
EMU: Increasing the Performance and Applicability of LoRa
through Chirp Emulation, Snipping, and Multiplexing

Fengxu Yang
yangfx@shanghaitech.edu.cn

SIST, ShanghaiTech Uni. & SARI, CAS
Shanghai, China

Pei Tian
tianpei2018@sari.ac.cn
SARI, CAS & UCAS
Shanghai, China

Xiaoyuan Ma
ma.xiaoyuan.mail@gmail.com
Shanghai Xuantu Intellig. Tech.

Shanghai, China

Carlo Alberto Boano
cboano@tugraz.at

Graz University of Technology
Graz, Austria

Ye Liu
liuye@must.edu.mo

Macau Uni. of Science & Technology
Macau, China

Jianming Wei
wjm@sari.ac.cn

SARI, CAS
Shanghai, China

ABSTRACT
This paper presents EMU, a framework that enables the emulation,
snipping, andmultiplexing of LoRa chirps on commercial IoT devices
equipped with low-power sub-GHz transceivers, including those
supporting LoRa itself. Chirp snipping consists in artificially remov-
ing a sequence of chips and in putting the radio in low-power mode,
which allows to reduce energy consumption while still commu-
nicating reliably. Chirp multiplexing exploits the gaps introduced
by chirp snipping to transmit portions of another chirp on a sep-
arate channel, which allows to concurrently transmit two LoRa
packets and to increase the throughput. We build EMU as a modu-
lar framework and implement support for off-the-shelf LoRa and
non-LoRa transceivers. We then evaluate its performance by com-
paring the reliability, efficiency, and receiver sensitivity achieved
by EMU with that of traditional LoRa for different physical layer
settings. We finally showcase EMU’s ability to send packets over two
channels simultaneously, thereby improving the uplink throughput
of LoRaWAN, and demonstrate that even non-LoRa transceivers
employing EMU can communicate to a LoRaWAN gateway, enabling
new use cases and expanding the applicability of LoRa technology.

KEYWORDS
CC1125, Chirp, CSS modulation, Cross-technology communication,
Emulation, Energy efficiency, IoT, LDRO, LoRa, LoRaWAN, LPWAN,
Performance evaluation, Reliability, SX1276, Throughput.

1 INTRODUCTION
Low-power wide area networks (LPWANs) have recently become
a key component of the Internet of Things (IoT), as they enable
the interconnection of several devices over very large areas using
energy-efficient and inexpensive radio transceivers [43, 46, 48].
In fact, thanks to current consumptions in the order of tens of mA
and to communication ranges in the order of kilometers, LPWAN
technologies such as LoRa, Sigfox, and Narrowband-IoT, drive the
development of large-scale applications such as smart farming [62],
industrial control [68], smart metering [16], air quality monitor-
ing [6], smart transport [4], andwater distributionmanagement [13].

Thanks to its well-established ecosystem and low operating
costs, LoRa is currently the most widespread and well-known
LPWAN technology [22]. In contrast to solutions such as Sigfox

and Narrowband-IoT, indeed, LoRa allows users to freely deploy
their own network infrastructure and to maintain its full ownership
and control without any subscription costs nor limitations on data
traffic (besides national or regional duty-cycle constraints [52]).

Another key feature of LoRa contributing to its popularity is the
high receiver sensitivity and resilience to interference thanks to
the adoption of chirp spread spectrum (CSS) modulation. In fact, the
carrier signal of LoRa consists of chirps, i.e., sweep signals whose
frequency increases (up-chirps) or decreases (down-chirps) over
time across a specific bandwidth (125, 250, or 500 kHz); data is then
encoded by varying the starting frequency of these chirps [46].
The use of CSS modulation allows to detect and receive a signal
even when its power is lower than the noise level, and to achieve
data rates up to 11 kbps depending on the physical layer settings
and local regulations [72]. Such data rates are much higher than
the ones offered by competing technologies like Sigfox [44].
The quest for improved performance and wider applicability. Research
on LoRa technology has surged in the last decade, fuelled by its
growing popularity [63]. The community has relentlessly worked
on increasing scalability [7, 36], energy efficiency [10, 11, 45, 76],
and reliability [9, 14, 17, 42, 53], for example, by means of better
coding schemes for data recovery [42, 53], enhanced link quality
estimation techniques [17], as well as refined parametrization of
physical layer settings [9]. Researchers have also derived mecha-
nisms to increase data throughput (e.g., by leveraging concurrent
transmissions [8, 39, 73]), and have investigated how to establish
a communication with devices employing other technologies by
means of cross-technology communication [38, 61], so to enable
new use cases and push the applicability of LoRa even further.
Contributions. In this work, we aim to outstretch this body of liter-
ature with a solution that can increase the data throughput of LoRa-
based systems, decrease their energy consumption, and enable new
use cases that can expand the applicability of LoRa technology. We
achieve all these goals by developing EMU, a framework that enables
the emulation, snipping, and multiplexing of LoRa chirps on com-
mercial IoT devices equipped with low-power sub-GHz transceivers
(including those supporting LoRa itself). The operations of EMU stem
from the observation that the CSS modulation adopted by LoRa
results in a waveform consisting of short periods with increasing
or reducing frequency, as shown in Fig. 3 and described in Sec. 2.
One can hence emulate a LoRa signal by sending a carrier signal at a

IPSN’22, May 03–06, 2022, Milan, Italy F. Yang et al.

specific frequency for a short duration, so to generate an increasing
or decreasing step function, where each step represents a LoRa chip.
Saving energy via chirp snipping. We find that LoRa nodes and
LoRaWAN gateways can successfully decode a packet sent via chirp
emulation even when transmitting incomplete chirps, i.e., when
introducing artificial “gaps” in which the carrier signal is absent,
so to artificially remove a sequence of chips. We show that this still
yields a reliable communication, while introducing energy savings
by up to 50% at the price of just a few dB lower receiver sensitivity.
Throughput enhancement via chirp multiplexing. Even more, we find
that the gaps introduced in a chirp can be reused to transmit por-
tions of another chirp on a separate channel, practically enabling
the concurrent transmission of two LoRa packets that a LoRaWAN
gateway can successfully decode at once. We implement this fea-
ture in EMU and show that it indeed allows to increase the data
throughput by up to 105% when transmitting data to a gateway,
while minimizing the energy expenditure even further.
Automated open-source framework.Webuild EMU as amodular frame-
work that automatically calculates the characteristics of the em-
ulated LoRa chirps for given payload lengths and physical layer
settings (e.g., for a given spreading factor and coding rate config-
uration), and release its implementation to the public. Based on
the computed frequencies and durations, each chip is generated in
real time by activating the carrier transmission accordingly, and
by snipping or multiplexing the chirps so to save energy and in-
crease throughput. A hardware abstraction layer allows to keep the
preparation and generation of LoRa waveforms independent from
low-level platform details, which enhances portability.
Support for off-the-shelf sub-GHz devices. EMU runs on low-power
sub-GHz radios supporting (G)FSK/OOK modulation and with a
frequency resolution of at least 61Hz (i.e., the minimum chip step
in LoRa). Most LoRa transceivers fall in this category, as well as pop-
ular sub-GHz transceivers such as the Silicon Labs Si4463, or those
supporting smartmetering applications through the Wireless M-Bus
protocol (e.g., the TI CC1125 and the Analog Devices ADF7030-1).
Experimental evaluation. After porting EMU on off-the-shelf LoRa
(Semtech SX1276) and non-LoRa (TI CC1125) radios, we evaluate
and showcase its benefits experimentally. We start by comparing
the reliability, energy consumption, and sensitivity of LoRa and
EMU on the SX1276 for different physical layer settings. We then
showcase EMU’s ability to send packets simultaneously over two
channels, thereby improving the uplink throughput of LoRaWAN,
and demonstrate that also non-LoRa transceivers employing EMU
can successfully communicate to a LoRaWAN gateway.
Paper outline. After introducing background information about
LoRa’s channel coding and modulation in Sec. 2, we present EMU’s
main design principles (i.e., the chirp emulation, snipping, and
multiplexing) in Sec. 3 and describe the framework’s architecture
and implementation in Sec. 4. We evaluate EMU’s performance in
Sec. 5 and showcase its benefits using a LoRaWAN gateway in Sec. 6.
We finally summarize related work in Sec. 7, and conclude in Sec. 8.

