
ChirpBox: An Infrastructure-Less LoRa Testbed

Pei Tian1,3, Xiaoyuan Ma2, Carlo Alberto Boano5, Ye Liu4, Fengxu Yang1,6,
Xin Tian1, Dan Li1�, and Jianming Wei1

1. Shanghai Advanced Research Institute, Chinese Academy of Sciences, China 2. SKF Group, China
3. University of Chinese Academy of Sciences, China 4. Nanjing Agricultural University, China

5. Institute of Technical Informatics, Graz University of Technology, Austria
6. School of Information Science and Technology, ShanghaiTech University, China

{tianpei2018, tianx, lid, wjm}@sari.ac.cn ma.xiaoyuan.mail@gmail.com
cboano@tugraz.at yeliu@njau.edu.cn yangfx@shanghaitech.edu.cn

Abstract
A key obstacle hindering the development of large-scale

LoRa testbeds outdoors is the common lack of a backbone
infrastructure allowing to easily communicate with the nodes
and supply them with power. As a result, many LoRa instal-
lations are just deployed indoors or only support a handful
outdoor devices, which does not allow proper testing.

In this paper, we present ChirpBox, an infrastructure-less
low-cost testbed in which the LoRa nodes are used not only
to run experiments, but also to orchestrate all operations, in-
cluding the dissemination of firmwares and the collection of
log traces. We achieve this, among others, by developing an
all-to-all multi-channel protocol based on concurrent trans-
missions that allows an efficient communication over multi-
hop LoRa networks. After presenting ChirpBox’s design and
implementation, we deploy a test installation to evaluate its
performance experimentally and showcase its operations.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—wireless communication;
C.4 [Computer Systems Organization]: Performance of
Systems—measurement techniques
General Terms

Measurement, Experimentation, Performance, Design

Keywords
LoRa Communications, Testbeds, Wireless

1 Introduction
Low-power wide area networks (LPWANs) are becoming

a fundamental building block of the Internet of Things (IoT),
as they allow to connect low-power devices over very large
geographical areas using low-cost radio transceivers [1, 2].

This work was done when Xiaoyuan Ma was at Shanghai Advanced

Research Institute, CAS.

LPWAN technologies, indeed, enable long-range communi-
cation up to tens of km in both rural and urban areas, with
current consumptions in the order of tens of mA only [3].
This empowers the deployment of large-scale systems and
the creation of attractive IoT applications such as precision
agriculture [4], smart metering [5], water distribution mana-
gement [6], air quality monitoring [7], and smart lighting [8].

Among existing LPWAN technologies, LoRa is currently
the most widespread and well-known [9]. On the one hand,
this is due to the maturity and large availability of its chipset:
LoRa was indeed one of the first LPWAN solutions to be de-
signed (back in 2009 by Cycleo) and brought to the market.

On the other hand, in contrast to other solutions lever-
aging licensed bands and/or requiring subscription (e.g.,
NB-IoT, LTE-M, and Sigfox), LoRa uses the sub-GHz unli-
censed spectrum and allows users to freely deploy their own
network, without any servicing costs and limitations on data
traffic (besides regional duty-cycle constraints). Thus, one
can enjoy lower operating costs while maintaining full own-
ership and control of the network infrastructure.

These properties, combined to a high receiver sensitivity
thanks to the adoption of chirp spread spectrum modulation,
have driven a large body of research and standardization
activities proposing several networking solutions on top of
LoRa. One of these is LoRaWAN [10], the reference ar-
chitecture and medium access control protocol standardized
by the LoRa Alliance, which specifies a star topology where
end-devices interact with LoRaWAN gateways. Other ex-
amples include multi-hop communication protocols such as
RLMAC [11], as well as solutions exploiting the concurrent
transmissions principle [12, 13]. Besides novel networking
protocols, the community has also been active in researching
better coding schemes for data recovery [14, 15], enhanced
link quality estimation techniques [16], improved strategies
for an optimal parametrization of physical layer settings [17],
as well as several other aspects improving the reliability and
overall performance of LoRa-based communications [18].

LoRa testbeds and their limits. In order to develop, debug,
and optimize such solutions, as well as to benchmark the
performance of LoRa-based protocols, testbed facilities play
a crucial role. Indeed, testbeds provide developers with a
controlled (but realistic) testing environment and with many
tools facilitating experimentation, such as the automated

scheduling of test runs, the reprogramming of target nodes
with new firmware, the collection of log traces for offline
evaluations, and the accurate tracing of GPIO events [19, 20].

Several testbed installations support experimentation on
LoRa nodes [21]: well-established IoT facilities such as
FlockLab 2 [22] and FIT IoT-Lab [23], newer heterogeneous
testing environments such as LinkLab [24] and NITOS [25],
as well as facilities specifically built for testing LoRa-based
systems [26, 27, 28] and for performing city-wide evalua-
tions [29, 30]. However, most of these testbeds are not open
to the public and, those who are, exhibit several limitations.

On the one hand, target nodes are often deployed in in-
door environments with a very high density, e.g., in a single
room [23, 24]. Given that LoRa is meant to be used outdoors
for communicating over long distances, such installations
are not representative of typical deployments. On the other
hand, the few testbeds having nodes deployed outdoors (e.g.,
FlockLab 2) support only a handful devices, and hence do not
allow for large-scale testing, which is very important when
evaluating the performance of multi-hop protocols.
The gap to be filled. One of the key reasons for the lim-
ited availability of outdoor testbed facilities supporting LoRa
experimentation is the complexity in putting together a back-
bone infrastructure. The latter is often at the core of any IoT
testbed: indoor facilities make often use of a wired back-
bone to (i) provide a stable power supply for the target nodes,
(ii) disseminate the firmware to be tested and reprogram all
devices, (iii) share a common time-scale for determining the
beginning of a test run and for computing time-related statis-
tics, as well as to (iv) collect log traces for offline analysis.

Traditionally, Ethernet and USB connections are used
for these purposes [31, 32, 33], given their ubiquitousness
and easiness of installation inside buildings. However, on
rooftops and in rural areas, it is not only hard to permanently
mount nodes and pull cables, but it may even not be possible
to have power outlets at one’s disposal. Although cellular
technologies (e.g., 3G/4G) can be used to replace the wired
Ethernet back-channel and allow a direct connection with
the target nodes, they do not represent an ideal solution.
On the one hand, the use of cellular networks for data trans-
mission incurs traffic charges, which increases the opera-
tional costs. On the other hand, the availability of mobile
service in rural and remote areas cannot be given for granted:
such settings are actually those targeted by LoRa systems.
Besides, in case one is unable to power by mains the de-
vices in the testbed (i.e., the target nodes need to be battery-
powered), energy efficiency becomes a major concern, which
precludes the use of power-hungry communication modules
and calls for solutions allowing to communicate with the
target nodes using a low-power wireless technology.
Our contributions. This paper presents ChirpBox, a low-
cost solution allowing to easily set up a LoRa testbed out-
doors, even when no wired infrastructure is available to com-
municate with the target nodes and supply them with power.

Unlike most IoT testbeds, ChirpBox does not make use of
any observer node. The latter is typically a power-hungry de-
vice (e.g., based on Raspberry Pis or BeagleBones [22, 31])
used to host (i.e., to power, program, stimulate, and profile)
one or more target nodes [34]. Instead, in ChirpBox, target

nodes are battery-powered independent entities connected
via a multi-hop network to a control node, which serves as an
interface with the user. This is achieved by equipping each
target node with two firmwares, which are stored on separate
memory banks: a daemon orchestrating the node’s activities,
and a firmware under test (FUT). The daemon takes care of
(i) correctly receiving, storing, and executing the FUT pro-
vided by the user via the control node, (ii) diagnosing the
connectivity among nodes, (iii) triggering the execution of a
test run at a given time, as well as (iv) sending the log traces
collected during a test run back to the control node.

Unique feature of ChirpBox is that all communications
between the testbed nodes to prepare, set up, and finalize a
test run are carried out using the same LoRa radio on which
the FUT is deployed. This allows to employ the same hard-
ware both for testing and for orchestrating the testbed op-
erations, hence minimizing the overall costs. To efficiently
disseminate and collect information across the testbed using
LoRa, we implement LoRaDisC, an efficient all-to-all multi-
channel protocol based on concurrent transmissions (CT)
that can cope with LoRa’s low data rate while ensuring that
the regional duty-cycle constraints are met. Such protocol is
also used to diagnose the connectivity among testbed nodes.

We build a prototype of ChirpBox using off-the-shelf
components only, and deploy a test setup with 21 target
nodes on a University campus to showcase its functionality.
Our implementation makes use of target nodes based on an
STM32 Nucleo board connected to an SX1276 radio – a
common platform used by the LoRa community [35, 36].
The only hardware addition are a real-time clock, used to
timely schedule the execution of test runs, as well as a GNSS
module, used to provide all nodes with the same time-scale
and to allow an accurate profiling of GPIO events. Each
node, powered by Li-ion rechargeable batteries, is enclosed
into a water-tight packaging and can be deployed freely,
which guarantees maximum flexibility during installation.

