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Abstract—Future vehicles will be wirelessly connected to
nearby vehicles, to the road infrastructure, and to the Internet,
thereby becoming an integral part of the Internet of Things. New
comfort features, safety functions, and a number of new vehicle-
specific services will be integrated in future smart vehicles.
These include a fast, secure, and reliable way to diagnose and
reconfigure a vehicle, as well as the installation of new software
on its integrated electronic control units. Such wireless software
updates are beneficial for both automotive OEMs and customers,
as they allow to securely enable new features on the vehicle and
to fix software bugs by installing a new software version over the
air. A secure and dependable wireless software update process is
valuable in the entire lifetime of a modern vehicle as it can be used
already during vehicle development and manufacturing process
on the assembly line, as well as during vehicle maintenance in a
service center. Additionally, future vehicles will allow to remotely
download up-to-date software on the electronic control units.

To support this process over the entire vehicle’s lifetime, a
generic framework is needed. In this paper, SecUp, a generic
framework enabling secure and efficient wireless automotive
software updates is proposed. SecUp utilizes IEEE 802.11s as
wireless medium to interconnect vehicles and diagnostic devices
in a dependable and fast way. Additionally, SecUp is enabling
beneficial wireless software update features such as parallel and
partial software updates to increase the efficiency, and comprises
advanced security mechanisms to prevent abuse and attacks.

Index Terms—Automotive systems, Generic framework, IEEE
802.11s, SecUp, Security concept, Wireless software updates

I. INTRODUCTION

ODERN vehicles include a growing number of elec-
tronic control units (ECU) in order to incorporate new
services. The latter require elaborate and often distributed
software (SW) implementations on the integrated ECUs of a
vehicle, which increase the complexity of the SW. Further-
more, the growing connectivity and distribution of vehicular
systems is potentially introducing a growing number of bugs
in automotive SW implementations and associated functions.
Fixing such SW bugs as well as upgrading the ECU SW to
enable new features requires new concepts allowing efficient
automotive SW updates. Thereby, these concepts are support-
ing the development and maintenance of modern vehicles.
Efficient and secure SW updates can be beneficial over the
entire life-cycle of a modern vehicle and will significantly
reduce the time needed for vehicle maintenance.
In this paper, SecUp, a generic framework enabling wireless
SW updates and diagnostics is proposed. Contrary to existing
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works only focusing on wireless remote updates such as [1],
[2], [3], [4], SecUp supports the entire life-cycle of a modern
vehicle considering the requirements coming from different
application scenarios (i.e., vehicle development, assembly,
and maintenance in a service center). In all these scenarios,
wireless SW updates performed locally in a dedicated area
(e.g., the service center or assembly line) have to be fast,
efficient, and secure. To enable efficient and fast wireless
SW updates, SecUp supports — besides the basic automotive
wireless SW update functionality — beneficial features such as
parallel SW updates (where the same SW binary is installed on
different vehicles and ECUs simultaneously) and partial SW
updates (where only changed parts of the SW are installed).

Additionally, SecUp utilizes a comprehensive security con-
cept based on strong authentication and encryption mecha-
nisms to guarantee secure wireless SW updates. This security
concept also ensures the integrity of the transferred data and
of the entire vehicle. As a result, SecUp is protecting the
diagnostic devices, the transferred data, the vehicles, and the
OEM backbone from unauthorized access.

The key contribution of this paper is the introduction of
SecUp, a generic framework allowing efficient and secure
wireless SW updates applicable for different automotive ap-
plication scenarios, namely: (i) SW updates in the vehicle
development, (ii) in the assembly line, as well as (iii) during
maintenance in service centers. SecUp allows not only basic
wireless SW updates, but additionally addresses the efficiency
aspect by enabling parallel and partial SW updates. Further-
more, SecUp is built upon a novel security concept.

This paper is structured as follows. After reviewing related
work in Section II, SecUp and its architecture are described
in Section III. Additionally, the advantages of the employed
IEEE 802.11s network are listed, proving its applicability to
perform efficient and reliable wireless SW updates. In Section
IV the roles of involved devices and users in the considered
application scenarios is highlighted. Section V provides an
overview on the performed security analysis as well as the
resulting security concept. In Section VI, the developed proto-
types of the core nodes are presented and different automotive
ECUs used to evaluate SecUp are described. At the same time
the developed features allowing parallel or partial SW updates
are presented. To evaluate SecUp, first, in Section VII, SecUp’s
security concept and its impact on the system performance is
analyzed. Second, the evaluation of SecUp is described and the
corresponding results are presented in Section VIIIL. Finally, a
conclusion is given in Section IX.
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II. RELATED WORK

The benefits of automotive over-the-air (OTA) updates com-
pared to traditional (i.e., wired) SW updates are listed in [1]
and a high-level architecture for these updates is presented.
However, a description of the wireless medium, required se-
curity mechanisms or other technical details are not included.
The authors of [5] described the SW update process for ECUs
based on international standards. However, this work is not
addressing a wireless approach for such updates at all.

Other authors of previous works such as [2], [3], [4], [6],
[7], [8] only focus on remote SW updates for vehicles and
the corresponding security issues but neither consider other
scenarios where updates are performed locally (e.g., within a
service center), nor allow advanced SW update mechanisms
such as parallel SW updates. A system allowing OTA updates
was presented by Idrees et al. [2]. This system utilizes a
Hardware Security Module (HSM) for data encryption, key
management as well as to ensure data integrity on both the
wireless interface and all ECUs of a vehicle. Therefore, a
HSM is required on every ECU, which leads to significant
extra costs. Additionally, the authors do not give any insight
regarding the specific type or the properties of the wireless
link. The authors of [9] also propose to use security HW
modules on the ECUs and the vehicle gateway to secure
OTA updates. Thereby, the authors focus on how to integrate
these modules in the ECUs and evaluate the resulting resource
overhead. The paper also contains a high-level description of
an architecture for OTA updates, however, no implementations
details or evaluation results are given. Nilsson et al. [3],
[4] propose a system allowing automotive OTA updates by
connecting a vehicle to a portal server using an Internet link.
Thereby the authors list important security aspects, especially
data integrity and data confidentiality, w.r.t. OTA updates but
neither describe the utilized wireless network nor address the
data flow in the network. In [7] an architecture for secure
wireless SW updates sending multiple copies of the SW to
ensure data integrity is presented. However, this solution is
only addressing point-to-point links between one vehicle and
an OEM server and relies on numerous prerequisites (e.g.,
ensuring data integrity of OTA updates by sending multiple
copies). The authors of [8] also propose to send a SW binary
two times to a vehicle to secure the update process without
providing a detailed description on the actual SW update
framework or other technical insights.

Although previous works are proposing different systems
allowing remote OTA updates and addressing the correspond-
ing security aspects, the listed solutions are only addressing
unicast links (i.e., a point-to-point connection between the
OEM and a specific vehicle) and hence, novel features such
as parallel or partial SW updates cannot be realized. Contrary
to these works, SecUp allows to install the latest SW on
several vehicles simultaneously and provides efficient SW
update mechanisms (i.e., parallel or partial SW updates).