2 PRELIMINARIES
Before discussing how the emulation of LoRa chirps works and pre-
senting the design of EMU, we introduce the reader to the encoding

Payload length
CR

0000 0010 0011 0000 0101b 0000 0001 0000 0010b 0010 0000 0001 0000b

Whitening
1110 1111b 1100 1111b

Hamming coding
0x0F, 0x1E, 0x06, 0x1E, 0x09, 0x00, 0x11, 0x000x00, 0x4E, 0xC5, 0x00, 0xA6

Hamming coding

CRC on/off
Header CRC

Encoding
scheme

PayloadExplicit header CRC

0x00, 0x4E, 0xC5, 0x00, 0xA6,
0x0F, 0x1E, 0x06, 0x1E, 0x09, 0x00, 0x11,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

0x50, 0x0C, 0x12, 0x00, 0x12, 0x5A, 0x24, 0x06,
0x4A, 0x4D, 0x63, 0x71, 0x0D,
0x00, 0x00, 0x00, 0x00, 0x00

Interleaving

0x61, 0x09, 0x1D, 0x01, 0x1D, 0x6D, 0x39, 0x05,
0x74, 0x77, 0x43, 0x5F, 0x0A,
0x01, 0x01, 0x01, 0x01, 0x01

Gray “reversed” coding

Padding

CSS modulation (see Fig. 3)

0x00, 0x4E, 0xC5, 0x00, 0xA6,
0x0F, 0x1E, 0x06, 0x1E, 0x09,
0x00, 0x11, 0x00, 0x00, 0x00

0x50, 0x0C, 0x12, 0x00, 0x12, 0x5A, 0x24, 0x06,
0x28, 0x74, 0x6C, 0x74, 0x0C,
0x08, 0x00, 0x00, 0x00, 0x10

Interleaving

0x61, 0x09, 0x1D, 0x01, 0x1D, 0x6D, 0x39, 0x05,
0x31, 0x59, 0x49, 0x59, 0x09,
0x0D, 0x01, 0x01, 0x01, 0x1D

Gray “reversed” coding

Padding

depends on CRdepends on SF depends on LDRO

LDRO on

…

0010 0000 0001 0000b

LDRO off

Figure 1: Encoding scheme used by LoRa before transmission.
In this example, the payload consists of two bytes (0x01 and 0x02),
and we make use of CR=1 and SF=7.

scheme used by LoRa (Sec. 2.1) and to CSS modulation (Sec. 2.2).
We also shed light on LoRa’s low data rate optimization (LDRO)
used to increase the robustness of communications (Sec. 2.3). A
thorough understanding of the LDRO is crucial in the design of EMU,
as this feature is automatically enabled in LoRaWANs when using
a high spreading factor. However, this feature is undocumented, so
we had to first reverse-engineer it in order to generate emulated
chirps that could be properly received by LoRaWAN gateways.

2.1 LoRa’s Encoding Scheme
A LoRa transceiver builds a packet and encodes its data bits through
a series of sequential steps, as shown in Fig. 1 and discussed next.
Packet construction. A LoRa packet starts with a preamble fol-
lowed by an explicit header, a payload, and a 2-byte Cyclic Redun-
dancy Check (CRC) computed based on the payload content. The
length of the preamble sequence is set to 8 symbols in LoRaWAN
(see Sec. 2.2 for more details). The explicit header has a length of
20 bits and contains information about the payload length, the
employed coding rate, and whether the CRC is used.
Whitening. The first encoding step is the whitening of the payload,
which consists in XORing each byte of data with a known pseudo-
random sequence, and in swapping the two nibbles (groups of four
bits). This allows to remove DC bias from the data and avoids the
transmission of many consecutive 0s and 1s, which would cause
the receiver to lose synchronization. In the example shown in Fig. 1,
the payload bits 0x0102 are XORed with the sequence 0xFFFE.
Hamming coding. LoRa uses a variation of traditional Hamming
codes to add redundancy in each codeword and enable error cor-
rection. In LoRa, the coding rate (CR) can range from 1 to 4, and a

EMU: Increasing the Performance and Applicability of LoRa through Chirp Emulation, Snipping, and Multiplexing IPSN’22, May 03–06, 2022, Milan, Italy

7 6 5 4 3 2 1

0x00
0000 0000

… 0x500x4E
0100 1110

0xC5
1100 0101

0x00
0000 0000

0xA6 1 0 1 0 0 0 0

0x501 0 1 0 0 0 0
0 0 0 1 1 0 0 0x0C

0x501 0 1 0 0
0 0 0 1 1 0x0C

…

0 0 1 0 0
0 0 0 0 0

0x12
0x00

0 0 1 0 0 0x12

0x00
0000 0000

0010 0110
0xA60xC5

1100 0101
0x4E

0100 1110
0x00

0000 0000

1 0 1 1 0 0x5A
0 1 0 0 1 0x24
0 0 0 0 1 0x06

0 0
0 0
1 0
0 0
1 0
1 0
0 0
1 0

0xC5
1100 0101

0x00
0000 0000 1010 0110

0xA6 0x00
0000 0000

0x4E
0100 1110

1010 0110

SF bits

SF-2 codewords

4+CR
symbols

(c) Interleaving of header

0x1E
0001 1110

… 0x280x0F 0x1E
0001 1110

0x06
0000 0110

0x1E
0001 1110 0000 1001

0x09 0 1 0 1 0 0 0

0000 1111
0x280 1 0 1 0 0 0

0000 1001
0x090x06

0000 0110
0x1E

0001 1110 1 1 1 0 1 0 0 0x74

0x280 1 0 1 0 0 0
1 1 1 0 1 0 0 0x74

…

1 1 0 1 1 0 0
1 1 1 0 1 0 0
0 0 0 1 1 0 0

0000 1001
0x09

0000 01100001 1110
0x0F

0x6C
0x74
0x0C

7 6 5 4 3 2 1

SF bits

4+CR
symbols

(b) Interleaving of payload with LDRO on

0000 1111

0001 1110
0x06 0x1E0x1E

0000 1111

SF-2 codewords

0x1E
0001 1110

0x00
0000 0000

… 0x4A0x1E
0001 1110

0x06
0000 0110

0x1E
0001 1110

0x09
0000 1001

0x00
0000 0000 0001 0001

0x11 1 0 0 1 0 1 00x0F
0000 1111

0x0F
0000 1111

0x4A1 0 0 1 0 1 00x1E
0001 1110 0001 0001

0x110x09
0000 1001

0x1E
0001 1110

0x06
0000 0110 1 0 0 1 1 0 1 0x4D

0x4A1 0 0 1 0 1 0
1 0 0 1 1 0 1 0x4D

…

1 1 0 0 0 1 1
1 1 1 0 0 0 1
0 0 0 1 1 0 1

0001 0001
0x110x00

0000 0000
0x09

0000 1001
0x06

0000 0110
0x1E

0001 1110
0x0F

0000 1111

0x63
0x72
0x1D

7 6 5 4 3 2 1

SF codewords

SF bits

(a) Interleaving of payload with LDRO off

0x0F

4+CR
symbolsSF=7, CR=1

SF=7, CR=1

SF=7, CR=4

Figure 2: Overview of the diagonal interleaving scheme used
by LoRa when encoding data with and without the LDRO.

codeword consists of 4 +𝐶𝑅 bits that are stored in one byte. The
CR of both the payload and CRC is configurable and is set to 1 (i.e.,
a 1-bit code per nibble) in LoRaWAN. The 5 bits originating from
each nibble are preceded by three zeros to form a byte. The CR of
the explicit header is fixed to 4 (i.e., a 4-bit code per nibble). In the
example shown in Fig. 1, the 13-nibble packet is transformed into
13 codewords (each 1-byte long) after applying Hamming coding.
Interleaving. To limit the impact of bursty noise and fading to a
single bit error per symbol, LoRa scrambles data bits throughout
a packet (i.e., it spreads the bits constituting a codeword between
multiple symbols) by means of a process called diagonal interleav-
ing [51, 66], which is illustrated in Fig. 2. Interleaving is performed
on a number of codewords that is proportional to the spreading
factor (SF) used when modulating data, where 𝑆𝐹 ∈ {7...12} and
𝑁 = 2𝑆𝐹 chips per symbol are used by LoRa’s CSS modulation.
In practice, a bit matrix with SF columns and (4 +𝐶𝑅) rows is de-
rived, where the first row is obtained by picking the (4 +𝐶𝑅)𝑡ℎ bit

in each codeword, and every following row, the 𝑖𝑡ℎ row, picks the
(4 +𝐶𝑅 − 𝑖)𝑡ℎ bit in each codeword, and performs a 1-codeword
cyclic left shifting, as shown by the red arrows in Fig 2. Each row in
the matrix corresponds to a symbol sent using CSS modulation after
applying Gray “reversed” coding. In the example shown in Fig. 2 (a),
SF=7 and CR=1, meaning that the bit matrix obtained when in-
terleaving the payload is composed of 5 rows and derived from 7
codewords. When interleaving the header (Fig. 2 (c)), however, one
always employs CR=4 and uses SF-2 codewords (the lowest 2 bits of
each row are fixed to zeros), which results in a matrix with 8 rows.
The column marked in yellow is computed as the parity of all 7 bits.
Padding. Since interleaving is performed on a given number of
codewords (SF or 𝑆𝐹 − 2), one may need to perform bit padding by
adding extra bits (0x00) at the end of data portion. In the example
shown in Fig. 1, the header has a number of codewords that is a
multiple of 5 (i.e., SF-2). The remaining part should have a number of
codewords that is a multiple of 7 (i.e., SF used for transmission): thus,
six codewords (highlighted in green) were added to the payload.
Gray “reversed” coding. The output of the interleaving stage is
grouped by SF bits and mapped to LoRa symbols (which can be
seen as integers between 0 and 2𝑆𝐹 − 1) by using Gray “reversed”
coding. In the Gray representation, adjacent symbols only differ
by one bit. This property increases the robustness of the decoding
process when a symbol is more likely to be misinterpreted as an
adjacent one (rather than misinterpreted as a random one) due to
carrier and sampling frequency offsets [27]. In fact, a symbol being
mistaken for an adjacent one only causes a single bit error, which
can be corrected by Hamming codes [66, 67].