We further carry out an experimental evaluation showing
the performance of LoRaDisC’s CT-based collection and dis-
semination primitives built on top of LoRa. The evaluation
also quantifies the overhead of setting up and finalizing a
test run in terms of both latency and energy consumption,
which gives us the ability to infer the average lifetime of
a target node. Additionally, we demonstrate ChirpBox in
action by benchmarking the performance of several LoRa-
based protocols. Finally, we make our software implementa-
tion open-source1, in order to provide the community with a
ready-made low-cost solution and foster experimentation.

This paper proceeds as follows: we provide an overview
of ChirpBox’s architecture in Sect. 2 and detail its hardware
and software components in Sect. 3. We then experimentally
evaluate ChirpBox’s performance in Sect. 4, and show ex-
emplary uses of the testbed in Sect. 5. After summarizing
related work in Sect. 6, we conclude this paper in Sect. 7,
along with a discussion of future work.

2 ChirpBox: Overview
Fig. 1 shows ChirpBox’s architecture, which allows de-

ployments in outdoor areas where no infrastructure is avail-
able – neither to communicate with the target nodes, nor to

1 https://github.com/sari-wesg/ChirpBox.git

Control node collects logs and
statistics from all target nodes

Control node disseminates firmware
under test to all target nodes

Control
node

CContr
d

CC

Target nodes
Li-ion recharg.

batteries
(Nitecore NL1834)

LoRa radio
transceiver

(Semtech
SX1276MB1MAS)

Micro-controller and
programming platform
(STM32 Nucleo L476RG)

Real-time clock
and GNSS module

(Maxim DS3231 +
Navspark-GL)

LoRaDisC Target node’s
hardware

LoRaDisC

Figure 1: ChirpBox’s architecture: the target nodes are
used not only to run tests, but also to disseminate the FUT
and a test run’s settings, as well as to enable the collec-
tion of all logs after a test run has completed. All testbed
nodes are homogeneous and based on off-the-shelf hard-
ware.

supply them with power. All nodes in ChirpBox are identical
from an hardware viewpoint and entirely built using off-the-
shelf components, as detailed in Sect. 3.1. The target nodes
embedding a LoRa radio are used not only to run tests, but
also to orchestrate the testbed’s activities. ChirpBox, indeed,
does not use any power-hungry observer: test runs are sched-
uled by the user via a control node, which disseminates the
FUT and the run’s configuration to all target nodes, as well
as collects all the logs at the end of a test run using LoRa.
Control node. ChirpBox’s control node acts as an inter-
face with the user: it consists of a desktop PC or laptop
connected via USB to a LoRa node, which is based on an
STM32L476RG board attached to a Semtech SX1276, as
detailed in Sect. 3.1. The user can schedule a new test run
by uploading a new firmware to be tested (bin file) and by
specifying a number of settings, such as the duration of a test
run, the target nodes that should be included or excluded in
the test, and whether a check up of the testbed’s health status
should be carried out before the test run. ChirpBox also al-
lows to binary patch the FUT, so to seamlessly change user-
defined protocol parameters. This binary patching feature
allows ChirpBox to test the same firmware using different
parameters without the need of re-disseminating it to all tar-
get nodes [37]. The test run’s settings and user-defined pro-
tocol parameters are stored in a json file. A python script
parses this file as well as the provided FUT, and instructs the
LoRa node via serial port about the information that needs
to be disseminated to the target nodes. The same script also
collects the results at the end of a test run, such as the logs
from each target node and the testbed’s health status, return-
ing them to the user.
LoRaDisC protocol. In order to disseminate the FUT as
well as the test run configuration to all battery-powered tar-
get nodes and in order to collect logs and health status in-
formation back to the control node, a reliable and efficient
dissemination/collection protocol is fundamental. Indeed,
LoRa’s data rates are limited to hundreds or a few thousands
bps depending on the employed spreading factor (SF), and

every device needs to comply with the regulated duty cycle
limits, which are set to 1% in most regions. Having the con-
trol node individually communicating with each target node
(e.g., using LoRaWAN) is hence not viable, as the additional
transmissions to disseminate and collect data to/from the tar-
get nodes would represent an overkill in terms of delay. Fur-
thermore, a multi-hop dissemination and collection is desir-
able to avoid the need of having all target nodes in range of
the control node, which would limit scalability. To this end,
we design and implement LoRaDisC, an all-to-all protocol
based on concurrent transmissions that allows a reliable and
efficient multi-hop collection and dissemination across all
LoRa nodes in the testbed. LoRaDisC uses multiple flooding
rounds during which nodes communicate on multiple chan-
nels: this allows to minimize collisions, maximize through-
put, and speed-up the information exchange across nodes,
while ensuring compliance to the regional duty-cycle regula-
tions. Moreover, as detailed in Sect. 3.3, LoRaDisC embeds
optimizations to support multiple SFs, avoid wasteful recep-
tions, and to increase the reliability of communications.
Target node’s operations. To use the target nodes for man-
aging the testbed operations and for experimentation inter-
changeably, we exploit the dual-bank flash memory feature
of the STM32L476RG micro-controller, which allows us to
equip each target node with two firmwares. We store on the
first memory bank a daemon firmware that takes care of the
synchronization to the control node, as well as of receiv-
ing, transmitting, and forwarding messages in the context
of LoRaDisC’s data dissemination and collection primitives.
The daemon is also in charge of storing and verifying the re-
ceived FUT, of triggering the test run’s execution based on
the control node’s instructions, as well as of conveying the
log traces collected during the last test run back to the con-
trol node. The FUT is stored in the second memory bank
and can log information at a given flash address by calling
the log to flash() function provided by ChirpBox’s ap-
plication programming interface (API). ChirpBox switches
between the two memory banks with the help of the daemon
and RTC module, as detailed in Sect. 3.2.
Testbed management features. In order to facilitate exper-
imentation, ChirpBox also provides the user with means to
monitor the testbed’s health status and evaluate the connec-
tivity among nodes. When scheduling a new test run, the user
can for example set the connectivity evaluation flag,
which instructs ChirpBox to add a short all-to-all commu-
nication phase to estimate the link quality and packet recep-
tion rate across all nodes. This way, the developer can infer
each node’s neighbours, as well as the presence of asym-
metric links. During this phase, the evaluation results along
with the nodes’ health status (e.g., the battery consumption)
are returned to the user using the same collection primitives
employed to convey the log traces back to the control node.
ChirpBox also provides tools to update the daemon wire-
lessly, as well as additional API commands to timestamp the
logs: we elaborate on these additional features in Sect. 3.4.

3 ChirpBox: Design and Implementation
We next describe ChirpBox’s design and implementation

in detail. We start by describing a target node’s hardware
(Sect. 3.1), and we then illustrate its internal activities and

Config & time

Timestamp
PPS

Event
On/Off

Alarm
NRST

PC0

PC5

PC2

PB6

SX1276MB1MAS

DS3231MPMB1

P1PPS

NAVSPARK-GL

GNSS
module

RTC
module

SCL
SDA

LoRa
module

DIO0
DIO3

SCK
MISO
MOSI
NSS

PA5

PA7
PA6

PA10
PB4

TXD2

TRIG

VCC33

STM32L476RG

PA11
PA12
PB12

PB11
PB10

Valid header
RX/TX done

SPI

M
ic

ro
-c

on
tro

lle
r b

oa
rd

200 μF

Figure 2: Simplified sketch of the interconnections be-
tween the main hardware components in a ChirpBox
node.

flash space allocation (Sect. 3.2). We further present the de-
sign of LoRaDisC and explain how it is used for dissem-
ination and collection (Sect. 3.3), as well as shed light on
ChirpBox’s testbed management features (Sect. 3.4).

3.1 Anatomy of a ChirpBox Node
As shown in Fig. 1, ChirpBox’s nodes employ an

STM32L476RG Nucleo board attached to a Semtech
SX1276MB1MAS shield, which supports operations in the
470 and 868 MHz ISM bands. This is a popular combination
that is also used to build some of the LoRa nodes forming
“The Things Network” public community initiative [38].

We further equip ChirpBox’s nodes with a GNSS module
and antenna (NavSpark-GL [39]) to provide all nodes with
an absolute and common timescale, as well as with a real-
time clock (RTC) module (Maxim DS3231MPMB1 [40])
connected with the reset pin of the micro-controller to pre-
cisely control the duration of each test run. Each target node
is also equipped with four Li-ion rechargeable batteries with
a capacity of 3400 mAh (Nitecore NL1834) and is enclosed
into a watertight IP 67 casing. Note that the control node
does not require batteries, as it can be powered via USB. Be-
sides control and target nodes, no additional hardware is nec-
essary to set up ChirpBox, which allows to keep costs low:
excluding the main board and the LoRa radio, the remaining
components are inexpensive and well below 100$ per node.