To date (2017), Tesla is the only car manufacturer providing
a solution for automotive OTA updates. A wireless network
(either based on 3G/4G or a Wi-Fi network connecting the
vehicle to the Internet) is utilized to transfer the latest SW from

the servers of the OEM to a Tesla vehicle [10]. However, this
point-to-point connection between the OEM and the vehicle
cannot be used to simultaneously install SW in different
vehicles and on several ECUs in parallel.

The authors of [2], [3], [4], [7] were mainly focusing on
different security aspects of automotive SW updates and have
listed a number of relevant security threats, namely: data
confidentiality, data integrity, key exchange and management,
and vehicle integrity and authentication. Different from pre-
vious work, the security concept proposed in this paper and
presented in Section V-B addresses all these aspects at once.

A. IEEE 802.11s mesh networking and its security features

The proposed framework for wireless SW updates proposed
utilizes a IEEE 802.11s network to interconnect vehicles and
diagnostic HW. Today, it is the only solution using 11s as
medium for wireless SW updates, however, the protocol is
utilized in other automotive applications: the authors of [11]
and [12] are using IEEE 802.11s as a backbone network
for vehicle-to-vehicle and vehicle-to-infrastructure communi-
cation (V2X) networks to interconnect V2X entities and road
side units. In [13] different wireless communication protocols
such as IEEE 802.11 (Wi-Fi), Bluetooth Low Energy (BLE),
IEEE 802.15.4 (ZigBee) and IEEE 802.11s are compared
with each to find the most suitable protocol for wireless SW
updates in an automotive environment. Thereby, the authors
focus on different aspects such as throughput, scalability as
well as extendability, show that IEEE 802.11s is the only
protocol able to satisfy all investigated aspects, and point
out weaknesses of other protocols (e.g., BLE and ZigBee
offering insufficient throughput). Although the authors reveal
the applicability of IEEE 802.11s for wireless automotive
SW updates, the paper does not include any descriptions of
a framework enabling these kind of updates. The benefits
of utilizing an IEEE 802.11s network to perform wireless
automotive SW updates are listed in Section III-B.

Several contributions mainly focusing on the security as-
pects of IEEE 802.11s have proposed different extensions
and improvements. However, these aspects were not discussed
w.r.t. automotive applications. Tan et al. [14] describe internal
as well as external attacks on IEEE 802.11s networks and
list relevant security requirements. The authors state that
Simultaneous Authentication of Equals (SAE) [15] used in
IEEE 802.11s is able to mitigate external attacks. However, a
range of internal attacks is not prevented by SAE and therefore
additional security features are required.

In [16] GPS positioning is used to mitigate a wide range
of potential attacks on IEEE 802.11s. The proposed system
called PASER is compared to other approaches for secure
IEEE 802.11s networks in [17], and the authors show, beside
others, the inefficiency of these approaches w.r.t. time and
power. The use of GPS, as proposed in [16] and [17], however,
is not applicable within the assembly line or a service center
and therefore PASER cannot be utilized by SecUp.

The approaches proposed in [14], [18], [19], [16], [17]
allow the creation of secure IEEE 802.11s networks, however,
none of these approaches is able to fulfill both the efficiency
requirements of wireless SW updates and the immunity against
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possible attacks. The defined security concept presented in
Section V is fulfilling both aspects by utilizing security
mechanism on the network as well as the application layer.
In particular, the proposed security concept is based on a
structured security analysis. In [20] the latter was described
in detail. This paper also showed how the analysis can be
utilized to design automotive applications w.r.t. SAE J3016
[21], the new security standard in the automotive domain.

III. FRAMEWORK AND ARCHITECTURE

This section describes the architecture of SecUp. A system
overview is given in Section III-A and the utilized wireless
network is addressed in Section III-B.

A. System Architecture and Core Nodes

Secure and efficient wireless SW updates will, indepen-
dently from the application scenario, require a reliable and fast
wireless network. Furthermore, a dependable smart gateway
interface is needed for each vehicle to interconnect the latter
with the wireless network in a reliable and secure way. This
interface is the most critical component of SecUp and is called
Wireless Vehicle Interface (WVI). A WVI interconnects the
vehicular communication infrastructure (i.e., automotive bus
systems such as CAN) and the ECUs of a vehicle with a
wireless network and in further consequence with the Internet.

A WVI can be realized either as a fully integrated device
(i.e., a smart bus gateway or a dedicated ECU) or as a plug-in
solution. The latter can be temporarily connected to a vehicle
using its OBD interface and is mainly utilized in service
center scenarios, where the plug-in property of the WVI
and the utilization of standardized in-vehicle communication
protocols are ensuring backward compatibility as well as
OEM-independence. In future vehicles the WVI will be part
of the in-vehicle communication system, thereby enabling new
services and functions which require to access data generated
by or stored in the vehicle.

The so-called Diagnostic Tester (DT) can be seen as source
of new SW versions within the wireless SW update framework.
It can use a backbone link to the OEM to obtain the latest
available SW as well as required information about the vehicle
such as the vehicle configuration (e.g., types and IDs of
the ECUs) or required authorization keys. Depending on the
scenario and other general conditions, a DT can either be a
dedicated device (e.g., tool in a service center) or more likely
a SW application running on a laptop, PC, or server. Addition-
ally, a DT typically supports various diagnostic functions. In
typical OTA update scenarios, the DT application is running on
a server of the car manufacturer and a secure Internet link (e.g.,
a VPN tunnel) between the WVI and the DT is established.

In SecUp, hand-held devices connected to the wireless SW
update system are used by mechanics in a service center or
by engineers during the vehicle development phase i) to run
wireless diagnostics, ii) to monitor messages exchanged on the
different bus systems of a vehicle, and iii) to trigger, monitor,
and validate the SW update process.
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Fig. 1. An IEEE 802.11s network applied in a typical service center scenario.
Mechanics use handhelds to run wireless diagnostics or wireless SW updates.

B. Wireless IEEE 802.11s network

To interconnect all involved nodes described in Section
II-A, SecUp utilizes an IEEE 802.11s network. According
to [13], this protocol is most suitable for wireless automotive
SW updates and outperforms other wireless standards such as
BLE or ZigBee in different important aspects like throughput,
scalability as well as extendability. IEEE 802.11s is based on
a mesh network topology, where each node will either directly
communicate with other nodes in its transmission range or use
other nodes in between to forward a data packet to the intended
destination. The mesh characteristics of IEEE 802.11s allow
a data packet to take different paths when sent through the
network. This implicit redundancy increases the reliability of
IEEE 802.11s networks. Similarly, the transmission range of
a network can be increased by adding relay nodes (e.g., other
vehicles or devices) at the edge of the network.

The multihop capability of IEEE 802.11s is a key advantage
that significantly increases the reliability and the availability
of such a mesh network, and this allows the use of an
IEEE 802.11s network also in harsh radio environments.