2.2 LoRa’s CSS Modulation
LoRa is a spread-spectrum frequencymodulation using a bandwidth
𝐵𝑊 ∈ {125, 250, 500} kHz and 𝑁 = 2𝑆𝐹 chips per baseband symbol.
A symbol, which can be seen as an integer number 𝑠 ∈ {0, ..., 𝑁 −1},
spans throughout 𝐵𝑊 and resembles a step function, as shown in
Fig. 3. Specifically, a symbol starts at 𝑠 ·𝐵𝑊

𝑁
− 𝐵𝑊

2 and its frequency
increases by 𝐵𝑊 /𝑁 in every chip, whose duration is 1/𝐵𝑊 . A fre-
quency folding to −𝐵𝑊 /2 occurs when reaching 𝐵𝑊 /2, and the
increase in frequency by 𝐵𝑊 /𝑁 continues in every following chip
until the initial frequency is reached again [67]. A symbol corre-
sponds to a chirp: chirps with increased and decreased frequency
are defined as up-chirps and down-chirps, respectively.
In the example shown in Fig. 3, which shows the chirps generated by
LoRa when transmitting the packet with payload 0x0102 presented
in Fig. 1 with SF=7 and BW=125 kHz, the frequency step size is
𝐵𝑊 /𝑁 = 976.5Hz. The initial frequency of symbol 𝑠 = 0x09 is
𝑠 ·𝐵𝑊
𝑁

− 𝐵𝑊
2 = −53710.9Hz. In addition, the length of the symbol can

be represented as 2𝑆𝐹 /𝐵𝑊 , meaning that decreasing the bandwidth
or increasing the spreading factor will both increase the length of
the symbol, which brings similar effects on the sensitivity [7].
Waveformgeneration. In addition to the encoded symbols derived
from the explicit header, payload, and CRC, an 8-symbol preamble, a
2-symbol sync word, and a 2.25-symbol down-chirp are transmitted.
The preamble, composed of eight up-chirps starting at −𝐵𝑊 /2, is
used to wake up receivers. The sync word, also composed of up-
chirps, indicates whether public LoRaWANs or private networks
are used. The 2.25-symbol down-chirp starts at 𝐵𝑊 /2 and is used

IPSN’22, May 03–06, 2022, Milan, Italy F. Yang et al.

0x61 0x09 0x1D0x01 0x1D0x6D0x39 0x05 0x74 0x77 0x43 0x5F 0x0A0x01 0x01 0x01 0x01 0x01

Preamble

SYNC word

Header + payload + CRC

𝐵𝐵𝐵𝐵
2

−
𝐵𝐵𝐵𝐵

2

0

0x09𝐵𝐵𝐵𝐵
2

−
𝐵𝐵𝐵𝐵

2

0 1
𝐵𝐵𝐵𝐵

=
1

125 k𝐻𝐻𝐻𝐻
= 8 𝜇𝜇𝑠𝑠

0𝑥𝑥0𝑥 ∗ 𝑥76.5625 𝐻𝐻𝐻𝐻 −
125 𝑘𝑘𝐻𝐻𝐻𝐻

2
= −53710.𝑥375 𝐻𝐻𝐻𝐻

𝐵𝐵𝐵𝐵
2𝑆𝑆𝐹𝐹

=
125 k𝐻𝐻𝐻𝐻

27
= 𝑥76.5 𝐻𝐻𝐻𝐻

Starting frequency

Down-chirp

Chip duration

Step sizeChip

Figure 3: Waveform transmitted by LoRa to send the encoded
packet from Fig. 1. SF=7, BW=125 kHz, and the LDRO is disabled.

to calibrate the carrier frequency and symbol timing at the receiver.
For low data rates, the LDRO is recommended [57, 59], and it is
automatically enabled by LoRaWAN devices when using a high SF.
We provide additional details about this option next.

2.3 LoRa’s Low Data Rate Optimization (LDRO)
The LDRO allows to relax the oscillator requirements and to im-
prove the packet reception ratio (PRR) when a symbol lasts for
more than 16ms, e.g., when using a BW of 125 kHz and a SF of 11 or
12 [59]. This optimization can be enabledmanually by simply config-
uring a bit in the corresponding register (e.g., the RegModemConfig3
in the SX1276 radio [59]) before transmission. In our experiments,
enabling the LDROwhen sending a 51-byte LoRa packet with SF=12
helps increasing the PRR from 65.4% to 99.9%: this is why LoRaWAN
gateways enable this option by default when using SF 11 or 12.

This feature, however, is only mentioned in a few documents [3,
33, 55], and no complete description is available. As we aim to
support CSS emulation over all possible SFs and allow communica-
tion with off-the-shelf devices, the lack of documentation poses a
great challenge. In fact, both transmitter and receiver need to have
an identical LDRO configuration: a receiver with LDRO disabled
cannot decode a waveform sent with the LDRO enabled, and vice-
versa. Hence, if we just disable the LDRO, we would be unable to
communicate with LoRaWAN gateways using SF 11 or 12.

For this reason, we performed some reverse engineering to better
understand how this feature works. We find that the padding and
interleaving stages in the encoding scheme presented in Sec. 2.1,
as well as the computation of the starting frequency of a chirp
presented in Sec. 2.2 are slightly different when enabling the LDRO.
Changes in interleaving. When the LDRO is enabled, each sym-
bol still consists of SF bits, but the lowest two bits are fixed to
zeros. Therefore, similar to the interleaving of the header, only SF-2
codewords are used when performing diagonal interleaving. The
difference is that only zeros are set (the lowest two columns in
Fig. 2 (b)) and no parity is computed in the second lowest bit (as
was instead done for the header, see the yellow column in Fig. 2 (c)).
When using only the highest 5 bits for interleaving, the minimum
difference between symbols increases from 1 to 4, which leads to
a higher reliability. Fig. 2 (b) shows an example of the interleaving
stage when enabling the LDRO while adopting SF=7 and CR=1.
Changes in padding. Because of the aforementioned changes in
the interleaving, the padding stage needs to generate a number of
codewords that is a multiple of 𝑆𝐹 − 2 when the LDRO is enabled.

For instance, when using SF=7 with the exemplary 2-byte payload
shown in Fig. 1, only two bytes need to be padded instead of six.
Changes in frequency calculation. Even though the minimum
difference between symbols increases to 4 when using only the high-
est 5 bits for interleaving, after applying Gray “reversed” coding,
such difference may still be only 1. Consider, for instance, having
symbols 0x1c and 0x14 as output of the interleaving stage: their
relative difference is 8. However, after applying Gray “reversed”
coding, we obtain symbols 0x18 and 0x19, which only differ by 1.
For this reason, when the LDRO is enabled, even symbols are pre-
processed and “3” is subtracted from their value: this way, 0x18
minus three becomes 0x15, which differs from 0x19 by 4 units. Dur-
ing CSS modulation, the start frequency of each chirp is calculated
based on the value of the pre-processed symbols. This results in a
coarser starting frequency which can be discriminated more easily
at the receiver, thereby relaxing the clock drift requirements.
Overhead. Given the same physical layer settings, LDRO-enabled
packets embed more symbols. According to [59], for a given pre-
amble length, the number of symbols 𝑛 can be calculated as:

𝑛𝑝𝑎𝑐𝑘𝑒𝑡 = 𝑛𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 + 4.25 + 𝑛𝑝𝑎𝑦𝑙𝑜𝑎𝑑 (1)

𝑛𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 8 +𝑚𝑎𝑥

(⌈
8𝑃𝐿 − 4𝑆𝐹 + 28 + 16𝐶𝑅𝐶 − 20𝐼𝐻

4(𝑆𝐹 − 2𝐷𝐸)

⌉
(𝐶𝑅 + 4), 0

)
(2)

where 𝑃𝐿 represent the number of payload bytes;𝐶𝑅 is coding rate;
𝐼𝐻 indicates the use of an explicit (0) or implicit (1) header; 𝐷𝐸 in-
dicates whether the LDRO is enabled (1) or disabled (0). This shows
how 𝑛𝑝𝑎𝑦𝑙𝑜𝑎𝑑 increases when LDRO is enabled, resulting in less
effective bits carried per symbol, as well as longer transmissions.

3 EMU: DESIGN PRINCIPLES
In this section, we describe the three key functions underpinning
the design of EMU1: chirp emulation, snipping, and multiplexing.
With EMU, one can emulate chirps, i.e., LoRa’s CSS waveforms,
by generating a frequency-varied carrier using an off-the-shelf
(G)FSK/OOKmodulator (Sec. 3.1). Furthermore, the emulated chirps
can be snipped to decrease the radio-on time and save energy
(Sec. 3.2), or even multiplexed in time to enable the parallel trans-
mission of two messages and increase data throughput (Sec. 3.3).