Fig. 2 further shows the interconnections between the
main hardware blocks in ChirpBox. The LoRa transceiver
communicates with the STM32L476RG micro-controller via
SPI and it is further connected to two interrupt pins to signal
when a packet has been transmitted or received (DIO 0) as
well as when a valid packet header is received (DIO 3). With
the help of these interrupt pins, we can implement support
for CT-based LoRa communication and filter invalid headers,
as explained in Sect. 3.3. The micro-controller is connected
to the RTC module via I2C and can retrieve the current time
when second-level accuracy is acceptable and the use of
GNSS is not possible or too energy-expensive. Moreover, the
micro-controller can instruct the RTC module to generate an
alarm interrupt (falling edge) at a given time: this is used to
precisely time the duration of an experiment and trigger the
completion of a test run. Specifically, the INT/SQW pin is
connected to the reset pin of the STM32L476RG: a 200 μF
capacitor transforms the falling edge into a negative pulse
that can reset the micro-controller. The STM32L476RG is
also directly connected to the Navspark-GL using multiple

Micro-controller (STM32L476RG)
Memory bank 1 (512 kB)

LoRaDisC
Multi-hop data
dissemination

Multi-hop
data collection

Firmware under test
(FUT)

Log traces

ChirpBox’s Daemon

Daemon’s functions

Daemon
upgrade

Collection of
log traces

Dissemination
of FUT

Memory bank 2 (512 kB)

FUT storage
& verification

Dissemination of
test run settings

Start execution
of a test runConnectivity evaluation

ChirpBox’s application programming interface (API)

log_to_serial()
timestamp_event()

compute_energy()
obtain_rtc_time()

pps_interrupt()

log_to_flash()
flash_bank_switch()

Figure 3: Each target node contains a daemon (coordi-
nating its activities) in one memory bank and the FUT
on a second bank. Many of the daemon’s functions are
built upon LoRaDisC’s communication primitives. An
API provides access to common functions and abstracts
the underlying hardware, simplifying the development of
the FUT.

GPIO pins: this allows to turn on/off the GNSS module at
runtime and minimize the energy consumption. Using the
Navspark-GL, the micro-controller can synchronize the lo-
cal clock with the GNSS time by exploiting the PPS signal.
Furthermore, the micro-controller can also accurately times-
tamp events using the TRIG pin and receive the GNSS time
at which they occurred on the PC5 pin – a useful feature to
enable fine-grained debugging of distributed events.

The STM32L476RG micro-controller at the heart of a
ChirpBox node embeds two flash memory banks and can be
configured to boot from any of the two by setting the BFB2
(i.e., “boot from bank 2”) bit accordingly at runtime. We load
a daemon taking care of orchestrating a target node’s activi-
ties on the first memory bank, and keep the second memory
bank to store the FUT and the logs of the current test run, as
illustrated in Fig. 3. At the beginning and at the end of a test
run, the micro-controller is reset and the boot configuration is
changed accordingly. The daemon embeds several functions
that are used to coordinate the target node’s operations, as de-
tailed in Sect. 3.2, most of which are based on LoRaDisC’s
dissemination and collection primitives. ChirpBox further
provides an API facilitating logging and abstracting the func-
tions provided by the GNSS and RTC modules.

3.2 Target Node Operations
The daemon orchestrates a target node’s activities by per-

petually following the sequence of steps illustrated in Fig. 4.
By default, nodes are idle (i.e., in low-power mode) and pe-
riodically listen for SYNC messages originated by the con-
trol node (every 60 seconds in our implementation). These
messages are immediately re-transmitted by each target node
and flooded through the whole network. The SYNC messages
inform the target nodes whether any test run is scheduled
for execution and – if this is the case – notify the daemon
about the next step to be performed to prepare or run the
next test. Such steps follow a pre-defined order: at first, an
optional connectivity evaluation 1 can be carried out using
LoRaDisC as described in Sect. 3.4; after this step is com-

Bank 1
(daemon)

time

IDLE TEST RUN
(preparation & execution)

S
Y
N
C

IDLE IDLE

S
Y
N
C

Conn.
eval.

1

Conn.
coll.

2

FUT
diss.

3 4

Settings
dissem.

GNSS sync &
wait for start

5 6

FUT
execution

Reset &
switch bank

Switch bank
& reset

Logs
coll.

IDLE

FUT
verif.

7 8

Bank 2
(FUT)

Bank 1
(daemon)

S
Y
N
C

9

S
Y
N
C

S
Y
N
C

S
Y
N
C

S
Y
N
C

S
Y
N
C

Figure 4: Operations of a target node in ChirpBox: nodes
are typically idle and periodically look for SYNC mes-
sages from the control node. When a test run needs to
be executed, the SYNC message triggers the execution of
different activities.

pleted, the control node requests all target nodes to convey
back the collected results, also using LoRaDisC 2 .

The SYNC message can then notify the target nodes that
its subsequent dissemination messages sent using LoRaDisC
will contain the next firmware to be run 3 . The firmware is
received and stored on the second memory bank on the fly2;
its integrity is verified by the daemon as soon as the dissem-
ination is completed 4 . Note that these two steps are also
optional, as the next test run could make use of the previous
firmware with different parameters, as explained in Sect. 2.
Similarly, the control node also disseminates the next run’s
settings 5 , e.g., start time, duration, and FUT parameters.

If the target node is expected to actively take part in the
next test run, the daemon shortly activates the GNSS module
and synchronizes the target node’s local clock to UTC (if
necessary) by exploiting the PPS signal; it then configures
the RTC module to trigger an alarm interrupt at the expected
completion time of the test run, and remains in low-power
mode until the instructed start time of the test run 6 . At
this point, the daemon configures the BFB2 bit to 1 and resets
the micro-controller3 7 : this way, the execution of the FUT
from the second memory bank is triggered seamlessly.

Once the duration of a test run has elapsed, the target node
is reset by the alarm interrupt generated from the RTC mod-
ule. Using the current GNSS time, the reset handler in the
STM32L476RG double-checks that the RTC alarm time has
passed (it otherwise waits until then), and triggers a soft re-
set after clearing the BFB2 bit and re-enabling the flash write
protection of bank 1 8 . Hence, the target node then boots
from the first memory bank and starts running the ChirpBox
daemon, which resumes its operations. The next SYNC mes-
sage would instruct all target nodes to send the logs stored
during the previous run in a given flash portion to the control
node using LoRaDisC’s collection primitive 9 . Thereafter,
the target node enters low-power mode and wakes up at reg-
ular intervals to receive the SYNC messages and react accord-
ingly. Note that during a SYNC flood, each node uses channel
hopping and adopts a “listen before talk” (LBT) strategy to
comply with the local duty cycle regulations – the same prin-
ciple used by LoRaDisC and detailed in Sect. 3.3.

2 When using the STM32L476RG micro-controller, it is possible to

write on a bank without disrupting code execution, i.e., a piece of code exe-

cuting in one bank can read and write the content restored in the other bank.
3 The daemon also enables the flash write protection of memory bank 1,

in order to prevent unintended (and unwanted) modifications by the FUT.

Configuration round
• primitive type: dissemination
• number of rounds (k)
• payload length (P)
• generation size (M)
• number of nodes (N)
• communication

parameters

Configuration round
• primitive type: collection
• number of rounds (k)
• address of data in flash

(start & end)
• payload length (P)
• number of nodes (N)
• communication

parameters

Data dissemination primitive

1st

flooding
round

2nd

flooding
round

3rd

flooding
round

(k-2)th

flooding
round

(k-1)th

flooding
round

kth

flooding
round…

1st

flooding
round

2nd

flooding
round

3rd

flooding
round

kth flooding
round

(k-2)th

flooding
round

(k-1)th

flooding
round…

To disseminate M
messages of P bytes

To collect acknowledge
messages from N nodes

Data collection primitive
To collect messages of
P bytes from N nodes

time

time

One-to-all
All-to-all

C
O
N
F

C
O
N
F

To disseminate the
primitive configuration

Figure 5: LoRaDisC supports 2 communication primi-
tives: data dissemination and collection, consisting of an
initial flooding round and a series of one-to-all or all-to-
one rounds to disseminate, acknowledge, and collect in-
formation.

3.3 LoRaDisC
Most of ChirpBox’s operations build on top of LoRaDisC,

a multi-hop protocol that can support both one-to-all data
dissemination and all-to-one data collection on top of LoRa
nodes. LoRaDisC exploits concurrent transmissions (CT),
retaining their simplicity and advantages, such as low end-to-
end latency, high reliability, multi-hop communication with-
out routing strategy, and high energy efficiency [41].