A modern service center, as sketched in Figure 1 and
further described in Section IV-B, is a typical example of a
harsh environment, as wireless links can be affected by the
shielding of vehicles or other (metal) objects, which potentially
decreases the reliability of data transmission / collection. An
IEEE 802.11s network, however, is able to provide a stable
communication: if a direct link between the vehicle and the
DT is too weak to exchange a packet, other vehicles or
IEEE 802.11s relay nodes located in between will forward
the data packets to the target vehicle or the DT.

The IEEE 802.11s standard includes multicast data streams
in mesh networks. Such a multicast can be used to send data
packets from one node to several other nodes in a network.
SecUp can hence potentially use such layer two multicasts to
transfer and install a new SW version on several vehicles si-
multaneously (i.e., to carry out parallel SW updates). Although
the IEEE 802.11s standard defines multicast data streams, the
current openlls implementation [24] used in the developed
framework does not support multicasts on layer two yet and
therefore multicast is implemented on higher layers.

IV. SUPPORTING THE ENTIRE VEHICLE LIFETIME
In this section, the considered scenarios for wireless SW

updates are listed first. Thereafter, an illustration of wireless
SW updates in a service center is given in Section IV-B.
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A. Wireless software update scenarios

SecUp can satisfy the requirements of wireless SW updates
in the following scenarios: i) during vehicle development,
ii) in the assembly line, and iii) in a service center. In the
following, the scenario-specific requirements are highlighted,
and information about involved users, available infrastructure,
and related security concerns are given.

1) Vehicle development: during the vehicle development
phase, engineers will have to update the SW of one or more
ECUs of a test vehicle several times to analyse, compare, and
evaluate newly developed features. Therefore, the development
engineers require a flexible and efficient system enabling
wireless SW updates as well as vehicle diagnostics. Vehicle
development activities will mainly take place in restricted ar-
eas and will be performed by engineers (i.e., expert users). The
wireless solution offers several advantages in this scenario, as
it enables fast and flexible SW updates while allowing the
usage of hand-held devices like tablets or smartphones.

2) Vehicle assembly: this step is performed in a highly
automated and secure environment where many operations are
performed by machines and robots. Before a vehicle can leave
the assembly line, the latest SW is installed on all integrated
ECUs of a vehicle. Therefore, the SW of many vehicles must
be updated — ideally in parallel — to install the latest SW on
all ECUs. Because of the high number of vehicles as well
as the high degree of automation, scalability, reliability and
efficiency of the SW update system are very important.

3) Vehicle maintenance: in a service center mechanics will
diagnose, repair, and maintain several vehicles. Therefore, a
mechanic will connect to a vehicle to run diagnostic functions,
to check if there are any Diagnostic Trouble Codes (DTC) sent
by the vehicle and its ECUs, and to perform the necessary
repairs. Thereby, the mechanic will also check if new SW
is available for one or several ECUs of the vehicle and
install it. Simultaneous wireless SW updates would be very
beneficial especially if large vehicle recalls (e.g., due to a
critical software bug) are necessary: a mechanic can connect
to several vehicles in parallel and install the new software
simultaneously. Additionally, a wireless solution can be very
beneficial in service centers as a mechanic will not have to use
heavy diagnostic equipment (e.g., a PC and a battery contained
in a solid metal case), but can run wireless diagnostics and SW
updates utilizing a lightweight hand-held device instead.

4) Remote SW updates: mainly relevant for future vehicles
with an integrated WVI, either realized as bus gateway or as
dedicated ECU, allowing wireless connectivity via 3G/4G or
Wi-Fi. The current version of SecUp is mainly focusing on
SW updates performed in local environments, however, the
developed SW updates mechanisms could also be used when
connecting the vehicle to the wireless network of the user.

Scenario-specific particularities are summarized in the fol-
lowing: SW updates in the assembly line or during the vehicle
development phase are performed by expert users in secured
and restricted areas. In these use cases security is an important
issue (e.g., industrial espionage) but not as critical as in OTA
scenarios, where the update is performed by an untrained
user at the users’ home or in public, potentially utilizing a
compromised device or an insecure network. Especially the

service center and the assembly line scenarios require a very
efficient and fast way to install SW updates. During vehicle
development high flexibility by easily extending the transmis-
sion range of the wireless network is especially required due
to the big variety of function tests, system evaluations, and
diagnostics performed during this phase.

B. Wireless software updates in a service center

In this section the required steps to install latest SW on
a vehicle’s ECU are described by utilizing a typical service
center scenario as shown in Figure 1. In this sketched example,
mechanics maintain vehicles by using handhelds to run wire-
less diagnostics and to perform wireless SW updates. Similar
procedures and schemes apply in the other update scenarios.
The main goal of this section is to explain the basic SW update
procedure without providing details on the involved security
mechanisms, as this is described in Section V-B.

1) Connecting the vehicle to the SW update system: a me-
chanic first connects a WVI to the vehicle (i.e., if the vehicle
doesn’t have an integrated WVI) using its OBD interface. The
WVI joins the IEEE 802.11s network and will connect to a
DT once a periodically broadcasted beacon advertising the
presence of the DT was received. The same principle is used
by the handhelds to connect to the DT (i.e., after receiving a
DT beacon) as well as to WVIs (i.e, by sending beacons). It is
important to note that in case of an update, the SW is directly
transferred from the DT to the WVI and is never stored on
the handheld devices due to security reasons.

2) Gathering information about the vehicle: once the con-
nections between the DT, the handheld device and the WVI
are established, the DT starts to gather information about the
vehicle by retrieving the Vehicle Identification Number (VIN).
With the retrieved VIN, the DT can either query its local
database or access an OEM server to obtain vehicle-specifics
including vehicle model and variants, the integrated ECUs
including ECU-IDs and the CAN-IDs, as well as available
SW versions. This information is often condensed in so-called
Open Diagnostic data eXchange (ODX) [25] files.

3) Performing the wireless SW update: if new SW for
a vehicle is available, the SW binary will first be fully
transferred from the DT to the WVI. The latter will then verify
the received SW binary and start to install the binary on the
ECU utilizing the Unified Diagnostic Service (UDS) protocol
[26]. Besides this basic SW update mechanism, SecUp also
supports partial SW downloads, where only the difference
between the current and the new SW version is sent to the
ECU. This feature can significantly reduce the duration of
a SW update, however, it has to be supported by the ECU
(see also Section VI-D3). To perform a SW update on several
vehicles in parallel, a mechanic will first register vehicles for
a certain SW update on the DT, which will then automatically
start the update once all vehicles are ready to receive the
SW. Parallel SW updates can again significantly shorten the
duration of wireless SW updates and thereby reduce costs as
several vehicles are addressed simultaneously.

V. SECURITY AND TRUST

Security is a critical aspect of wireless SW updates, as an
attacker can compromise involved devices and protocols to
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reveal sensitive data and keys. Depending on the application
scenario, different attack vectors have to be considered and
therefore different levels of security are required.

SecUp’s security concept is built on a system-centric design
employing a measurable security approach as described in
[27]. The used design approach, the DEWI security metric,
is based on a structured system decomposition rather then a
traditional approach where first attack vectors are analyzed and
second corresponding countermeasures are implemented.