3.1 Chirp Emulation
Practically, a chirp can be regarded as a sequence of chips at increas-
ing or decreasing frequencies, where a chip is a short sine waveform
sent at a specific frequency, as illustrated in Fig. 4 (top-left). Because
of this, the various chips can be generated by transmitting a carrier
signal, and one can emulate chirps if the carrier frequency can be
updated as soon as the next chip arrives (i.e., at the time indicated
by the vertical dashed lines shown in Fig. 4 top-left).
Pre-requisites. Regardless of the SF, in LoRaWANs [41], the du-
ration of a chip is 1/𝐵𝑊 = 8 𝜇s when having 𝐵𝑊 = 125 kHz. The
chip step is 𝐵𝑊 /𝑁 = 976.5Hz when using SF=7, and 122.1Hz
when using SF=12 with the LDRO enabled, as illustrated in Fig. 3.

1Our emulation framework shares its name with the second-largest living bird on
Earth by height, which – as LoRa signals – can travel very long distances. Distinctive
feature of emus are their feathers, as they have a double plume (i.e., two feathers
come out of one shaft) with sharply outlined barbs, which recalls the ability of our
framework to transmit concurrently two packets by means of chirp multiplexing [49].

EMU: Increasing the Performance and Applicability of LoRa through Chirp Emulation, Snipping, and Multiplexing IPSN’22, May 03–06, 2022, Milan, Italy

Reserved chips SF 7 SF 8Snipped chips

Frequency
Time

Carrier
waveform

Emulation

Snipped chips

Time

Snipping

…
𝐶𝐻 −

𝐵𝑊

2

𝐶𝐻 +
𝐵𝑊

2

𝐶𝐻

0x09 0x1D
𝐶𝐻1 −

𝐵𝑊

2

𝐶𝐻1 +
𝐵𝑊

2

𝐶𝐻1

𝐶𝐻2 −
𝐵𝑊

2

𝐶𝐻2 +
𝐵𝑊

2

𝐶𝐻2

…
0x09 0x1D

…
0x000x00

𝐶𝐻1 −
𝐵𝑊

2

𝐶𝐻1 +
𝐵𝑊

2

𝐶𝐻1

𝐶𝐻2 −
𝐵𝑊

2

𝐶𝐻2 +
𝐵𝑊

2

𝐶𝐻2

…
0x09 0x1D

…
0x61 0x09 0x1D

Multiplexing (different SFs)

Multiplexing (same SF)

Figure 4: Overview of EMU’s main functions: chirp emulation
(top-left), snipping (bottom-left), and multiplexing (right).
Chirp multiplexing supports two waveforms with different SF.

A CSS waveform can hence be emulated by generating a carrier
signal for short periods under two key pre-requisites:

(i) One can configure the carrier frequency at least every 8 𝜇s;
(ii) One can configure the carrier frequency with a resolution

that is sufficient to discriminate adjacent chips (the worst
case is represented by SF=12, with a chip step of 122.1Hz).

In most off-the-shelf sub-GHz radio transceivers, one can transmit a
carrier with a configurable frequency using a (Gaussian) Frequency
Shift Keying ((G)FSK) or On-Off Keying (OOK) modulator. In an
OOKmodulator, the absence or presence of a carrier are represented
by bits 0 and 1, respectively. In a (G)FSK modulator, a carrier al-
ways exists, and digital information is transmitted through discrete
frequency changes of the carrier signal. Hence, both (G)FSK and
OOK modulators can generate a carrier, and typically have two op-
eration modes: packet-oriented and bit-oriented. In packet-oriented
mode, it is difficult to achieve a fine-grained chirp emulation, since
transmitting the shortest packet (i.e., with a payload length of zero)
still leads to an on-air time of tens of microseconds, which is above
our 8 𝜇s pre-requisite. Conversely, the use of the bit-oriented mode
allows more flexibility, as one can start/stop the transmission of the
carrier by setting/clearing a dedicated pin of the transceiver. One
can also switch frequency at a relatively arbitrary point in time,
which allows to meet the first pre-requisite. We provide details on
how we make use of a transceiver’s bit-oriented mode in Sec. 4.3.

The data-sheet of most off-the-shelf sub-GHz radios specifies
the frequency resolution, i.e., how finely one can set the carrier fre-
quency. This info can be used to determinewhether the (G)FSK/OOK
modulator can fulfill the second pre-requisite, and generate adja-
cent chips that can be discriminated. Specifically, a chip step can be
discriminated as long as the frequency resolution is less than half of
the chip step. This corresponds to 488.28Hz for SF=7, and 61.05Hz
for SF=12, with the latter being the worst-case: the radio hence
needs to have a frequency resolution below 61.05Hz. Fortunately,
most off-the-shelf sub-GHz transceivers meet this requirement.
Examples are Semtech’s SX1276 and SX1208, Texas Instruments’
CC1125 and CC1200, as well as Silicon Labs’ Si4463 and Si4464.
Principle. If the aforementioned pre-requisites are met, the actual
chirp emulation simply consists in configuring the OOK/(G)FSK
modulator to transmit a ‘1’ bit, so to activate the generation of a

carrier, and in computing and adjusting the frequency over time.
This step can be accomplished at the end of each chip: we will
explain this in more detail in Sec. 4.1. As discussed in Sec. 2.2, when
emulating up-chirps, we perform a frequency folding to −𝐵𝑊 /2
when reaching 𝐵𝑊 /2, and a frequency folding to +𝐵𝑊 /2 when
reaching −𝐵𝑊 /2 during the emulation of down-chirps.

3.2 Chirp Snipping
One of the key features of EMU is the ability to reduce energy con-
sumption by means of chirp snipping.
Principle and feasibility. The principle behind chirp snipping
is illustrated in Fig. 4 (bottom-left): a chirp can still be decoded
successfully even when a portion of its chips are not transmitted
(e.g., when the portion of chips with gray background are omitted).
Next, we prove the feasibility of snipping chirp through theoretical
analysis. An encoded up-chirp and down-chirp can be described as:

𝐶𝑠𝑦𝑚 (𝑡, 𝑓𝑠) = 𝑒 𝑗2𝜋 (−
𝐵𝑊
2 + 1

2𝑘𝑡)𝑡 · 𝑒 𝑗2𝜋 𝑓𝑠𝑡 = 𝐶 (𝑡) · 𝑒 𝑗2𝜋 𝑓𝑠𝑡 (3)

𝐶§ (𝑡) = 𝐶𝑑𝑜𝑤𝑛𝑐ℎ𝑖𝑟𝑝 (𝑡) = 𝑒 𝑗2𝜋 (
𝐵𝑊
2 − 1

2𝑘𝑡)𝑡 (4)
where 𝑓𝑠 and 𝐵𝑊 identify the start frequency of a symbol and the
bandwidth, respectively.𝐶 (𝑡) and𝐶§ (𝑡) represent the raw up-chirp
and down-chirp. A snipped symbol can be represented as follows:

𝐶𝑠𝑛𝑖𝑝𝑝𝑒𝑑 (𝑡, 𝑓𝑠) =
{
0 𝑡snip_start < 𝑡 ≤ 𝑡snip_end,
𝐶𝑠𝑦𝑚 (𝑡,𝑓𝑠) otherwise.

(5)

A chirp is snipped between 𝑡snip_start and 𝑡snip_end. A receiver
would de-chirp first and then extract the dominant frequency com-
ponent based on the de-chirped signal. Assuming the symbol is
aligned, de-chirping can be regarded as a product of the received
snipped up-chirp and a raw down-chirp [79]:

𝐶§ (𝑡) ∗𝐶𝑠𝑛𝑖𝑝𝑝𝑒𝑑 (𝑡, 𝑓𝑠) =
{
0
𝐶§ (𝑡) ∗𝐶 (𝑡) · 𝑒 𝑗2𝜋 𝑓𝑠𝑡

=

{
0 𝑡snip_start < 𝑡 ≤ 𝑡snip_end,
𝑒 𝑗2𝜋 𝑓𝑠𝑡 otherwise.

(6)

We can notice that the snipped signal after de-chirping still contains
𝑓𝑠 for demodulation, which represents the value of a symbol and can
be extracted after a fast Fourier transform. Moreover, the snipping
position remains arbitrary, indicating that the receiver can still
extract the value of a symbol regardless of how the chirp was
snipped. It should also be noted that the peak of the frequency is
lower than the standard CSS signal, since a symbol has lost part
of its energy. Hence, the SNR is lower than that of the default CSS
signal, which may result in a sensitivity loss (as shown in Sec. 5.3).
Creating a gap. Now that we have shown that LoRa snipped chips
can still be demodulated by the receiver, we discuss how one can
implement such functionality on real hardware. We call the time
in which chirps are not transmitted a gap: the introduction of the
latter allows to put the radio transceiver in low-power mode and
save energy. Chirp snipping can be implemented by transmitting a
‘0’ bit when making use of an OOK modulator: this turns off the
radio’s power amplifier (PA), resulting in a lack of carrier. One can
further reduce the current draw of the transceiver during gaps by
switching its status from transmit mode to standby mode, which is
a common feature of off-the-shelf sub-GHz radios [59] (also known
as idle mode in Texas Instruments’ CCxx series [69, 70]). In standby

IPSN’22, May 03–06, 2022, Milan, Italy F. Yang et al.