LoRaDisC consists of a series of flooding rounds, the first
of which is a one-to-all round that contains the configuration
information for the following ones, as illustrated in Fig. 5.
The configuration information notifies the receiving nodes
about: (i) the primitive type, which is either dissemination or
collection, (ii) the number of messages M to be disseminated
or the start/end address in flash of the data that needs to be
collected, (iii) the payload length P used for the subsequent
messages, (iv) the number of subsequent flooding rounds
k, (v) the number of nodes in the network N, as well as
(vi) LoRa communication parameters such as SF, bandwidth,
transmission power, and coding rate to be used in the fol-
lowing rounds. Each flooding round contains a series of CT
slots, during which nodes blend packets using random linear
network coding (RLNC) and transmit random linear combi-
nations of previously received packets as in Mixer [42]. This
allows to improve the reliability during data dissemination
and the overall throughput during data collection. Moreover,
the use of coded packets in LoRaDisC helps increasing the
chances of successful delivery over unreliable channels.

During data dissemination, after a one-to-all flooding
round, an all-to-all round is used to ensure that all nodes have
received the previous information (i.e., to acknowledge the
correct reception of the data transmitted during the previous
round). To this end, each node sets a bit corresponding to
itself in a dedicated coding vector field of the LoRaDisC
header if all M messages have been received in the previous
one-to-all round. The node disseminating information (e.g.,
the control node) can then double-check whether all the bits
are set to one: if this is not the case, multiple blocks would
be retransmitted in the next one-to-all round.

Use of LBT and AFA. LoRaDisC’s design is strongly in-
fluenced by the spectrum access regulations for LoRa-based
systems, which severely limit the amount of transmissions

CT slot i CT slot i+1CT slot i-1 …
Time

Successful packet reception
Packet transmission

Packet reception failure

Sleep

CCA

The secondary channel
The primary channel

Time

Figure 6: LBT & AFA mechanisms introduced in
LoRaDisC.

that a device is allowed to perform. For example, in Eu-
rope, it is required that each LoRa device works with a
transmission duty cycle as low as 0.1 or 1% (depending
on the employed channel) when no polite spectrum access
technique is used. This corresponds to a maximum trans-
mission time of 3.6 or 36 s per hour on the selected chan-
nel. However, when a LoRa device uses polite spectrum ac-
cess by means of listen-before-talk (LBT) and adaptive fre-
quency agility (AFA), the duty cycle restrictions are much
less rigid [43]. LBT prescribes that a device carries out a
clear channel assessment (CCA): in case of a busy channel,
the device must either wait for a random back-off time or
change the employed frequency before the next CCA check.
The use of at least two frequencies for transmission is re-
ferred to as AFA. When both LBT and AFA are imple-
mented, the duty cycle restriction is loosened to 100 s of
cumulative transmission time per channel per hour, which
corresponds to a duty cycle ratio of 2.7% per channel [44].

In LoRaDisC, we hence embed both LBT and AFA to
enjoy a higher duty cycle per channel and to significantly
speed up the data transfer, as shown in Fig. 64. Accord-
ing to the spectrum access regulations [44, p. 55], before
each transmission, a node needs to keep listening for 5 ms
to make sure whether the channel is clear. Therefore, in con-
trast to classical CT-based protocols, where received mes-
sages can be immediately re-transmitted (e.g., within 196 μs
for IEEE 802.15.4 devices [45]), in LoRaDisC nodes need to
first complete the CCA check. The de-synchronization error
introduced by this additional LBT delay can be tolerated due
to LoRa’s low data rate compared to IEEE 802.15.4.

Each CT slot is assigned a primary and a secondary chan-
nel, as illustrated in Fig. 6. By default, at the beginning of
a CT slot, all nodes that are willing to transmit information
(nodes 1, 2, and 3 in this example) perform a CCA check
on the primary channel. If the latter is found to be idle, the
transmission is initiated after 5 ms (node 1). If the channel is
found busy due to surrounding RF activities (this is the case
for nodes 2 and 3), the node backs off for a given time and
performs a new CCA check on the secondary channel (initi-
ating the transmission after 5 ms if this is found to be idle).
Devices receiving information (nodes 4 and 5) listen by de-
fault on the primary channel: if data is available, they lock
on the channel and receive it (node 4). If no information is
available on the primary channel, nodes switch to the sec-
ondary channel (node 5). In our current implementation, the
employed channels vary over time to maximize throughput

4 Our implementation of LoRaDisC is generic and allows, in principle,

to disable the use of LBT and AFA, as shown in Sect. 4. However, this is not

recommended, as this results in longer delays when operating the testbed.

while complying to the local regulations: nodes derive the
primary and secondary channel to be used from the flooding
round number and the CT slot number, respectively.
PHY settings and frame length. For the first all-to-all con-
figuration round of LoRaDisC (as well as for ChirpBox’s
SYNC messages), the employed PHY settings are fixed at
compile time. Based on the data exchanged during the con-
figuration round, new PHY settings can then be used in suc-
cessive rounds. However, as PHY settings such as the SF
largely influence the time on-air of frames (and hence the
amount of transmissions a device can perform), LoRaDisC
needs to automatically adjust the maximum payload length
over time in order to comply to local regulations. Indeed,
whilst packets with up to 255 bytes payload are supported
in the LoRa PHY, local regulations may limit the maxi-
mum transmit time. Therefore, before calling the LoRaDisC
primitive (dissemination or collection), the transmitter (e.g.,
ChirpBox’s control node) computes the payload size accord-
ing to which SF is selected in the next flooding round. In our
implementation, the LoRaDisC header and footer is 14 bytes
in total for a network with 20 nodes: for this reason, only
spreading factors up to 11 can be supported in Europe5.
Use of hardware interrupts. Several protocols based on CT
have been developed recently, the vast majority of which on
top of IEEE 802.15.4 radios [41] and, quite recently, of BLE
transceivers [46]. A key difference when practically imple-
menting CT on top of LoRa is the lack of an interrupt signal
indicating that a start-of-frame delimiter (SFD) is transmit-
ted or received. The latter is typically used to synchronize
a node during a CT slot [42]. As no SFD interrupt sig-
nal is provided in most LoRa radios (including the SX1276
used in ChirpBox), we make use instead of the RX done
and TX done interrupts (DIO 0). The jitters of these signals
(1.48 ms and 43.6 μs respectively [47]) are acceptable given
that a CT implementation on LoRa can tolerate alignment
errors of 3 symbol times, i.e., up to 3.072 ms for the fastest
configuration (SF=7) [13]. We exploit also a second interrupt
signal (DIO 3), triggered upon the reception of a valid header,
to further improve the efficiency of LoRaDisC. As the data
rate of LoRa is rather low (e.g., a packet with a 182-byte pay-
load requires 312.58 ms to be received with SF=7 and almost
1 s with SF=9), we instruct nodes to immediately verify if the
byte following the received header corresponds to the well-
known LoRaDisC header. If this is not the case, the node
immediately turns off the radio to preserve its limited energy
budget6: this is especially useful to filter the transmissions
from co-located LPWANs.

3.4 Testbed Management Features
As discussed in Sect. 2, ChirpBox embeds a number

of features providing the user with means to monitor the
testbed’s health status and connectivity, to enable a fine-
grained time-stamping of events, as well as to upgrade the
daemon’s firmware and generate patch files.

5 The European Telecomm. Standards Institute, for instance, imposes a

maximum transmit time of 1 s [44]: this corresponds to a payload of at most

10 bytes when using a SF of 12, a bandwidth of 125 kHz, a coding rate of

4/5, a preamble length of 8 symbols, with explicit header and CRC enabled.
6 When receiving a 232-byte payload with SF=7, a node can avoid to

unnecessarily keep its radio active for 353.28 ms – saving 92% of energy.

Monitoring the testbed status. The control node can in-
struct all target nodes to periodically collect and send back
information in order to get a fine-grained picture of the
testbed health status and connectivity. For example, target
nodes may periodically be asked to measure their battery
voltage or their current on-board temperature, and to report
this information back to the control node. The voltage can
be used to infer the need for a battery replacement of spe-
cific target nodes. The on-board temperature can be linked
to the communication performance observed during a test
run, as recent studies have shown a strong correlation be-
tween the two [36]. All this information can be piggybacked
to the data collected by the control node at the end of a con-
nectivity evaluation phase (marked with 2 in Fig. 4). The
connectivity evaluation itself consists in a firmware instruct-
ing the target nodes to periodically transmit probe packets in
a round-robin manner. By reusing the GNSS timestamp, we
can make sure that only one target node acts as a transmitter
at anytime, which allows to gather a picture about the con-
nectivity across the various nodes in the testbed using differ-
ent PHY settings, such as SF, transmission power, and frame
length. Statistics about the packet reception ratio (PRR) are
updated by each node whenever receiving a valid packet and
persistently stored in flash. Once the connectivity evaluation
has completed, the statistics from all nodes are collected by
the control node using LoRaDisC’s collection primitive.
Application programming interface. Since there is no ob-
server connected to the target nodes in ChirpBox, the ability
of logging messages to flash with an accurate timestamp is
beneficial to developers investigating or debugging protocol
performance. To support them in this task, ChirpBox pro-
vides a low-level application programming interface (API)
giving access to common functions and abstracting the op-
erations of the underlying RTC and GNSS modules. For ex-
ample, when calling the log to flash() function, a target
node automatically writes in flash the requested information
along with the time of the request. ChirpBox also allows to
accurately timestamp GPIO events with a 6-byte Unix times-
tamp by calling the timestamp event() function. Further-
more, it also foresees on-site inspections where every target
node can be connected to a laptop, thereby redirecting logs
to be output on the serial port (log to serial() function).

