	References