Gap #9

Chirp

100%90%80%70%60%50%40%30%20%10%0%

Gap #4

Gap #3

Gap #2
Gap #1

Gap #8

Gap #7

Gap #6

Gap #5

Gap #10

Figure 5: BRR as a function of the gap positionwhen snipping
the chirps with different LoRa devices. The best performance
can be obtained when snipping the chips towards the end.

mode, typically only the crystal oscillator remains active, which
gives the possibility to retrieve some basic timing information.
At the end of a gap, the carrier transmission can be reactivated
by re-entering transmit mode and by transmitting a ‘1’ bit. When
employing a (G)FSK modulator, instead, one can perform chirp
snipping by directly entering standby mode. We describe in detail
how to carefully control the timing of the snipping in Sec. 4.3.
Where to create a gap? Fig. 4 (bottom-left) shows that EMU snips
the chips towards the end of a chirp. This is because our exper-
iments have shown that this is the most reliable configuration,
allowing a LoRa packet to still be correctly demodulated. In fact,
if the gap is introduced elsewhere in the chirp (e.g., in the middle
of the chirp), the performance would degrade significantly. Fig. 5
shows the byte reception rate (BRR) between a pair of nodes mea-
sured as a function of the gap position. We obtain these results
by transmitting 60000 LoRa packets using chirp emulation, while
snipping 15% of the chirps using different LoRa platforms, namely
the Semtech SX1276 and the Microchip RN2483. Each packet has a
length of 255 bytes, and the content of its payload is randomized;
the SF and CR are set to 7 and 1, respectively, and the LDRO is
disabled. Despite the nodes being in close proximity (10 cm), the
introduction of a gap in the middle of the chirp causes the BRR to
drop to 50% with both platforms. The best performance is achieved
when the gap is introduced at the beginning and at the end of the
chirp, with a slightly higher BRR in the latter case: for this reason,
we design EMU to snip the end of a chirp. We believe that the reason
for this is hardware-dependent and related to the adaptive symbol
alignment mechanism of the receiver. As the implementation of
the transceivers is closed-source, we substantiate our hypothesis
with empirical observations. Fig. 6 shows a packet filled with zeros
transmitted while introducing a gap in the middle of the chirps.
We observe the received symbol errors by exploiting the encoding
scheme introduced in Sec. 2.1 and find that: (i) the values of the er-
roneous received symbols are very close to the actually-transmitted
values, which hints that the errors are due to symbol misalignment;
(ii) the symbol errors are not consecutive, which hints the existence
of an adaptive mechanism to fine-tune the alignment for each sym-
bol at the receiver (i.e., symbols can be received correctly again

… 00 00 00 00 00 00 00 00 00 00 …

… 4C 61 3F 44 47 2E 7E 06 75 0A 52 08 02 01 20 30 …

Payload

Symbol

Encoding

… 4C 61 3E 43 47 2E 7E 06 75 0A 52 08 02 01 20 30 …

… 00 00 60 00 00 00 00 00 00 00 …

Symbol

Payload

Packet transmission over the channel

Decoding

Transmitter

Receiver

The symbol errors result in a wrong 33rd byte

The 55th and 56th symbol are received incorrectly

Figure 6: Exemplary symbol errors when introducing the
gap in the middle of the chirps.We observe mostly a few non-
consecutive errors caused by symbol misalignment. This hints that
a reduced performance of the receiver’s adaptive symbol alignment
mechanism may be causing the low BRR observed in Fig. 5.

soon afterwards, once the symbol alignment is recovered by the re-
ceiver). We will investigate in future work whether our hypothesis
is correct and why the adaptive symbol alignment performs poorly
when the gap is introduced in the middle of the chirps.
Trade-off energy vs. robustness. Chirp snipping is feasible in
practice because a LoRa waveform is meant to resist bursty interfer-
ence lasting for up to 30% of a symbol duration [54], i.e., a symbol
can still be decoded successfully even when receiving only a part of
it. We find indeed that one can snip more than 30% of a chirp while
still sustaining a PRR of 100%, which allows to strongly reduce
the energy consumption when transmitting data (see Sec. 5 and 6).
EMU performs chirp snipping on the entire LoRa packet, except for
the preamble, the sync word, and the down-chirps. This way, the
snipping does not affect the packet detection and the clock calibra-
tion at the receiver. Doing so also provides a higher robustness to
interference: Haxhibeqiri et al. [28] have shown that packet loss
in LoRa mostly occurs when interference hits the preamble and is
almost zero when the payload is hit. Still, introducing gaps in the
chirps causes a reduction in receiver sensitivity. Our experiments
show, for example, that the sensitivity decreases by up to 9 dBm, i.e.,
from -128 dBm to -119 dBm, when using SF=12 and snipping 65% of
a chirp (see Sec. 5.3). While this may look undesirable, a sensitivity
of -119 dBm still suffices to transmit data over large distances (up
to 2700m), which is sufficient for most LoRa-based applications.
The introduction of gaps in the chirps also causes a higher vulnera-
bility to noise. If an interference source𝑁 (𝑡) is present during trans-
mission, the de-chirped waveform would be 𝑒 𝑗2𝜋 𝑓𝑠𝑡 +𝐶 (𝑡) ∗ 𝑁 (𝑡).
Therefore, following Eq. 6, if interference occurs while sending a
snipped chirp,𝐶§ (𝑡) ∗𝐶𝑠𝑛𝑖𝑝𝑝𝑒𝑑 (𝑡, 𝑓𝑠) would no longer be zero when
𝑡snip_start < 𝑡 ≤ 𝑡snip_end. This increases the likelihood that the
dominant frequency component after demodulation is affected, pos-
sibly leading to an incorrect reception. An evaluation of the system
performance in the presence of symbol collisions goes beyond the
scope of this paper and will be addressed in future work.

3.3 Chirp Multiplexing
Chirp snipping allows to save radio-on time by generating a gap
within chirps, i.e., by keeping the (G)FSK/OOK modulator silent
instead of transmitting a sequence of chips. Chirp multiplexing
exploits the gap created within a chirp to send another (different)
chirp on another RF channel (with the same or different SF), prac-
tically enabling the concurrent transmission of two LoRa packets

EMU: Increasing the Performance and Applicability of LoRa through Chirp Emulation, Snipping, and Multiplexing IPSN’22, May 03–06, 2022, Milan, Italy

sharing the same preamble at once. Therefore, chirp multiplexing
allows to increase throughput: this is especially important given
the capability of LoRaWAN gateways of receiving multiple packets
from different channels simultaneously. EMU allows tomultiplex also
identical chirps, which can be a useful feature to send high-priority
packets on two channels in parallel to increase the probability of
successful reception by the gateway.
Principle. Also chirp multiplexing is inspired by the observation
that the reception of a partial chirp is sufficient for correct decoding.
Fig. 4 (top-right) illustrates the basic idea behind chirp multiplexing
when sending two identical chirps with the same SF. The trans-
mission of the first half of a chirp in a first RF channel (CH1) is
replicated on a second channel (CH2) during the gap created in the
second half of the first chirp. The two chirps need to be sent on
different RF channels in order to avoid interference at the receiver:
our experiments show that a difference of at least 400 kHz is suffi-
cient for this. When multiplexing two chirps with different SFs, one
needs to select adjacent SFs (e.g., SF 7 and 8): if one would pick very
different configurations (e.g., SF 7 and 12), the chirp with a greater
SF is interrupted too often, which would compromise its reception.
Fig. 4 (bottom-right) shows an example of chirp multiplexing when
sending different chirps with different SF (7 and 8, respectively).
EMU always makes sure to transmit the first portion of a chirp: only
then it introduces a gap (i.e., it transmits the first half of the chirp
with SF=7, and the first quarter of the chirp with SF=8): this ensures
a reliable detection at the receiver, as discussed in Sec. 3.2.

4 EMU: ARCHITECTURE & IMPLEMENTATION
As the three key functions of EMU are now clarified, we discuss next
its architecture and implementation in detail. EMU is conceived as a
modular platform that abstracts low-level details and is independent
from hardware-specific features. We implement support for a LoRa
transceiver (the Semtech SX1276), as well as for a non-LoRa chip
(the TI CC1125), and release our code to the public2, so to contribute
to further developments in the ever-growing LoRa community.
After giving an overview of EMU’s architecture (Sec. 4.1), we provide
a detailed description of the module responsible for the waveform
preparation (Sec. 4.2) and generation in real-time (Sec. 4.3).