Such a system-centric design encompasses the following
essential steps: 1) security analysis of the framework resulting
in a secure system configuration, ii) extraction of the security
requirements from the secure system configuration, iii) Secu-
rity concept definition based on these requirements and the
peculiarities of the application scenario, and iv) evaluation
of the defined security concept using the STRIDE threat
model [28]. [20] provides more detailed information and also
highlights that this approach can be aligned with the new SAE
security standard SAE-J3061 [21].

In the following the most important revealed security threats
are stated and thereafter, in Section V-B, the security concept
is described in more detail. This description also shows how
the SecUp’s security concept is able to mitigate these threats.
More detailed information can be found in [29].

A. Security threats and attack vectors

A system allowing wireless automotive SW updates is a
worthwhile target for a wide range of attacks. In the following
we will collect and describe critical external as well as internal
threats and show in a later step that the security mechanisms
employed by SecUp are able to prevent these threats.

An external attacker can try to eavesdrop the wireless chan-
nel to reveal transferred authorization keys and the latest SW
itself, or tamper with the transferred data to install malicious
SW on the ECU of a vehicle (Threat T1).

Besides the aforementioned external attacks (e.g., commit-
ted by a hacker without access to the wireless network), there
are also a range of internal threats performed by insiders
such as a rogue mechanic in a service center or other users
fraudulently using the wireless network. These insider threats
encompass theft of equipment such as a WVI to perform
unauthorized SW updates (e.g., tuning; T2), to extract secret
keys stored on the device (T3), or spoofing the identity of an
WVI or a DT (T4) to gather keys, the SW, or vehicle access.

To mitigate all (aforementioned) threats, SW update frame-
works like SecUp must i) employ strong authentication
schemes to establish trust between the involved devices, ii)
use strong encryption as well as message authentication codes
(MAC) to protect confidentiality as well as the integrity of the
transferred data, iii) securely store sensitive data and secret
keys in dedicated memory or HW security modules (HSM).

B. Security concept

The security concept presented in this section is built upon
the results of the system analysis utilizing the DEWI security
metrics. The resulting security concept is based on security
mechanisms on the network as well as on the application layer.
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Fig. 2. Security architecture and flow. New SW is first securely distributed
by the OEM [30] and stored on the DT. To secure the local update 2) a user
authentication is performed, 3) a secured wireless network is established, 4)
strong authentication is used between the core nodes, and 5) symmetric keys
are used to securely transfer the new SW to the WVIL.

On the network layer, wpa_supplicant, a generic secu-
rity framework for different types of wireless networks, is
utilized to secure the IEEE 802.11s mesh network. The
wpa_supplicant is part of the current openl 1s implementation
and allows to secure the network in a lightweight way by
using SAE [15]. SAE was developed especially for 802.11s-
based, multihop capable mesh networks, is fully integrated
in the latest wpa_supplicant version, and is able to mitigate
a wide range of external attacks [14]. However, SAE is not
providing suitable countermeasures against internal attacks,
where attackers use nodes already connected to the wireless
network (e.g., a compromised device or a rogue user such as
a mechanic in a service center; threats T2-T4) to launch an
attack. Therefore, additional security features are employed on
the application layer to prevent internal attacks and thereby
to address the four important security aspects, namely, vehicle
integrity and authentication, data integrity, data confidentiality,
key management and exchange.

To ensure the integrity of a vehicle, especially when
equipped with a WVI, strong authentication mechanisms must
be applied to keep unauthorized users from accessing the
vehicular bus system. Additionally, it is even more important
to avoid that an attacker endangers a whole fleet of vehicles by
breaking one vehicle and extracting a shared (i.e., symmetric)
authentication key. The developed concept is based on unique
asymmetric key pairs consisting of a private and a public key
used on the WVIs, handhelds, as well as DTs to ensure an
unambiguous authentication between all nodes.

In a classic Public Key Infrastructure (PKI) the public keys
are exchanged (e.g., over the Internet) and then used to encrypt
data or to verify digital signatures. To allow a user to check
if a public key really belongs to a certain entity, classic PKI
systems employ a third party, the Certificate Authority (CA).
As a consequence, each node requires an Internet connection
to communicate with a CA.

In SecUp, a different approach has been chosen: to keep
the system local (i.e., only the DT is connected to the Internet
and/or the OEM backbone), a security concept without a
CA was designed. However, such a concept requires that
public keys are initially exchanged and then securely stored.
This pairing step is performed in a controlled environment
(e.g., close proximity to the DT) using a dedicated media or
mechanism (e.g., SecUp supports NFC and the use of one-time
passwords) by authorized users (e.g., head of a service center).
The pairing only has to be done once: first, a master key pair
is created on each device and securely stored in dedicated
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memory or in a Trusted Platform Module (TPM). Second, the
public keys are exchanged and then securely stored. After the
initial pairing step, the master keys can be used to handle the
authentication between the involved nodes and, additionally,
to sign as well as to encrypt unicast packets.

As a WVI securely stores the public key of the DT (and
vice versa), digital RSA-based signatures (RSA signature
with 2048bit key length and SHA-256 hash) can be used to
authenticate the involved parties. In the authentication step
(e.g., performed on a daily basis), the entities agree on a
symmetric AES-GCM-based session key which is used to
ensure confidentiality and integrity of the data transfer. Please
note that in SecUp, i) data packets are protected using session
keys and not by utilizing the master keys as the use of
symmetric keys is more efficient, and ii) timestamps and
nonce are employed to protect exchanged messages and thus to
mitigate common attacks such as replay attacks, similar to TLS
and other common secure message transmission protocols.

Secure multicast data streams required to allow paralle]l SW
updates, however, need symmetric keys to verify and encrypt
data. Data sent from a DT to several vehicles must be signed
and encrypted using a shared key. This shared session key
is created by the DT and then distributed individually to all
WVIs using a unicast packet signed with the private master
key of the DT. In further consequence, multicast data packets
are encrypted and signed using the session key to ensure the
confidentiality and the integrity of the exchanged data.

By utilizing the master key pairs and the (shared) symmetric
session key, the security aspects authentication, confidentiality,
and integrity can be solved w.r.t. the vehicle itself, as well
as on data exchange level (unicast as well as multicast). To
prevent an attacker from extracting the utilized keys (e.g., by
stealing a WVI), these keys must be stored securely on the
devices and kept secret all the time. Therefore, keys used in
SecUp are stored in dedicated secure memory or TPMs.

C. Application of the security concept to a use case

The service center scenario sketched in Section IV-B will
again be used to illustrate how to secure wireless SW updates
by applying the defined security concept (see also Figure 2):

1) User authentication: mechanics authenticate with the
system using a NFC smartcard and a PIN code. Different
user profiles are used to authorize different modes: normal
mechanics can use SecUp to run wireless diagnostics only. A
privileged user can additionally perform wireless SW updates.

2) Interconnecting the WVI: after connecting the WVI to a
vehicle, the WVI powers up and connects to the IEEE 802.11s
network using a shared network key.