Daemon upgrade. Whenever the user wishes to fix bugs and
upgrade the daemon with additional features, or to simply
change LoRaDisC’s configuration, a change in the daemon
firmware is necessary. To aid this task, ChirpBox provides a
function generating a patch file using jojodiff [48] and mak-
ing this available to the control node. When the patching
flag in a SYNC message is enabled, the aforementioned patch
file along with an MD5 verification is disseminated from the
control node with LoRaDisC’s communication primitive.

Upon reception of the patch file, ChirpBox’s daemon gen-
erates a patched daemon image in the second memory bank
and verifies it using janpatch [49]. If the produced image
is valid, the daemon switches to the second bank in the
same way as when executing a FUT. When running, the
patched daemon can realize the current memory bank using
the SYSCFG MEMRMP register: if it currently runs on bank 2,
it copies itself on bank 1. Thereafter, in the same way as at

the end of a FUT execution, ChirpBox resumes the execution
of the new patched daemon residing on the first bank. The
only difference compared to the execution of a classical FUT
is that the flash write protection of the first memory bank
should not be enabled before switching to the second one:
this would otherwise prevent the patched daemon to copy
itself to bank 1. Note that the same patching tools can be
applied to the FUTs, especially if two consecutive firmwares
differ only minimally: this allows the control node to drasti-
cally shorten the time required to disseminate the FUT.

4 Evaluation
We evaluate ChirpBox’s performance experimentally. To

this end, we set up a testbed of 21 nodes in a university cam-
pus over an area of 28 hectars, as shown in Fig. 7, and run a
series of tests to answer the following questions:

• What is the reliability of LoRaDisC during data collec-
tion and dissemination? How does its performance vary
as a function of the file size, the employed SF, and the
number of network nodes? What are the benefits intro-
duced by the LBT and AFA mechanisms? (Sect. 4.1)

• What is the overhead introduced by ChirpBox to or-
chestrate the testbed’s operations? How much energy
is consumed to prepare, run, and collect the results of
an experiment? How long can ChirpBox’s nodes oper-
ate before their battery depletes? (Sect. 4.2)

4.1 Performance of LoRaDisC
We start by evaluating the performance of LoRaDisC

when collecting and disseminating firmwares throughout the
network shown in Fig. 7. In our experiments, we make use
of a transmission power of 0 dBm: this results in a multi-hop
network with a diameter of 2 and 3 when using a SF of 11
and 7, respectively. Unless differently specified, in all our ex-
periments we use a generation size M = 16, a payload length
P = 232 bytes, and SF = 7; we also enable both LBT and
AFA mechanisms. Each experiment is repeated 3 times. The
control node logs the number of flooding rounds and records

50m

8
9 7

13 12

4

5

10
36

2

C

20
15

1
11 17 19

14

18 16

G

Figure 7: ChirpBox test installation in a University cam-
pus with twenty target nodes (green) and one control
node (red). The white circle marks the location of a Lo-
RaWAN gateway.

(a) Data collection (b) Data dissemination
Figure 8: LoRaDisC’s performance as a function of file
size.

Table 1: Size of exemplary firmwares and log traces.
Data to be transferred Size (kB) Primitive
LED toggling firmware 9.07 Dissemination

LoRaBlink firmware 61.0 Dissemination

Patch (LoRaBlink firmware with

different PHY settings)

0.11 Dissemination

ChirpBox’s daemon 131.0 Dissemination

Log traces for 512 GPIO events

with UNIX timestamp

4.0 Collection

Connectivity logs for 25 nodes

(single channel & SF)

0.1 Collection

the time necessary to complete a data collection or dissem-
ination using GNSS timestamps. All target nodes compute
their energy consumption in software using Energest [50],
following the methodology described in Sect. 4.2.
4.1.1 Performance as a function of the file size

We let the control node disseminate firmwares and collect
logs of different size to/from 20 target nodes using SF=7. We
select a file size between 0.1 and 100 kB, as these values are
representative of typical firmwares and logs, (see Table 1).

Fig. 8 depicts the time necessary to complete the collec-
tion/dissemination, as well as the average energy consump-
tion of all target nodes. As expected, the larger the file size,
the longer the duration of the data exchange and the energy
consumption. However, one interesting observation is that
the increase in energy and duration is not very significant be-
tween 0.1, 0.5, and 1 kB: this is due to the overhead caused
by LoRaDisC’s configuration round, which employs SF=11.

As a comparison, if one would use a LoRaWAN gate-
way to disseminate a FUT of 100 kB to all target nodes, at
least 462 packets with a payload of 222 bytes are necessary
(without accounting for any re-transmission), which requires
approximately 280 minutes with a 1% duty cycle (more than
seven times the amount of time taken by LoRaDisC). When
collecting small amount of data using a LoRaWAN gateway,
one would actually require less time than LoRaDisC (e.g.,
747.6 s instead of 962.0 s when collecting 4 kB). This is due
to the larger network diameter when using LoRaDisC over a
multi-hop network operating at low-power (0 dBm): in order
for the LoRaWAN gateway shown in Fig. 7 to successfully
communicate to all target nodes in a star topology, however,
a transmission power of 14 dBm is necessary.

In our experiments, all firmwares and logs have been re-
liably exchanged. Note that the numbers shown in Fig. 8
account for the necessary retransmissions: in average, when
disseminating data, the control node initiated 13.9% more
flooding rounds to carry data blocks that have not been ac-
knowledged by all nodes: the energy consumption caused by
these additional rounds is shown in dark red in Fig. 8b.

(a) Data collection (b) Data dissemination

Figure 9: LoRaDisC’s performance as a function of SF.

4.1.2 Performance as a function of the SF
Fig. 9 shows the time needed to complete the collection of

2 kB logs and the dissemination of a 50 kB firmware image,
as well as the average energy consumption of all target nodes
when using different SFs. As discussed in Sect. 3.3, we only
support SFs from 7 to 11, given that at most 10 bytes can be
sent with SF=12 in 1 s due to the European regulations [44].

As expected, the higher the SF, the longer the duration
of the data exchange and, correspondingly, the energy con-
sumption – despite the fact that a lower network diameter
can be achieved with a greater SF. Although the data rate
achievable when using SF=10 (or 8) is two times slower than
that of SF=11 (or 9), the relative differences in the time nec-
essary to complete the collection or dissemination between
these SFs are larger than two: this is linked to the limita-
tion on the maximum duration of a transmission (1 s), which
negatively affects the performance of higher SFs. Moreover,
during dissemination, one can notice that the proportion of
the re-transmission overhead decreases from 12.5% at SF=7
to only 4.5% at SF=11: this confirms that the use of a higher
SF increases the robustness of LoRa communications [12].
4.1.3 Performance as a function of the network size

We execute a series of experiments selecting randomly
only a portion (5, 10, and 15) of the target nodes in the net-
work: this allows us to observe the impact of the network
size on the performance of LoRaDisC’s collection and dis-
semination. Fig. 10 shows the time necessary to complete
the collection of 2 kB logs and the dissemination of a 50 kB
firmware to/from a different number of target nodes. The
figure also depicts the average energy consumption of the
target nodes, indicating the relative differences across dif-
ferent scenarios. As one would expect, the duration of the
data exchange and the energy consumption increase with
the number of target nodes. Nevertheless, the figure clearly
shows the benefits of the CT-based approach embedded in
LoRaDisC, as well as those deriving from the use of net-
work coding. Indeed, the increase in both the duration of
the data exchange and the energy consumption when dou-
bling or tripling the network size (e.g., from 5 to 10 or 15
nodes) is relatively small: this is because a node is likely to
obtain a missing frame from one of its neighbours through-
out the flood. Note also that, as in all previous experiments,
all firmwares and logs have been reliably exchanged.
4.1.4 Benefits introduced by LBT and AFA

Fig. 11 shows the benefits introduced by the adoption of
the LBT and AFA mechanisms in LoRaDisC. The figure
shows the effective throughput over one hour for data col-
lection and dissemination on a network with 20 target nodes
when the two mechanisms are enabled or disabled. When

(a) Data collection (b) Data dissemination
Figure 10: LoRaDisC’s performance as a function of the
number of target nodes in the network.