4.1 Overview of EMU’s Modular Architecture
Fig. 7 shows EMU’s architecture, which is composed of 3 main layers.
The abstract layer acts as an interface to the application in order
to exchange information about the content (i.e., explicit header,
payload, CRC) and configuration (i.e., SF, CR, LDRO, TX power, etc.)
of the LoRa packets to be sent. It also selects the mode with which
the waveform should be generated (i.e., simple chirp emulation,
chirp snipping, or chirp multiplexing). In case chirp multiplexing is
adopted, information about a second LoRa packet and its related
parameters (marked as ∗ in Fig. 7) also needs to be provided.
The waveform preparation layer receives the information from the
abstract layer and encodes the packet into a sequence of symbols as
described in Sec. 2.1 (LoRa channel coding). It then computes the
starting frequency (Freq. calculator) and the timing (SymTiming
calc.) of each symbol based on the chosen SF and BW.

2https://github.com/sari-wesg/emu

Optimization
mode selector

Non-optimization,
snipping, or multiplexing

Freq. calculator
Converts symbol values to start frequency

points of the LoRa CSS waveform

LoRa channel coding
Converts payload in byte to symbols

Interface of EMU
Restores LoRa parameters to LoRaParam hub, configures Optimization mode selector, prepares the explicit

header and CRC (if necessary), then calls LoRa channel coding to start EMU

LoRaParam hub
Provides parameter access
among modules

Application

CSS waveform generator
Calculates chip frequency points

HAL radio
Provides fast SPI

RF transceiver with (G)FSK/OOK

Abstract layer

Waveform
preparation
layer

Waveform
generation
layer

EMU

SymTiming calc.
Calculates the timing of
each symbol

HAL timer
Source clock from RF

SF*,
CR*,
LDRO*,
BW*

Payload*
LoRa parameters: SF*, CR*, LDRO*,
CH*, # PR*, SW*, Tx power

Mode param.

Symbols*

SF*, LDRO*,
BW*, CH*,
SW*, # PR*

Timing points
of symbols*

Mode param.

Start frequency points*

SPI commands

Explicit header* CRC*

SF*, # PR*, BW*

RF reference clock

Time service

Tx power,
BW*, SF*

Turning off the radio's PA, switching channel*

Number of
symbols*

Set frequency of chip

Figure 7: Overview of EMU’s architecture. CH indicates the chan-
nel frequency, SW the sync word, and # PR the number of preamble
chirps. One more payload and its parameters (with an asterisk) are
passed when performing chirp multiplexing.

The waveform generation layer converts the symbols provided by
the upper layer into a sequence of chips (CSS waveform generator),
and transmits them in real-time by controlling the radio through
a hardware abstraction layer (HAL radio) module that allows to
configure the frequency of the carrier. When chirp snipping or mul-
tiplexing is adopted, the CSS waveform generator module would
also instruct the HAL radio to switch channel (for multiplexing) or
to turn off the radio’s PA and switch to standby mode (for snipping).
Memory footprint.The binary size of EMU on the SX1276 is 36.8 kB,
and the RAM usage is 18.9 kB. Thewaveform preparation layer is the
module responsible for the highest RAM consumption (i.e., 87% out
of 18.9 kB), the reason being that the computation of the starting
frequency and timing of symbols needs to be performed in advance
to ensure a real-time generation of the waveform.

4.2 Waveform Preparation Layer
The implementation of the encoding scheme used by LoRa in EMU’s
waveform preparation layer (LoRa channel coding module) is in-
spired by the open-source LoRa PHY prototype for GNU radios3
developed by Tapparel et al. [67]. This implementation, however,
lacks LDRO support, which is a critical function when employing
a SF of 11 or 12, since LoRaWAN gateways enable this feature by
default. Because the exact operating principle of the LDRO is un-
documented, we conducted extensive reverse-engineering to shed
light on how to correctly encode data when this option is enabled.
Our findings have already been described in Sec. 2.3 and have been
integrated into the LoRa channel codingmodule) accordingly. The
obtained sequence of symbols are then fed to the Freq. calculator
and SymTiming calculator modules, which compute the starting
frequency and timing of each symbol (as well as for the preamble,
sync word, and for the 2.25-symbol down-chirp). Note that the
LoRaParam hubmodule is designed for storing the configured LoRa
parameters (e.g., SF, BW, CR, and LDRO) and for providing access

3https://github.com/tapparelj/gr-lora_sdr, commit: 1354b51.

IPSN’22, May 03–06, 2022, Milan, Italy F. Yang et al.

Load start frequency
points of next symbol

Apply
frequency

Set next chip
frequency via SPI

Calculate next
chip frequency1 32 4

RF transceiver
with (G)FSK/OOK

CSS waveform
generator

Chip

…

HAL radio

…

…

Start time

1 2 4 2 4 2

3 3 3 3

2

Figure 8: Timing diagram of chirp waveform generation.

to them from other modules, thereby decoupling the operations of
individual modules from application-specific parameters.

4.3 Waveform Generation Layer
Thewaveform generation layer is in charge of activating/deactivating
the carrier and of configuring its frequency over time, so to em-
ulate a chirp chip-by-chip. While a chip is being generated, this
layer already computes the frequency of the next chip, and starts
instructing the radio to update the carrier frequency by writing the
corresponding registers, so to ensure a timely generation.

Fig. 8 illustrates the various interactions across the CSS waveform
generator and HAL radiomodules. First, themicro-controller loads
the starting frequency of the next symbol provided by the upper
layer 1 . This starting frequency is communicated to the HAL radio
via SPI 2 . At this instant, the CSS waveform generator retrieves
the exact radio timing from the HAL timer and regards this times-
tamp as zero4. While the HAL radio applies the change in frequency
and the chip starts being generated 3 , the next chip frequency is
calculated by the CSS waveform generator 4 ; the latter will then
inform the HAL radio about the change in frequency via SPI. This
sequence of operations iterates until all chips of the chirp have
been generated. To minimize delays, all float multiplications are
replaced with fixed point and shift operations.

The timing information provided by the HAL timer is used to
compute the chip duration, and is hence critical for the success of
chirp emulation. Any drift of the timer would in fact lead to inaccu-
racies in the symbol duration and trigger an error on the receiver.
Since the chip duration is 8 𝜇s for 𝐵𝑊 = 125 kHz, a 𝜇s-level time
granularity is required, meaning that the source clock of the timer
should not be lower than 1MHz. In off-the-shelf platforms like
ChirpBox [73], which embed an STM32L476RG micro-controller
and a Semtech SX1276 LoRa transceiver, the micro-controller only
connects to an external crystal of 32 kHz. Luckily, the SX1276 tran-
sceiver can output a 1MHz clock signal (CLKOUT): one can hence
select this output, which has an accuracy of 20 ppm [59], as the timer
source clock5. Note that in the STM32L476RGmicro-controller used
by ChirpBox, only 16-bit timers are available, which means that a
timer overflows every 65.5ms. As this is insufficient to keep track
of the time needed to send an entire LoRa waveform (which may
last for several seconds when using high spreading factors), we
chain two timers internally, practically obtaining a 32-bit timer.

4The actual instant in which the waveform starts being generated occurs slightly later,
due to SPI delays and the lag caused by the radio when applying the frequency change.
5A similar pin provided by radio transceivers like the TI CC1125 is called SERIAL_CLK.
In case no such pin is available, an internal clock has to be activated as the timer source
clock and calibrated periodically with the external 32 kHz crystal.

Architectural support for EMU. With the ever-decreasing cost
of micro-controllers, wireless embedded systems may soon be
equipped with a co-processor handling timing-sensitive radio tasks
in a dedicated fashion [34, 64, 65]. Although EMU is currently im-
plemented as an embedded software framework, it can evolve as a
co-processor subsystem: in such an architecture, the main processor
can call all EMU’s functions to run in the co-processor via a general
hardware interface, e.g., an SPI channel with a clock ≥ 10MHz and
a few I/O pins. In order to timely adjust the frequency of the carrier
and to accelerate the computation of the frequency points in the
waveform generation layer, the co-processor should ideally have an
80MHz clock and embed a hardware floating-point unit.

5 EVALUATION
We evaluate the performance of EMU experimentally, and investi-
gate its reliability, energy efficiency, and receiver sensitivity. Specif-
ically, our evaluation answers the following questions:

• How reliable are EMU’s main features, i.e., simple chirp emu-
lation, chirp snipping, and chirp multiplexing? (Sec. 5.1)

• For how long can a chirp be snipped? What is the relation-
ship between the amount of chips snipped and the ability to
successfully decode a message? (Sec. 5.1)

• How energy efficient is EMU? Howmuch energy can be saved
thanks to chirp snipping and multiplexing? (Sec. 5.2)

• How does EMU’s receiver sensitivity compare to that of tradi-
tional LoRa? Do chirp snipping and multiplexing affect the
receiver sensitivity significantly? (Sec. 5.3)

The results shown in this section are based on the SX1276 platform:
EMU is used when transmitting data, whereas a traditional LoRa
device is used as the receiver. For each experiment, we transmit at
least 1000 packets with random payloads, and repeat each experi-
ment three times. Unless differently specified, the coding rate is set
to 1.