3) Authentication between WVI and DT: the master keys of
the WVI and the DT are used to authenticate with each other.

4) Parallel SW updates: first, the DT creates a session key
and distributes it to all concerned WVIs (unicast). Second, the
DT sends the fragmented SW binary to the WVIs by signing
and encrypting every packet using the session key (multicast).

5) Data verification: to ensure data integrity, the DT first
computes the hash value of the SW binary. Then the DT signs
and encrypts the hash value using the master keys and sends

it to the concerned WVIs (unicast). Hence, these WVIs use
the transferred hash to verify the received SW binary before
installing it on the concerned ECUs. Please note that the
genuineness of new SW (i.e., that SW is really coming from
the OEM) is verified by the DT before a new SW binary is
stored in the local database of the DT. However, this secure
SW distribution process (see [30]) is out of the scope of this
paper. In the current concept, the WVI is not verifying the
genuineness again, as the DT already verified it.

D. Formal security concept evaluation

The defined security concept was first formally evaluated
using the Microsoft STRIDE threat model [28]. STRIDE is
an attack-centric approach that can be used to analyze the
security of a system by identifying a number of potential se-
curity threats and grouping them into six categories: Spoofing,
Tampering, Repudiation, Information disclosure, Denial of
service, and Elevation of privilege. To apply STRIDE, each
part of the system is analyzed and all potential threats for every
component or process are determined. Based on these threats,
suitable countermeasures can be defined in a subsequent step.
SecUp’s security concept evaluation was performed in a sim-
ilar way: first a list of potential STRIDE threats was created,
and a prioritization of these threats was performed w.r.t. like-
liness and severity. Second, these threats were (theoretically)
applied to the security concept and its security features to
prove that suitable countermeasures exist to avoid all of these
threats. In [29] the evaluation process is described in more
detail and the results of the formal analysis are presented.

Due to space constraints a complete threat analysis and a
system evaluation w.r.t these identified threats is not possible.
However, in the following the threats T1-T4 described in
Section V-A are used to show the security features of SecUp.
Threat T1 is addressing confidentiality and integrity of ex-
changed data. In SecUp, exchanged data is secured by i) SAE
on network level, used to protect the IEEE 802.11s network
and mitigating external attacks, and ii) security features on
the application layer encompassing per-packet encryption and
integrity checks as well as a final verification of the transferred
SW binary by sending the hash value of the binary (encrypted
and signed by the DT) to the WVL

Threats T2 and T3 are addressing theft of equipment (e.g., a
plug-in WVI or a handheld in a service center). SecUp allows
wireless SW updates within dedicated areas like a service
center: after an initial pairing step between the DT and a new
WVI, the used equipment is forming a trusted network and SW
updates will only be allowed when a WVI is connected to a
trusted DT. A stolen WVI can therefore not be used to perform
unauthorized SW updates (T2), as the WVI will not allow an
attacker to perform an update without being connected to the
trusted DT. The attacker can in a second step try to spoof the
identity of the trusted DT (T4), however, due to the employed
authentication step using digital signatures, also this attempt
will fail. An attacker can also use stolen equipment to read or
replace keys stored on the device, however, will fail as SecUp
utilizes TPMs to securely store keys and other sensitive data.
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VI. IMPLEMENTED PROTOTYPES AND DEMONSTRATORS

In this section the implemented HW and SW prototypes of
the core nodes of the wireless SW update system are described
and the utilized demonstrator ECUs are presented.

A. The developed WVI prototype

The developed WVI prototype consists of a BeagleBone
Black (BBB) board and a developed Printed Circuit Board
(PCB). This PCB can be mounted on the BBB using the
designated header pins and encompasses the required HW
interfaces (i.e., CAN and OBD) as well as the corresponding
transceivers to interconnect a WVI and a vehicle. The PCB
is also responsible for the battery management of a WVI: the
battery is used as power supply of the WVI when the ignition
of the vehicle is off and no power is provided via the OBD
interface of the vehicle. The SW implementation of the WVTI is
mainly done in Java and the Java Native Interface (JNI) is used
to interact with the HW-related parts of the WVI prototype.

A key aspect of the developed security concept is to
use strong authentication mechanisms between the involved
devices (i.e., WVIs, handhelds, and DTs). The corresponding
authentication keys must be kept secret to guarantee a trust-
worthy system. Especially the plug-in WVI is critical, as an
attacker can steal such a device and try to extract the secret
keys. To avoid that, a TPM can be used on the WVI to securely
store secret keys and other sensitive material. Although, the
TPM is currently only used to store RSA keys and to handle
the authentication between the WVI and the DT, it would also
allow the use of certificates in future versions of SecUp.

1) Trusted platform module integration: The used TPM
from NXP is connected to the WVI via Inter-Integrated Circuit
(I?C) bus. The I2C protocol required to exchange data between
the TPM and the WVI was not fully supported by the 12C
library available on the BBB. Because of that, an additional
I?C bus using normal I/O pins was implemented on the
BBB to fulfill the requirements of the TPM w.r.t. the 12C
communication protocol. The disadvantage of this approach,
however, is that the communication between the TPM and the
BBB is rather slow: about 7 kBaud.

In Section VII-A the impact of the slow bus connection
between the WVI and the TPM is evaluated by first comparing
the performance of the integrated TPM with the software-
based cryptography library Java Bouncy Castle (JBC) and
second using an oscilloscope to analyze the timing behavior of
the TPM when performing different cryptographic operations.

B. Prototypes and implementation of the DT and handhelds

The DT implementation was developed in Java and tested
on both a dual-core laptop running Win7 as well as on a BBB
running Debian Linux (the system evaluation was performed
by an BBB running as DT). The latest DT implementation sup-
ports different modes such as ECU programming, monitoring
of the CAN bus, and OBD diagnostics.

A Nexus 7 Android tablet is used as hand-held device. It
can be connected to a WVI and a DT simultaneously, thereby
empowering the hand-held device to monitor the bus systems
of the vehicle, to run OBD requests, and to trigger SW updates.

C. Volvo FlexECU used for basic framework evaluation

The Volvo FlexECU is a prototyping ECU mainly used
to test new applications. The ECU offers several connectors
(i.e., CAN interface, power supply, and enable pin) and comes
inside a solid metal case. The bootloader of the ECU contains
an UDS stack and thus supports a UDS-compliant SW update
process. A reset must be triggered to access the bootloader
when the ECU is already running its application SW.

This ECU was used to perform basic evaluations of the SW
update framework (Section VIII). Two slightly different SW
versions, one periodically sending CAN frames with ID 1001
and the other with ID 2001, were used to test the developed
framework and to run some basic performance analysis. Due
to the different CAN-IDs it is easy to validate that a new SW
version was correctly installed on the ECU.

D. Infineon AURIX as advanced ECU demonstrator

The Volvo ECU is not suitable to test advanced features
such as delta or partial wireless SW updates as neither the
FlexECU HW nor the SW running on the ECU can be adapted
or extended. Because of that, a second demonstrator ECU
based on an Infineon AURIX was developed. Utilizing AURIX
brings several advantages and offers more freedom to develop
advanced SW update features, as the default bootloader can be
modified or even a new AURIX bootloader can be developed.