(a) Data collection (b) Data dissemination
Figure 11: LoRaDisC’s throughput when enabling or dis-
abling the LBT/AFA mechanisms for different SFs.

disabling AFA, LoRaDisC only makes use of one channel;
when AFA is enabled, 10 channels are used. LoRaDisC en-
sures that all nodes comply with the regulations, i.e., a trans-
mission time of at most 100 s and 36 s per hour per channel
when LBT is enabled or disabled, respectively.

When using a SF of 7, LoRaDisC can disseminate
171.5 kB and collect 16 kB of data every hour when LBT
and AFA are enabled. This is 1.4, 5.7, and 14.3 times more
than when using AFA only, LBT only, and neither of the
two. Only 240 bytes and 80 bytes can be disseminated and
collected, respectively, when using a SF of 11 without LBT
and AFA. This is 2.0, 9.7, and 37.2 times less than when us-
ing AFA only, LBT only, and both of them. Note that, when
disabling both mechanisms, the regulations limit data trans-
mission to 36 s per hour: this especially impacts larger SFs
(due to their slower data rate) and emphasizes the benefits of
LoRaDisC’s flooding of information across the testbed.

4.2 Overhead and Energy Consumption
We analyze next the overhead introduced by ChirpBox

when orchestrating the testbed’s operations and break down
the energy expenditure in each of the phases used to prepare,
run, and finalize an experiment.
4.2.1 Energy measurements

We use a Keithley DMM7510 digital multimeter to moni-
tor the current and voltage of a ChirpBox node during differ-
ent states. The corresponding power draw and the duration
of each state is listed in Table 2. Among others, one can note
how the LoRa radio consumes more power while transmit-
ting than while receiving, and that the energy consumption
of flash operations differs for the two memory banks.

We use the values in Table 2 as input for Energest [50],
the software-based energy estimation used throughout this
evaluation. To ensure that this provides sufficiently accurate
estimates, we compare the energy consumption estimated by
Energest with the one measured in hardware using D-Cube

Table 2: Measured energy consumption in various states.
State Power (mW) Duration (s) Energy (mJ)
MCU @running mode 80.96 1 80.96

MCU @sleep mode 53.51 1 53.51

MCU @deep-sleep mode 18.84 1 18.84

Flash writing (bank 1) 47.92 0.022 (2 kB) 1.06

Flash erasing (bank 1) 46.03 0.022 (2 kB) 1.01

Flash writing (bank 2) 73.13 0.022 (2 kB) 1.61

Flash erasing (bank 2) 62.86 0.022 (2 kB) 1.38

Radio TX (14 dBm) 287.65 0.389 111.90

Radio TX (10 dBm) 244.79 0.389 95.23

Radio TX (0 dBm) 207.37 0.389 80.67

Radio RX (BW 125 kHz) 181.72 0.389 70.69

Obtain GNSS time 324.71 0.04 12.99

Switch memory bank 116.10 0.077 8.94

Sync 1 2 3 5 GNSS
sync

Wait for
start

6

FUT
execution 9

4
Figure 12: Breakdown of the energy consumed by a
ChirpBox node when preparing, running, and finalizing
an experiment. The different phases refer to those de-
scribed in Fig. 4. The four bars compare the energy esti-
mated using Energest with the one measured in hardware
on two nodes.

observers [31] attached to two of the target nodes while the
testbed is operational. Specifically, we let D-Cube sample
voltage and current simultaneously at a rate of 1 kHz and
calibrate its measurements with the Keithley DMM7510.

We measure the energy consumption of ChirpBox while
setting up and running a LoRaWAN Class A firmware image
of 60.1 kB7 for half an hour, as well as while collecting 2 kB
logs from each target node at the end of the run. In order to
compute the energy consumption during the FUT execution,
we call compute energy() from the FUT, which makes En-
ergest available to the developer via ChirpBox’s API.

Fig. 12 shows the energy consumption of two target
nodes broken down for the different operational phases of
ChirpBox explained in Fig. 4. Specifically, the different bars
of the figure display the energy estimated in software using
Energest and that measured in hardware using D-Cube. One
can see that the software-based estimation is quite accurate,
with an average underestimation in the order of 3% and never
above 6.5%. Note that phase 7 and 8 are not displayed in
the figure: these correspond to a reset operation and their
duration as well as energy consumption are negligible.
4.2.2 Breakdown of energy consumption per phase

Fig. 12 also allows us to analyze the energy consumption
for the different operational phases of ChirpBox explained
in Fig. 4. Phase 1 accounts for 30.3% of the test run’s dura-
tion: this is because the connectivity evaluation is carried out
using all possible spreading factors on multiple channels.

The waiting time for starting an experiment (phase 6)
also represents a large portion of a test run’s duration: this is

7 The FUT lets a node send a 8-byte application payload every 10 s.

Ten channels are used by the LoRaWAN gateway to exchange data.

TEST RUN #1
(to)

I
D
L
E1 9

TEST RUN #2
(patching to)3 9

TEST RUN #3
(to)5 9

I
D
L
E

36s per channel 36s per channel
in FUT

100s per channel due
to LBT

FUT
execution

Figure 13: Energy consumption and channel usage of
three consecutive test runs. The FUT executed in the
second run is a minor modification of the previous one,
whereas the third run is a repetition of the second one
with different settings.

because a device needs to wait up to one hour in order to free
the channel usage for the FUT. Phase 4 , 7 and 8 account
together for less than 0.1% of the whole run and are hence
negligible. The remaining phases 2 , 3 , 5 , and 9 account
for 3.1%, 12.9%, 0.9%, and 3.9% respectively. Finally, the
overhead of a SYNC flood is only 0.2% of the entire run.

We further show the energy consumption and the channel
usage of a ChirpBox node when running three consecutive
test runs. In the first run, the connectivity evaluation is car-
ried out and the same firmware employed earlier is dissem-
inated in its entirety (60.1 kB), i.e., all nine phases 1 to 9
are executed. In the second and third run, no connectivity
evaluation is carried out, and the firmware has only minor
modifications compared to the one used in the first run. This
results in ChirpBox disseminating only a 4.2 kB patch file in
the second run, as discussed in Sect. 3.4, i.e., only phases 3
to 9 are executed. The third run makes use of the same
firmware as the second run but with a different run settings,
which allows ChirpBox to only execute phases from 5 to 9 .

Fig. 13 (bottom) shows the results. It takes more than two
and a half hours and about 900 J for each node to prepare,
run, and collect the results of an experiment when executing
all nine phases. Instead, it takes 4130 and 3725 s, as well as
about 180 and 126 J to prepare, run, and collect the results
of the second and third experiment. This is due to the high
duration and energy consumption of the connectivity eval-
uation phase, as shown in Fig. 12. If the user updates the
FUT with ChirpBox’s patching functionality, the duration of
the dissemination and the consumed energy is reduced by 74
and 70%, respectively, compared to when disseminating the
full-size firmware. Fig. 13 (top) also illustrate the maximum
channel usage (red solid line) among all nodes in the net-
work: one can see that the maximum channel usage permit-
ted by the regulations (dashed green line) is never exceeded8.
4.2.3 Lifetime of ChirpBox nodes

Based on the previous results, we can estimate the life-
time of ChirpBox nodes as a function of the available battery
capacity. As discussed in Sect. 3.1, we use four Nitecore
NL 1834 batteries in our implementation. These batter-
ies have a nominal capacity of 3400 mAh when used until
2.7 V. However, ChirpBox operates only at voltages above
3.3 V: we measure that the four batteries can provide at most
10.3 Ah until this voltage is reached. This results in about

8 During a connectivity evaluation and while running the FUT based on

a LoRaWAN Class A firmware, a node can transmit for at most 36 s per hour

per channel, as LBT is disabled. During the remaining time, LBT is always

enabled, resulting in at most 100 s of transmissions per hour per channel.

112 consecutive runs (≈14 days) including all nine phases.
When making use of the patching function as in the second
run shown in Fig. 13, the nodes can execute about 343 runs
(≈24 days). Of course, these results are specific to our im-
plementation. In principle, depending on the user’s require-
ments, a larger battery can be selected, or a solar panel can
be mounted on top of the nodes to recharge the batteries over
time and prolong the achievable battery lifetime.