5.1 Reliability
We start by evaluating the reliability of EMU’s three major functions
(chirp emulation, snipping, and multiplexing) over multiple combi-
nations of physical layer settings (i.e., SF, LDRO, gap duration).
Experimental setup. We place a transmitter (running EMU) and a
receiver node (running traditional LoRa) in very close proximity
(≈10 cm) to evaluate the reliability of chirp emulation and snip-
ping while ensuring a sufficient link budget6. We investigate ten
combinations of physical layer settings (i.e., SF 7 to 12 with default
LDRO configuration as well as SF 7 to 10 with the LDRO enabled
manually): for each combination, we study the reliability of chirp
snipping when using different gap durations, i.e., snipping from 5%
to 70% of a symbol in steps of 5%. We always snip the chips at the
end of a chirp, since this leads to the most reliable configuration, as
shown in Sec. 3.2. Since the length of a packet affects reliability as
well, i.e., the longer a packet, the lower the likelihood of a success-
ful reception [2], we send packets with a length of 255 bytes, so to
have a worst-case scenario. When evaluating the performance of
chirp multiplexing, we enable the LDRO for all SFs and snip 50% of

6Please note that in this section we use a table setup only to simplify experimentation.
As shown in Sec. 6, EMU also works in a network deployed over a campus.

EMU: Increasing the Performance and Applicability of LoRa through Chirp Emulation, Snipping, and Multiplexing IPSN’22, May 03–06, 2022, Milan, Italy

0% 10% 20% 30% 40% 50% 60% 70%

60%
80%

100%

Relative gap duration

BR
R

0% 10% 20% 30% 40% 50% 60% 70%

0%
50%

100%

Relative gap duration

PR
R

LDRO off LDRO on SF 7 SF 8 SF 9 SF 10 SF 11 SF 12

Figure 9: Reliability of chirp emulation and snipping. When
emulating (gap duration of 0%), the PRR and the BRR are 100%
regardless of the employed SF and LDRO configuration. When
snipping, enabling the LDRO allows to snip more than 50% of a
chirp with any SF, without significant impact on PRR or BRR.

the chirp, regardless of the employed SF. We make use of a second
receiver, also equipped with an SX1276 radio, to overhear communi-
cations on a second channel, and compute the corresponding PRR.
Results. Fig. 9 shows the PRR (top) and BRR (bottom) as a function
of the relative gap duration, respectively. In absence of gaps (i.e.,
when performing a chirp emulation), the PRR is ≈100% regardless
of the employed SF and LDRO settings; that is, a commercial LoRa
radio can successfully decode the packets emulated by EMU. This
confirms, among others, that we correctly understood how the
LDRO works, and that the description provided in Sec. 2.3 is correct.
When the gap duration increases, the PRR remains close to 100%, but
starts to decline when using a SF of 7 and 8 as soon as more than 15%
of a chirp is snipped. Similarly, the PRR starts to decline when using
a SF of 9 and 10 when more than 25% of a chirp is snipped. Note
that these four configurations have the LDRO disabled by default:
when enabling this feature, the gap duration can be increased up
to 55% before the PRR is affected. Similarly, when making use of SF
11 and 12, which enable the LDRO by default, a PRR of ≈100% can
be sustained when snipping a chirp by up to 65%. This observation
is important: in order to enable chirp multiplexing (i.e., to transmit
two chirps simultaneously), we need to be able to snip at least 50%
of a chirp: therefore, to support chirp multiplexing, we enable the
LDRO with all spreading factors. Tab. 1 summarizes the maximum
gap duration before the performance (PRR) starts to deteriorate.

Fig. 10 depicts the reliability of chirp multiplexing for different
configurations. When the same SF is used, all the multiplexed pack-
ets can be decoded successfully by both receivers (PRR ≈ 100%).
When using different (adjacent) SFs, the reliability of the packets
sent with the higher SF is slightly below 100% (albeit still greater
than 90%). This is likely due to the fact that chirp multiplexing
also involves the transmission of the preamble, sync word, and
down-chirps: as discussed in Sec. 3.3: these are more prone to de-
coding errors than the header and payload [28]. Hence, having only
a quarter of the chirp sent consecutively when using a higher SF
(rather than the half of a chirp when using the same SF) results in
a slightly lower reliability, as illustrated in Fig. 10.

5.2 Energy Consumption
Experimental setup.We measure the current drawn by the trans-
mitter using a Tektronix DMM7510 digital multimeter. We keep the

7&7 7&8 8&8 8&9 9&9 9&10 10&10 10&11 11&11 11&12 12&12
80%
85%
90%
95%
100%

SF

PR
R

Figure 10: Reliability of chirp multiplexing. When concur-
rently sending two packets with the same SF, the reliability is≈100%.
When using different SF, the PRR is lower (but still above 90%).

SF 7 8 9 10 7 8 9 10 11 12
LDRO D D D D E E E E E E

Max. gap (%) 15 15 20 20 55 55 55 55 65 65
Table 1: Maximum gap duration that can be used when snip-
ping chirps before the PRR starts to decline. Acronyms E and
D refer to the enabling and disabling of the LDRO, respectively.

TX power constant (5 dBm), and derive the energy consumption of
EMU when performing chirp emulation, snipping, and multiplexing,
comparing it to that of traditional LoRa. When snipping, we em-
ploy the maximum gap duration specified in Tab. 1 and LoRaWAN’s
default LDRO configuration. When multiplexing, the LDRO is en-
abled for all SFs and we snip 50% of the chirp. We use both short
(10 bytes) and long (255 bytes) payloads. Unless differently specified,
we always account for the energy costs of both radio and MCU.
Results. Fig. 11 shows how both chirp snipping and multiplexing
allow to significantly reduce energy consumption. Specifically, the
figure shows how much energy is saved per transmitted byte when
EMU snips and multiplexes chirps, using traditional LoRa with the
same PHY settings as a baseline. EMU’s pure chirp emulation results
in a slightly higher energy consumption (roughly between 4% and
0.7% higher than traditional LoRa): this is due to the intrinsic lim-
itations of performing the data encoding in software rather than
in hardware, as well as to the use of the CLKOUT pin to output a
reference clock as timer source (see Sec. 4.3). When performing
chirp snipping, the longer the gap duration, the more energy can
be saved: for this reason, the higher the SF, the higher the energy
savings, which can be as high as 30% when using SF 11 and 12. In
contrast, when using lower SFs, the benefits of snipping are only as
high as 10% when sending large packets. For shorter packets and
low SFs, the energy is comparable or slightly lower than that of
traditional LoRa: the reason for this is that snipping only occurs
after the transmission of preamble, sync word and down-chirps.
Thus, the number of transmitted symbols is lower with shorter
payloads, which limits the energy savings achieved by EMU. When
performing chirp multiplexing, the concurrent transmission of two
packets allows much higher energy savings. Our results show that
one can save between 28% and 36% of energy when using SFs from
7 to 10, and as much as 49% for SF 11 and 12.

5.3 Receiver Sensitivity
We quantify in this section the loss in receiver sensitivity of EMU
when emulating, snipping, and multiplexing chirps as a function of
the employed SF, and compare it to that of traditional LoRa.
Experimental setup. To evaluate the receiver sensitivity, we con-
nect transmitter and receiver nodes with an SMA cable. We cascade
two 90 dB adjustable attenuators (Mini-Circuits RCDAT-8000-90),
which allows us to decrease the signal power between -100 and

IPSN’22, May 03–06, 2022, Milan, Italy F. Yang et al.

7 8 9 10 11 12

0%
10%
20%
30%
40%
50% Snipping - 10 bytes Multiplexing - 10 bytes

Snipping - 255 bytes Multiplexing - 255 bytes

SF

En
er

gy
 s

av
in

gs

Figure 11: Energy per transmitted byte when snipping and
multiplexing chirps. Both functionalities of EMU allow to save
significant energy compared to traditional LoRa communications.

105 110 115 120 125 130 135

0%
50%

100%

Attenuation (dB)

PR
R

SF 8 Traditional LoRa SnippingEmulationSF 12 Multiplexing

Figure 12: PRR sustained by EMU when emulating, snipping,
andmultiplexing chirps compared to that of traditional LoRa.
The receiver sensitivity decreases by ≈2, 8, and 6 dB when running
EMU in emulating, snipping, and multiplexing mode.

100 105 110 115 120 125 130

0%
50%

100%

Attenuation (dB)

PR
R

Lower SF higher SF SF 7&8 SF 8&9 SF 9&10 SF 10&11 SF 11&12

Figure 13: PRR sustained by EMU when multiplexing chirps
with different SFs. The decrease in PRR is slightly higher for
packets sent with a higher SF, in line with the results in Sec. 5.1.