1) AURIX platform description: the developed demonstra-
tor ECU consists of an Infineon AURIX multi-core ECU inte-
grated in the AURIX application kit TC277 TFT. It is a high
performance ECU compliant to support safety requirements
up to ASIL-D, the highest automotive safety level [31]. The
AURIX ECU is based on a 32 bit scalar TriCore CPU running
at up to 300 MHz in the full automotive temperature range {-
40, +170}°C. It is equipped with up to 4MB flash and 472KB
RAM memory and comes with high speed CAN transceivers,
a safety processor and watchdog, as well as dedicated closely-
coupled memory areas per core.

2) Flash-over-CAN mechanism for AURIX: this mechanism
is the basis for wireless SW updates as it encompasses the
transfer of new SW from the WVI to the AURIX ECU
utilizing the CAN bus as well as the installation of this SW
on the ECU. AURIX does not provide such a mechanism by
default. Therefore an extended AURIX bootloader enabling a
reliable flash-over-CAN mechanism was developed. The latter
basically consists of three main components: i) a CAN driver
handling the data transfer over CAN, ii) a flash driver required
to program and erase the flash memory, and a iii) controller
coordinating the programming sequence.

The CAN driver itself is already implemented in the AURIX
basic SW and must only be configured to support the right
bitrate (e.g., 1Mbit/s) of the bus. The flash driver is responsible
for programming and erasing the data as well as the program
flash memory of the ECU and basically consists of two main
functions: erasing of sections and programming of pages. The
flash driver is able to erase one or more consecutive sections
and can write single pages or use the burst programming mode
to write multiple consecutive pages of the flash memory. The
controller component was developed compliant to the UDS
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standard and is started each time the AURIX bootloader is
called (e.g., after a HW or SW reset). It initializes the CAN
driver and checks for programming requests. If no such request
was received, it starts the ECU’s application SW or reboots
if no application SW is present. Otherwise, if a programming
request was found, the controller handles the data transfer as
well as the installation of the new application SW.

New application SW can be installed on AURIX by first
sending a programming request containing the start address
of the SW to the ECU. Second, an authorization step based
on a typical Seed & Key mechanism is performed and then an
UDS-compliant programming session is started on the ECU.
In the third step, the SW is transferred to the ECU block-
by-block using the corresponding UDS commands. The ECU
receives a block, stores it in a temporary buffer and finally
utilizes the flash driver to write it to the flash memory. After
transferring all blocks to the ECU, the new SW version is
validated by computing the CRC over the new SW blocks.
Finally, the ECU reboots and starts the new application.

3) Partial SW updates: transferring the SW binary to the
ECU via CAN bus is, according to Section VII-C and the
results shown in Table I, by far the most time consuming step
when performing a wireless SW update. Speeding up this step
will significantly decrease the duration of a SW update.

One way to achieve this is to utilize partial SW updates. The
basic idea behind partial SW updates is to only update the parts
of the software that have changed compared to the currently
installed SW version. The possible benefit can be up to nearly
100% in case of a simple parameter value change: a normal
SW update will require to download the entire new binary to
the ECU regardless of whether the old and the new binary are
very similar (i.e., just one or a few parameters have changed)
or if the new version has a lot of new features and is therefore
much bigger in size. Partial SW updates will, in contrast,
only download the changed parts of the binary (i.e., one or
several memory blocks). In flash architectures, the available
memory is divided into different sections, sometimes even with
different sizes. To manipulate a section, a flash driver first has
to erase the entire flash section before it can be filled with new
content. Therefore, it is not possible to just update the value
of one parameter stored in a specific section, but the entire
memory section has to be rewritten. For partial SW updates
this fact leads to two different approaches:

Delta download: only relevant (i.e., the changed) parts of a
SW section are sent to the ECU. On the ECU the affected
section is copied into RAM memory, the flash section is
erased by the flash driver, the content of the section (in
RAM) is modified using the received delta bytes, and finally
the resulting section content is written to the flash memory
again. This approach on the one hand minimizes the amount
of data to be transferred to the ECU, but on the other hand
significantly increases the complexity at ECU level.

Partial SW update: instead of only transferring delta bytes,
the entire section is transferred to the ECU. Although, this
limits the benefit of a partial SW update as more data must
be sent to the ECU, it is very simple to implement.

To decide whether to use delta downloads or to utilize partial
SW updates, different factors such as section size, bitrate of
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Fig. 3. Flash memory is divided into sections with different block sizes.

the bus, as well as the bus load must be taken into account.
For AURIX ECUs the partial SW update approach was
chosen as its flash memory is divided into sections with
different sizes (see Figure 3) and as the SW developer can
utilize a linker file to influence where specific parts of the
SW binary are stored in the flash memory. When developing
new AURIX SW, the binary shall be divided into different
sections and mapped to the ECU flash memory accordingly as
illustrated in Figure 3: areas that are most likely unchanged in
the vehicle’s lifetime (e.g., basic ECU functionality) and areas
that are subject to change (e.g., blocks containing parameters
or optional features). The latter will be located in one or
several small sections (mostly a few KBs) of the flash memory.

VII. EVALUATION OF THE SECURITY CONCEPT

In this section the impact of the employed security mecha-
nisms on the system performance is evaluated.

A. Evaluating the performance of the integrated TPM

In SecUp a TPM is integrated in the WVI to securely store
secret keys and sensitive data. The used TPM is capable to
store keys and to perform cryptographic operations such as
RSA encryption/decryption or RSA/AES key creation. The
TPM can also be used for symmetric data encryption and
signing. Therefore all cryptographic tasks required by the
defined security concept are supported by the TPM. However,
they can also be performed by the used Java SW-library JBC.

In a first evaluation step the performance of the TPM and the
JBC is compared. Therefore, the authentication step between
a WVI and a DT is performed 20 times first using the TPM
and second utilizing JBC and thereby the duration of these
operations was measured. The authentication step including
different RSA operations (i.e., data encryption/decryption and
signing) can be performed by the TPM, the JBC library, or as
hybrid solution utilizing both in a combined way.

The gathered results show that the JBC outperforms
the TPM: min/max/avg duration when using the TPM
(6328/6588/6415.5ms) and JBC (575/701/635.8ms), respec-
tively. However, the most important advantage of the TPM
is its ability to securely store sensitive data and keys.
Because of that, the final concept uses a hybrid solution
(3525/3690/3577.9ms) where the fast JBC library is combined
with the secure storage of the TPM. As the performance
difference between JBC and the TPM, a HW chip dedicated
to perform cryptographic operations, is not really obvious in
the first place, an additional evaluation was performed to get
to the bottom of this issue.