5 ChirpBox in Action
We finally make use of ChirpBox to benchmark the per-

formance of LoRa-based protocols and to evaluate the im-
pact of temperature variations on network connectivity.
Benchmarking protocol performance. We compare the
end-to-end latency, energy consumption, and channel us-
age of three LoRa-based protocols (LoRaDisC with LBT
and AFA, LoRaBlink, and LoRaWAN) when disseminating
a firmware image of 50 kB across the test installation shown
in Fig. 7. We use LoRaDisC following the same settings as
in the previous section: as the protocol uses the LBT mech-
anism, transmissions up to 100 s per hour per channel are
allowed by the regulations. LoRaBlink [12] is a multi-hop
protocol that enables nodes to transmit identical packets con-
currently by exploiting the capture effect to avoid collisions.
To evaluate its performance, we use the open LoRaBlink
firmware9. In our LoRaBlink evaluation, we set the control
node C to flood beacon packets every 7.5 s (epoch) to avoid
nodes being desynchronized. Since there is no LBT mecha-
nism in LoRaBlink, a node can only transmit data for at most
36 s per hour per channel. Whilst LoRaDisC and LoRaBlink
are used on top of a multi-hop network, LoRaWAN forms a
star network rooted at the gateway G shown in Fig. 7. In
order to speed up the firmware dissemination when using
LoRaWAN, all nodes follow the Class C specification (i.e.,
end devices can listen all the time except in transmit mode,
resulting in low-latency communication). The gateway oper-
ates at a 10% duty cycle; all nodes are in the same multicast
group and keep listening on a specific channel, where trans-
missions for up to 360 s per hour are allowed.

Fig. 14 shows the performance of the tree protocols over
three different runs. LoRaDisC achieves 100% reliabil-
ity (Fig. 14a) and exhibits the least energy consumption
(Fig. 14b) while keeping the channel usage well below the
one imposed by the regulations (Fig. 14c). As expected, Lo-
RaWAN Class C is the fastest protocol to complete the dis-
semination, requiring 20% less time compared to LoRaDisC.
However, despite the short duration of the dissemination,
the protocol still requires 15% more energy compared to
LoRaDisC due to the continuous listening activity. Using
a LoRaWAN Class A firmware would result in a 6.6 times
higher duration and a 3.4 higher energy consumption when
trying to meet the regulations10 (results omitted due to space
constraints). LoRaBlink exhibits the lowest reliability, the
longest dissemination latency, and a comparable energy ex-
penditure as LoRaDisC – this despite making use of the
channel for approximately 4 times higher than what would be
allowed by the regulations (Fig. 14c). Instead, if LoRaBlink

9 Dec. 14, 2015 version, available at https://www.lancaster.ac.u
k/scc/sites/lora/lorablinkkit.html

10 A gateway cannot multicast packets to end nodes in LoRaWAN Class A.

(a) Reliability (b) Duration and energy (c) Channel usage
Figure 14: Performance of LoRaDisC, LoRaBlink, and
LoRaWAN when disseminating a 50 kB file across a net-
work.

(a) Average number of neigh-
bours

(b) Minimum SNR sustained un-
der successful communications

Figure 15: Impact of temperature on network connectiv-
ity.
would meet the channel usage regulations, the duration of its
dissemination would increase by 6.6 times11.
Impact of temperature on LoRa networks. Using the
testbed health status information collected by ChirpBox as
described in Sect. 3.4, one can seamlessly collect informa-
tion about the on-board temperature of each target node over
time and inspect whether temperature variations have an im-
pact on the connectivity in the testbed. Fig. 15 shows the av-
erage number of neighbours in the testbed installation shown
in Fig. 7, as well as the minimum SNR recorded during a
successful communication in three different time instances
(characterized by three different average temperatures). As
we can see, higher temperatures negatively affect the com-
munication between LoRa nodes, as experimentally shown
by earlier works [36, 51]. Specifically, the average number
of neighbours decreases by 1.4, and the SNR increases by up
to 7 dBm at SF=7 when the temperature increases by 14 ◦C.

6 Related Work
We now analyse related work w.r.t. existing LoRa-based

testbed facilities and CT-based protocols on top of LoRa.
LoRa-based testbed infrastructures. Several testbeds have
been purposely developed to evaluate the reliability and scal-
ability of LoRa systems [8, 21, 24, 25, 26, 27, 28, 29, 30],
but most of these facilities are not publicly available. Re-
cently, a few LoRa devices have also been supported in pub-
lic testbed infrastructures such as FlockLab 2 [22, 34] and
FIT IoT-Lab [23], but only with a limited number of nodes
that are mostly deployed indoors. All these facilities, in order
to simplify the reprogramming and management of the tar-

11 A LoRaBlink node needs to transmit at least 420.36 ms data per epoch

to flood a packet: with 1% duty cycle, an epoch is 42.036 s, which translates

to 8995.7 s when transmitting 50 kB (214 epochs).

get LoRa nodes, make use of an existing network backbone,
typically based on Ethernet or cellular networks [35, 52]. As
a network backbone is not always available and as the use of
cellular networks incurs high operational costs, Kazdaridis
et al. [25] have tried to only use LoRa nodes for experi-
mentation. Their approach consists in exploiting LoRaWAN
gateways to send commands with the parameter configura-
tion to the target nodes and collect statistics. However, the
firmware needs to be programmed manually prior deploy-
ment and only star topologies are supported, which limits
scalability. In ChirpBox, instead, we propose a full-fledged
multi-hop testbed that can support reprogramming of LoRa
nodes and the efficient collection of traces. In a prior poster
publication [53], we described the idea behind ChirpBox and
how it would be of help to the community: this paper de-
scribes the concrete realization of this vision into a tangible
solution, giving details on its design and implementation.
Concurrent transmissions on top of LoRa. CT have been
widely popular in the context of low-power wireless systems
since the development of Glossy [45]. This influential work
led to the design of a large number of CT-based data col-
lection and dissemination protocols for IEEE 802.15.4 sys-
tems [41]. Recent studies have also shown the feasibility of
CT on top of other technologies, such as Bluetooth Low En-
ergy [46], ultra-wideband [54], and LoRa [12, 13]. Specif-
ically, when it comes to LoRa, Bor et al. [12] have been
the first to experimentally demonstrate the existence of non-
destructive CTs under given conditions (i.e., packets time
offset, power difference, bit rate). These results have been
extended by Liao et al. [13], who have theoretically ana-
lyzed the feasibility as well as developed a prototypic im-
plementation of CT on top of LoRa. Our work builds upon
these two studies and proposes, to the best of our knowl-
edge, the very first CT-based multi-hop data collection and
dissemination protocol for LoRa-based networks. Such pro-
tocol, LoRaDisC, copes with LoRa’s limited data rate and
regional duty-cycle constraints and allows ChirpBox to sus-
tain a reliable and efficient data exchange across the testbed.
LoRaDisC embeds several of the features that have increased
the reliability and efficiency of state-of-the-art CT-based pro-
tocols for IEEE 802.15.4 networks, such as the use of ACK
flooding rounds and network coding [42, 55].

7 Conclusions and Future Work
We have presented ChirpBox, an infrastructure-less LoRa

testbed that can be deployed in remote areas without cellu-
lar coverage and without a backbone infrastructure allowing
to efficiently communicate with the target nodes and supply
them with power. Thanks to LoRaDisC, the first CT-based
all-to-all multi-channel protocol on top of LoRa, ChirpBox
can reliably and efficiently disseminate as well as collect
data through the network, which allows an easy orchestra-
tion of the testbed activities by re-using the LoRa-based tar-
get nodes, as demonstrated in our experimental evaluation.
We believe that ChirpBox’s low-cost and open-source avail-
ability will simplify the deployment of outdoor testbeds and
the benchmarking of communication protocols, thereby fos-
tering research on LoRa-based systems in the years to come.

In the future, we plan to support additional LoRa plat-
forms, to add energy harvesting modules (hence avoiding the

need for battery replacement), and to enable the interruption
of an ongoing test run if a channel usage violation is detected.

8 Acknowledgments
This work is partially funded by the National Science

Foundation of China (No. 61902188) and the Strategic Prior-
ity Research Program of Chinese Academy of Sciences (No.
XDC02070800). We would like to thank Sixuan Chen for
her support regarding the water-proofed mechanical design.

9 References
[1] U. Raza et al., “Low Power Wide Area Networks: An Overview,”

IEEE Communications Surveys & Tutorials, vol. 19, no. 2, 2017.

[2] K. Mekki et al., “A Comparative Study of LPWAN Technologies for
Large-Scale IoT Deployment,” ICT Express, vol. 5, no. 1, 2019.

[3] J. Petäjäjärvi et al., “On the Coverage of LPWANs: Range Evaluation
and Channel Attenuation Model for LoRa Technology,” in Proc. of the
14th ITST Conf., 2015.

[4] N. Silva et al., “Low-Cost IoT LoRa Solutions for Precision Agricul-
ture Monitoring Practices,” in Proc. of the 19th EPIA Conf., 2019.

[5] Y. Cheng et al., “Secure Smart Metering based on LoRa Technology,”
in Proc. of the 4th ISBA Conf., 2018.

[6] M. Cattani et al., “Adige: An Efficient Smart Water Network based
on Long-Range Wireless Technology,” in Proc. of the 3rd CySWATER
Workshop, 2017.