As mentioned in Section VI-Al, the I2C bus connecting
the TPM with the WVI was realized using the I/O pins of
the BBB and therefore the speed of the bus is rather slow (7
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kBaud). To evaluate the impact of the slow bus connection on
the overall performance of the TPM, several RSA operations
(RSA encryption/decryption with 2048 bit key, 208 byte data)
were performed and meanwhile the timing behavior of the
TPM was analyzed using an oscilloscope. The measurements
clearly show that the I?C bus has an significant impact on
the overall performance as the time required for the data
exchange between the TPM and the WVI is about 45% for
RSA decryption and up to 87% for RSA encryption of the
overall duration of the operation. The measurements reveal
that either a faster I2C bus or a different bus such as Serial
Peripheral Interface (SPI) would help to significantly decrease
the overall duration. In the current setup, the TPM shall only
be used to store keys and to perform the authentication, but not
for symmetric encryption using AES (i.e., hybrid solution).

B. Impact of security mechanism on the network layer

In this section, the impact of SAE on the system perfor-
mance is analyzed by evaluating the Round Trip Time (RTT)
and the code size of the IEEE 802.11s kernel module.

The first evaluation step is about evaluating the RTT — the
time needed to send a request packet from node A to node B
plus the time needed to transfer the response packet from node
B back to node A. For this experiment five IEEE 802.11s nodes
were used. Static paths through the network were defined
to force multi-hop routes with different lengths (from direct
connections to multi-hop routes with up to four hops). For each
measurement with different path lengths involved and either
SAE on or off, 10000 messages were sent from node A to node
B. To measure the RTT, up to five BBBs (BBBO to BBB4)
were used to send UDP packets from BBBO to BBB4 and
back, using zero to three boards (BBB 1, 2, and 3) in between
to forward the data. On BBBO and BBB4, a UDP server-client
application was used to i) send the request (BBBO), ii) receive
this request and send the response (BBB4), and iii) to receive
this response (BBB0). An adapted version of IEEE 802.11s
was used to detect the exchanged UDP test packets. On BBBO
and BBB4 the received and sent timestamps were added to the
test packets. These packets were collected on BBBO during a
test, and were used in a subsequent evaluation to compute the
network layer RTT (by removing the time spent on application
layer; only relevant for BBBO and BBB4, as packet forwarding
on BBBs 1-3 is only done on network layer).

In Figure 4 the results of these measurements are shown.
The green, continuous line shows the RTT for different num-
bers of hops with SAE on and the blue, dashed line for the
measured RTT with SAE disabled. Figure 4a shows that each
hop significantly increases the RTT median (similar results
were obtained when analyzing the average RTT). Additionally
the delta of the median values is presented in Figure 4b: each
hop increases the RTT, as a packet has to be encrypted and
decrypted at each hop in between node A and node B.

In a second evaluation step, the impact of SAE on the code
size of the MAC80211 kernel module was analyzed using the
source code of this module (by default with SAE) of a standard
3.19 Linux kernel: first, the module with SAE included was
compiled, and second, all the SAE-related source code was
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Fig. 4. Impact of SAE on network layer: SAE enabled vs. SAE disabled
(i.e., None). Median (a), and delta(median)=median(SAE)-median(None) (b)
of the RTT measurements using 10000 UDP packets are shown.

removed and the resulting module was compiled (and tested)
once again. The results of the evaluation show that the impact
of SAE on the code size of the IEEE 802.11s kernel module
is about 5% w.r.t lines of code (LOC) (58545 LOC without
SAE, 61354 LOC with SAE) and 3% w.r.t. the size in memory
(774 KB without and 801 KB with SAE).

C. Impact of security mechanisms on the SW update duration

To secure and protect SecUp, different security mecha-
nisms on network and on application layer are used. These
mechanisms have an impact on the overall performance of
the developed system. Latency measurements in the scope
of real wireless SW updates using the Volvo FlexECU were
performed to assess this impact. In the following, all steps
required to successfully perform a wireless SW update using
the developed framework are listed: i) WVI discovery and
connection establishment, ii) authentication process between
WVI and DT, iii) SW update initialization (mainly w.r.t.
the ECU), iv) authorization on the ECU using a Seed&Key
procedure, v) wireless data transfer from the DT to the WVI,
vi) data download to the ECU via CAN, and vii) validation
of the downloaded SW on the ECU.

Each step adds latency to the overall duration of a wireless
SW update and the per-step-latency differs depending on the
used security mechanisms. For this experiment the FlexECU
and the corresponding binaries consisting of the application
SW (378KB) plus the secondary bootloader (67KB) were used.
On the application layer, security mechanisms implemented in
SW utilizing the Java Bouncy Castle (JBC) were employed.

The gathered evaluation results presented in Table I reveal
that i) the data transfer via CAN comprises most of the SW
update duration (75% if all security mechanisms are enabled
and up to 87% if disabled) and ii) that the employed security
features increase the overall time required to carry out the
wireless SW update by 20%. Although this duration increase
is quite significant, it must be accepted as all security mech-
anisms are required to guarantee a secure system execution.

VIII. FRAMEWORK EVALUATION

In this section, the evaluation of SecUp and its wireless
SW update mechanisms is presented. The performed evalua-
tion is the first available analysis of a wireless SW update
framework providing advanced SW update mechanisms as
well as allowing secure and efficient SW updates in different
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(local) scenarios such as an assembly line or a service center.
Therefore, no suitable benchmark is available to compare
the gathered results. A basic system evaluation was already
presented in [32]: a developed Vehicle and ECU Model (VEM)
was used to perform fundamental experiments, system evalu-
ations, and communication tests. Furthermore, the VEM was
used to evaluate the behavior of the developed system in case
of errors (e.g., sending unexpected frames) and communication
problems (e.g., lost, delayed or duplicated CAN frames). This
evaluation also included an analysis of the wireless network,
where the DT is connected to a real vehicle and run wireless
diagnostics using the developed WVI prototype. Thereby, the
evaluation results were used to prove the applicability of IEEE
802.11s as media for wireless SW updates.

A. Wireless SW update analysis using Volvo FlexECU

The SW update process was first analyzed using the Flex-
ECU, provided by Volvo Trucks and described in Section
VI-C, connected to a WVI. This ECU is programmed in two
steps: first, the secondary bootloader (SBL) is transferred to
the ECU and then launched on the ECU using a specific UDS
command. Second, the application binary is sent to the ECU
and installed on it. SecUp supports both the use of an SBL
and the application binary as well as an approach where the
application binary is directly installed without using an SBL.

In Table II the duration of the wireless data transfer, where
the SBL and the application SW is transferred from the DT to
the WVI, is compared with time required to install the SBL
and the application SW on the ECU via CAN. The measured
SW update duration using the Volvo ECU is also used as a
benchmark for the evaluation of AURIX and its implemented
SW update features. The results reveal that the wireless data
transfer (including data transfer, integrity check, etc.) is 12
times faster than forwarding the binary using CAN and thereby
corresponds to the results presented in Table 1. Thus, it makes
sense that the WVI autonomously controls the data transfer to
the ECU once the binary was received from the DT (i.e., no
permanent wireless connection to the DT needed). The WVI
then informs the DT when the SW is installed on the ECU
successfully or when any problems occur.