[7] P. J. Basford et al., “LoRaWAN for Smart City IoT Deployments: A
Long Term Evaluation,” Sensors, vol. 20, no. 3, 2020.

[8] G. Pasolini et al., “Smart City Pilot Projects Using LoRa and IEEE
802.15.4 Technologies,” Sensors, vol. 18, no. 4, 2018.

[9] B. Foubert and N. Mitton, “Long-Range Wireless Radio Technologies:
A Survey,” Future Internet, vol. 12, no. 1, 2020.

[10] LoRa Alliance, “LoRaWAN 1.1 Specification, v1.1,” 2017, [Online]
https://bit.ly/2F0QbQM – Last accessed: 2020-10-16.

[11] B. Sartori et al., “Enabling RPL Multihop Communications based on
LoRa,” in Proc. of the 13th WiMob Conf., 2017.

[12] M. Bor et al., “LoRa for the Internet of Things,” in Proc. of the 1st

MadCom Workshop, 2016.

[13] C.-H. Liao et al., “Multi-hop LoRa Networks Enabled by Concurrent
Transmission,” IEEE Access, vol. 5, 2017.

[14] P. J. Marcelis et al., “DaRe: Data Recovery through Application Layer
Coding for LoRaWAN,” in Proc. of the 2nd IoTDI Conf., 2017.

[15] M. Sandell and U. Raza, “Application Layer Coding for IoT: Bene-
fits, Limitations, and Implementation Aspects,” IEEE Systems Jour-
nal, vol. 13, no. 1, 2019.

[16] S. Demetri et al., “Automated Estimation of Link Quality for LoRa:
A Remote Sensing Approach,” in Proc. of the 18th IPSN Conf., 2019.

[17] M. Bor and U. Roedig, “LoRa Transmission Parameter Selection,” in
Proc. of the 13th DCOSS Conf., 2017.

[18] J. P. Shanmuga Sundaram et al., “A Survey on LoRa Networking:
Research Problems, Current Solutions, and Open Issues,” IEEE Com-
munications Surveys & Tutorials, vol. 22, no. 1, 2020.

[19] G. Werner-Allen et al., “MoteLab: A Wireless Sensor Network
Testbed,” in Proc. of the 4th IPSN Conf., 2005.

[20] R. Lim et al., “FlockLab: A Testbed for Distributed, Synchronized
Tracing and Profiling of Wireless Embedded Systems,” in Proc. of the
12th IPSN Conf., 2013.

[21] J. M. Marais et al., “LoRa and LoRaWAN Testbeds: A Review,” in
Proc. of the IEEE AFRICON Conf., 2017.

[22] R. Trüb et al., “FlockLab 2: Multi-Modal Testing and Validation for
Wireless IoT,” in Proc. of the 3rd CPS-IoTBench Workshop, 2020.

[23] C. Adjih et al., “FIT IoT-LAB: A Large Scale Open Experimental IoT
Testbed,” in Proc. of the 2nd WF-IoT Forum, 2015.

[24] Y. Gao et al., “LinkLab: A Scalable and Heterogeneous Testbed for
Remotely Developing and Experimenting IoT Applications,” in Proc.
of the 5th IoTDI Conf., 2020.

[25] G. Kazdaridis et al., “Evaluation of LoRa Performance in a City-Wide
Testbed: Experimentation Insights and Findings,” in Proc. of the 13th

WiNTECH Workshop, 2019.
[26] A. M. Yousuf et al., “A Low-cost LoRaWAN Testbed for IoT: Im-

plementation and Measurements,” in Proc. of the 4th WF-IoT Forum,
2018.

[27] Z. Wang et al., “Dandelion: An Online Testbed for LoRa Develop-
ment,” in Proc. of the 15th MSN Conf., 2019.

[28] J. M. Marais et al., “Evaluating the LoRaWAN Protocol using a Per-
manent Outdoor Testbed,” IEEE Sensors, vol. 19, no. 12, 2019.

[29] I. Rodriguez et al., “The Gigantium Smart City Living Lab: A Multi-
Arena LoRa-based Testbed,” in Proc. of the 15th ISWCS Symp., 2018.

[30] J. Struye et al., “The CityLab Testbed – Large-scale Multi-technology
Wireless Experimentation in a City Environment,” in Proc. of the IN-
FOCOM Workshops, 2018.

[31] M. Schuß et al., “A Competition to Push the Dependability of Low-
Power Wireless Protocols to the Edge,” in Proc. of the 14th EWSN
Conf., 2017.

[32] P. Appavoo et al., “Indriya2: A Heterogeneous Wireless Sensor Net-
work (WSN) Testbed,” in Proc. of the 13th TridentCom Conf., 2018.

[33] R. Lim et al., “TraceLab: A Testbed for Fine-Grained Tracing of Time
Sensitive Behavior in Wireless Sensor Networks,” in Proc. of the LCN
Workshops, 2015.

[34] R. Trüb et al., “A Testbed for Long-Range LoRa Communication,” in
Proc. of the 18th IPSN Conf., demo session, 2019.

[35] Q. Lone et al., “WiSH-WalT: A Framework for Controllable and Re-
producible LoRa Testbeds,” in Proc. of the 29th PIMRC Symp., 2018.

[36] C. A. Boano et al., “Impact of Temperature Variations on the Relia-
bility of LoRa: An Experimental Evaluation,” in Proc. of the 7th SEN-
SORNETS Conf., 2018.

[37] M. Schuß et al., “Moving Beyond Competitions: Extending D-Cube
to Seamlessly Benchmark Low-Power Wireless Systems,” in Proc. of
the 1st CPSBench Workshop, 2018.

[38] The Things Network, “STM32L476 Nucleo-64 + SX1276RF1IAS,”
[Online] https://bit.ly/2FhCvRX – Last accessed: 2020-10-16.

[39] NavSpark, “Arduino-compatible Dev. Board with GPS/GLONASS,”
[Online] https://bit.ly/3ipDVYE – Last accessed: 2020-10-16.

[40] Maxim Integrated, “DS3231-Extremely Accurate I2C-Integrated
RTC/TCXO/Crystal,” [Online] https://bit.ly/3hpkH5C – Last ac-
cessed: 2020-10-16.

[41] M. Zimmerling et al., “Synchronous Transmissions in Low-Power
Wireless: A Survey of Communication Protocols and Network Ser-
vices,” CORR – arXiv preprint 2001.08557, 2020.

[42] C. Herrmann et al., “Mixer: Efficient Many-to-All Broadcast in Dy-
namic Wireless Mesh Networks,” in Proc. of the 16th ACM SenSys
Conf., 2018.

[43] M. Saelens et al., “Impact of EU Duty Cycle and Transmission Power
Limitations for Sub-GHz LPWAN SRDs: An Overview and Future
Challenges,” Journal on Wireless Comm. and Networking, 2019.

[44] “Electromagnetic compatibility and Radio spectrum Matters (ERM);
Short Range Devices; Part 1,” European Telecommunications Stan-
dards Institute (ETSI), Tech. Rep., 2012, ETSI EN 300 220-1 v2.4.1.

[45] F. Ferrari et al., “Efficient Network Flooding and Time Synchroniza-
tion with Glossy,” in Proc. of 10th IPSN Conf., 2011.

[46] B. A. Nahas et al., “Concurrent Transmissions for Multi-Hop Blue-
tooth 5,” in Proc. of the 16th EWSN Conf., 2019.

[47] C. G. Ramirez et al., “LongShoT: Long-Range Synchronization of
Time,” in Proc. of the 18th IPSN Conf., 2019.

[48] J. Heirbaut, “JojoDiff - diff utility for binary files,” [Online] http://jo
jodiff.sourceforge.net/ – Last accessed: 2020-10-16.

[49] J. Jongboom, “Jojo AlterNative Patch (JANPatch),” [Online] https:
//github.com/janjongboom/janpatch – Last accessed: 2020-10-16.

[50] A. Dunkels et al., “Software-based On-line Energy Estimation for
Sensor Nodes,” in Proc. of 4th EmNetS Workshop, 2007.

[51] M. Cattani et al., “An Experimental Evaluation of the Reliability
of LoRa Long-Range Low-Power Wireless Communication,” JSAN,
vol. 6, no. 2, 2017.

[52] A. Sikora et al., “Test and Measurement of LPWAN and Cellular IoT
Networks in a Unified Testbed,” in Proc. of the INDIN Conf., 2019.

[53] Authors and title masked due to double-blind submission, in Blinded
Conf., poster session, 2020.

[54] D. Lobba et al., “Concurrent Transmissions for Multi-hop Communi-
cation on UWB Radios,” in Proc. of the 17th EWSN Conf., 2020.

[55] X. Ma et al., “Harmony: Saving Concurrent Transmissions from
Harsh RF Interference,” in Proc. of the 39th INFOCOM Conf., 2020.