B. Wireless SW update analysis using AURIX ECU

The AURIX ECU described in Section VI-D was used
to further evaluate SecUp and its features. Therefore, the
SW implementation of SecUp’s core nodes, the DT and the
WVI, were running on BBBs. These BBBs are connected
to a measurement PC via USB to control the measurements
and to collect the results. Per measurement campaign (i.e.,
one per mode) 20 wireless SW updates were performed and
the duration of each single step, as already described in
Section VII-C, was measured. These steps are then grouped
in i) Connection-related, including the DT discovery and
the authentication between DT and WVI, ii) ECU-related,
encompassing the initialization of the SW update and the
corresponding authorization step between WVI and ECU, iii)
Upload, i.e., the wireless data transfer, and iv) Download, the
data transfer via CAN as well as the installation of the SW on

the ECU. This setup allows to compare the overall duration of
a SW update w.r.t. the used update mechanism and additionally
to analyze the latency added by each step.

To compare the SW update duration of both the Volvo
FlexECU and the AURIX ECU, a SW binary for AURIX
was created using Hightec Studio, the recommended SW
development tool for AURIX. The resulting .hex file (i.e.,
the binary) was developed to have the same size as the
Volvo FlexECU secondary bootloader (SBL) plus the size
of the application SW (i.e., 67 KB + 378 KB = 445 KB).
Although the .hex file contains all the information needed
for the wireless SW update, the file format is not suitable
to directly analyze the binary w.r.t. to partial SW updates and
therefore a parser was developed to transform the .hex file
in a so-called .phex (i.e., parsed hex) file format. In a .phex
file, each line represents a block of the SW binary and it can
therefore be used to check if a partial SW update is possible by
comparing the lines of the SW versions. A further advantage
of this file format is that the .phex file is smaller than the
corresponding .hex file: the binary used for the evaluations
is originally stored in a .hex file with 445 KB and can be
transformed to a .phex file of about 316 KB.

1) Volvo FlexECU and AURIX ECU comparison: in a
first evaluation step the SW update duration using both the
FlexECU and AURIX are compared. The results presented in
Table III show that AURIX can be updated more than twice as
fast. This is due to: i) the initialization process on ECU level
(i.e., start a programming session and handle authorization) is
ten times faster on AURIX compared to the FlexECU due to
the higher CPU power available, ii) the wireless data transfer
is about 30% faster as the .phex is 29% smaller than the sum
of SBL plus application SW, and iii) the data transfer on CAN
(both ECUs are using a CAN bus with 500 Kbits/s) and the
storage of the binary is close to three times faster on AURIX
as the Volvo ECU first has to store and start the SBL and then
load, store, and start the application SW.

2) Partial SW update evaluation: this experiment shows the
benefits of a partial SW update compared to a traditional SW
update. A SW update is often required due to a necessary bug
fix or to update/adapt a parameter field of the ECU. In these
cases, most parts of the SW remain unchanged and only some
bytes have to be changed. To illustrate this, two different SW
applications for AURIX were developed. The size of the .hex
files of both versions is still 445 KB and they are utilizing
a parameter field of 1024 byte in total. This parameter field
is stored in a dedicated memory section of the AURIX ECU
(see also Figure 3) and is the only difference between the SW
versions. When utilizing partial SW updates, only the section
containing the parameter field (1 KB) must be transferred to
the ECU instead of transferring the entire binary.

In Table III the impact on the SW update duration is shown:
a partial SW update is about six times faster compared to the
normal update using an AURIX ECU (i.e., a duration decrease
of 83%). This is mainly due to the fact that less data has to
be transferred wirelessly from the DT to the WVI (a speed-
up of 98%) as well as from the WVI to the ECU via CAN
(about twenty times faster). The benefit of a partial SW update,
however, strongly depends on the memory architecture of an
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TABLE I

DURATION OF ALL REQUIRED STEPS IN MS OF A WIRELESS SW UPDATE W.R.T. SECURITY MECHANISMS ON NETWORK AND APPLICATION LAYER
Nw/Appl | Total Discovery Authentication | Init SW update | Seed&Key Upload Download Validation

onjon 491933 | 3.2 (<0.1%) | 23664 (4.8%) | 1900,8 (3.9%) | 509,8 (1.0%) | 65854 (13.4%) | 37315,3 (715.9%) | 502.4 (1.0%)
off/on 47167,1 | 3.1 (<0.1%) | 2360,4 (5.0%) 1992,0 (4.2%) 504,2 (1.1%) | 5414,2 (11.5%) | 36380,2 (77.1%) | 505,1 (1.1%)
on/off 43745,6 | 3,2 (<0.1%) | 1,88 (<0.1%) 1761,9 (4.0%) 510,7 (1.2%) | 3756,0 (8.6%) 37200,2 (85.0%) | 503,1 (1.2%)
off/off 41528,6 | 3.6 (<0.1%) | 0,66 (<0.1%) 1764,67 (4.3%) | 509,0 (1.2%) | 2445,0 (5.9%) 36294,8 (87.4%) | 502,7 (1.2%)

TABLE 11 Federal Ministry BMVIT under the program “ICT of the

SW UPDATE DURATION: SW IS TRANSFERRED FROM A DT TO A WVI
UTILIZING IEEE 802.11S AND THEN FORWARDED TO A ECU viA CAN

[ Binary type [ Binary size [ On 11s [ On CAN | Update duration |
SBL 67KB 0.503s 6.268s 6.771s
Application | 375 KB 2.527s 30.664s 33.191s

ECU as well as on the difference of two SW versions.

3) Parallel SW update evaluation: in the last evaluation
step parallel SW updates are analyzed. These updates can be
very beneficial in situations (see scenarios described in Section
IV) where the same SW version shall be installed on ECUs
integrated in several vehicles. This is of particular importance
for the assembly line as well as for service centers when big
vehicle recalls (e.g., due to a SW bug) are necessary, because
the update can be performed on all vehicles simultaneously.

In the performed experiment two WVIs prototypes, each
connected to an AURIX ECU, were wirelessly connected to
the same DT. Instead of performing the SW update sequen-
tially, the SW binary was installed on both ECUs in parallel.

The evaluation results presented in Table III show that the
parallel update duration is increased by about 25% compared
to a normal wireless SW update. This is due to the fact,
that the required steps cannot by parallelized completely.
However, parallel SW updates are still way faster (in this
case 75% faster) compared to performing normal SW updates
sequentially (i.e., performing a SW update two times in a row).

IX. CONCLUSION

In this paper SecUp, a generic framework enabling se-
cure and efficient wireless SW updates is proposed. SecUp
is designed and implemented to fulfill the requirements of
several application scenarios: vehicle development, vehicle
assembly line, vehicle maintenance, and OTA updates. SecUp
encompasses efficient wireless SW update features such as
parallel SW updates, where the SW of several vehicles is
updated simultaneously, and partial SW updates, where only
the changed parts of a SW binary are transferred and installed
on an ECU. This paper also includes a description of the
properties of the utilized IEEE 802.11s network and illustrates
the designed cross-layer security concept used by SecUp.

A comparison of the developed SW update mechanisms
show the benefits of utilizing advanced update features.
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