-135 dBm in 1 dB steps. We study how the PRR decreases as a func-
tion of the attenuation for different SFs and the corresponding
LDRO configurations. As in Sec. 5.1, we use large LoRa packets
(255 bytes of random payload), to account for the worst case. When
snipping chirps, we generate gaps as listed in Tab. 1. When multi-
plexing chirps, we compute the PRR on both channels and report
its average (but note that the PRR is similar across both receivers).
Results. Fig. 12 shows the PRR of traditional LoRa and that of EMU
when emulating, snipping, and multiplexing chirps as a function of
the introduced attenuation. We show the PRR when adopting a low
spreading factor (SF=8, circle) as well as a high one (SF=12, square).
As expected, the receiver sensitivity is higher when making use
of traditional LoRa devices, as they can generate packets directly
in hardware. Compared to traditional LoRa, EMU’s chirp emulation
reduces the receiver sensitivity by roughly 1–2 dB, regardless of
the employed spreading factor. When performing chirp snipping
and multiplexing, the loss in sensitivity compared to traditional
LoRa increases to approximately 8 and 6 dB7, respectively. Such an
increase in sensitivity loss is expected because, as mentioned in
Sec. 3, the chirps are incomplete and sent with a lower frequency
granularity. Still, it is still possible to reach a receiver sensitivity
lower than -120 dBm, which is one of the main features of LoRa
technology [59]. Fig. 13 shows the PRR as a function of the signal
attenuation when EMU performs chirp multiplexing of packets sent
7We notice that the PRR declines more steeply when performing chirp multiplexing:
this is why the PRR of snipping will be higher than that of multiplexing in Sec. 6.2.

7 8 9 10 11 12
0

5

10
Emulation Snipping Multiplexing

SF

Se
ns

iti
vi

ty
 lo

ss
 (d

B)

Figure 14: Comparison of the sensitivity loss when using EMU
in emulation, snipping, and multiplexing mode to that of
traditional LoRa. The values are computed based on the receiver
sensitivity that allows to achieve a PRR > 95%.

with different SF. In line with the results presented in Sec. 5.1, the
decrease in PRR is stronger for packets sent with a higher SF, and the
loss in sensitivity is similar to the one shown in Fig. 12. We finally
summarize the sensitivity loss when using EMU compared to that of
traditional LoRa in Fig. 14. The values displayed in the histogram are
derived by picking the receiver sensitivity that allows to achieve
a PRR above 95%. As discussed in Sec. 3.2, a sensitivity below -
120 dBm still suffices to transmit data over large distances (up to
2700m), which is sufficient for most LoRa-based applications [35,
83]. Thus, our experimental results confirm that the use of chirp
snipping can find applicability in many real-world deployments.

6 USING EMU WITHIN A LORAWAN
In this section, we run EMU as transmitter on both LoRa (SX1276) and
non-LoRa platforms (TI CC1125), and establish a communication to
a LoRaWAN gateway (RAK7243 with ChirpStack8), showing that:

• The LoRaWAN uplink throughput can be improved signifi-
cantly thanks to the use of chirp multiplexing (Sec. 6.1);

• EMU’s chirp emulation, snipping, and multiplexing work well
also in a real deployment across large distances (Sec. 6.2);

• Even non-LoRa nodes can directly send information to a
LoRaWAN gateway using EMU (Sec. 6.2).

• The use of EMU’s chirp emulation allows non-LoRa nodes to
achieve a longer range (Sec. 6.2).

6.1 Throughput Improvements
We quantify the throughput improvements introduced by EMU’s
chirp multiplexing and compare it with that of traditional LoRa.
Experimental setup. We let an SX1276 node run EMU while work-
ing as anActivation By Personalization (ABP) LoRaWANdevice [71].
With ABP, the information for joining a LoRaWAN (i.e., a fixed
device address and session key) provided by the gateway is hard-
coded into the device, so that the latter can immediately join the
LoRaWAN and exchange data with the gateway. We also configure
EMU to comply with the regulated duty cycle limitations (1%) on each
channel9. There are eight fixed channels (from 486.3 to 487.7MHz
with a channel spacing of 200 kHz) overheard by the gateway.When
performing chirp multiplexing, we send two packets using the same
SF, and remap the channel hopping mechanism used by traditional
LoRa nodes since the two channels used when multiplexing have
8https://github.com/brocaar/chirpstack-docker, commit: 2c9ee5e.
9This results in packets being sent every 4.6, 8.2, 8.5, 8.7, 19.5, and 35 s for SF 7 to 12,
respectively, when using traditional LoRa and EMU with chirp emulation. When using
chirp multiplexing, packets are sent every 6.3, 10.6, 10.5, 10.8, 19.5, and 35 s for SF 7 to
12. The payload length is 222, 222, 115, 51, 51, and 51 bytes for SF 7 to 12, respectively.

EMU: Increasing the Performance and Applicability of LoRa through Chirp Emulation, Snipping, and Multiplexing IPSN’22, May 03–06, 2022, Milan, Italy

7 8 9 10 11 12

0%

50%

100%

0%

20%

40%

60%

SF

En
er

gy
 s

av
in

gs

Th
ro

ug
hp

ut
 in

cr
ea

se Throughput: Energy:Emulation Multiplexing Emulation Multiplexing

Figure 15: LoRaWAN uplink throughput and energy con-
sumption per received byte when using chirp emulation and
multiplexing. The throughput can be doubled and up to 51% en-
ergy per received byte can be saved thanks to EMU.

7&8 8&9 9&10 10&11 11&12

0%

50%

100%

0%

20%

40%

SF (Traditional LoRa) & SF+1 (EMU with Chirp Multiplexing)
En

er
gy

 s
av

in
gs

Th
ro

ug
hp

ut
 in

cr
ea

se Throughput: 10 bytes 100 bytes Energy: 10 bytes 100 bytes

Figure 16: Performance when multiplexing chirps using EMU
with a higher spreading factor (SF+1) than that used by tra-
ditional LoRa (SF) in a LoRaWAN context. When transmitting
short payloads, EMU still achieves a higher throughput.

to be > 400 kHz (see Sec. 3.3). We use the maximum payload length
allowed in LoRaWAN [41], and record the number of packets re-
ceived by the gateway over 10 minutes runs. As for Sec. 5.1, when
evaluating the performance of chirp multiplexing, we enable the
LDRO for all SFs and snip 50% of the chirp, regardless of the em-
ployed SF. Accordingly, on the gateway, we enable the LDRO by
setting PPM_OFFSET in RegMisc_cfg2 and MBWSSF_PPM_OFFSET in
RegMbwssf_misc_cfg210. After sending packets to the LoRa gate-
way using EMU, the transmitting node switches back to receiving
mode to get the ACK packets sent by the gateway. Note that the
gateway will receive both packets at the same time, but will only
respond with an ACK to one of them, due to a bug in the imple-
mentation of the LoRa network server. In these experiments, the
gateway is located in the same room of the SX1276 transmitter, at a
distance of ≈10m. Besides quantifying the improvements in uplink
throughput, we also monitor energy consumption using a software-
based energy estimation approach resembling Energest [19].
Results. The bars in Fig. 15 show the difference in uplink through-
put when using EMUwith chirpmultiplexing compared to traditional
LoRa. The throughput of EMU when performing chirp multiplexing
is significantly higher regardless of the employed SF. For SF 11
and 12, we observe the highest increase in throughput, which is
essentially doubled compared to that of traditional LoRa. This is
because the latter does not use the LDRO option for SF 7–10, which
results in a faster data transmission. The lines in Fig. 15 show the
energy per received byte, which is even 59% lower than when using
traditional LoRa, in line with the findings presented in Fig. 11. The
difference in throughput and energy of EMU when performing chirp
emulation are also plotted as a reference, and are close to zero.
Discussion. The aforementioned results show the benefits intro-
duced by EMU compared to a system running LoRa using the same

10Please note that enabling the LDRO when using a lower SF than 11 may lead to po-
tential compatibility issues with existing LoRaWAN gateways. However, note that this
was not the case for the gateway used in our experiments (RAK7243 with ChirpStack).

PHY settings. In principle, from a pure PHY perspective (i.e., with-
out accounting for the use of LoRaWAN), a LoRa device could make
use of a lower SF to obtain equivalent of higher benefits than those
introduced by EMU’s snipping and multiplexing. However, when
using LoRaWAN and small payloads, the throughput of traditional
LoRa with a lower SF is not necessarily better than that of EMU with
chirp multiplexing, as shown in Fig. 16. The better performance of
EMU with short payloads is due to the mandatory receive window
(typically 2 s) after transmitting a packet [41, 56]: this introduces a
delay duringwhich packets cannot be sent (EMU has an advantage, as
it is able to send two packets simultaneously). With high spreading
factors and lower data rates, the delays due to the radio duty cycle
regulations (which are much longer than the receive window) are
the dominating factor, diminishing EMU’s benefits. Independently of
these results, adopting a lower SF assumes that a node has the abil-
ity to freely choose the SF to be used for communication. While this
is typically the case with LoRaWAN gateways and static end-nodes,
the same does not hold true for P2P communication across LoRa
end-nodes (where the SF is fixed and cannot be chosen arbitrarily
for each individual packet transmission) and in the presence of
mobile end-nodes communicating to a gateway (where blind ADR
is recommended by LoRaWAN [60]). For such scenarios, the ability
to snip and multiplex chirps sent with a given SF with EMU can be
an asset to increase throughput and reduce energy consumption.

6.2 Deploying EMU in a University Campus
We conclude our experimental evaluation by deploying several LoRa
(SX1276) and non-LoRa (TI CC1125) nodes running EMU across a
University campus, and evaluate their performance by connect-
ing them to a LoRaWAN gateway keeping track of the received
packets from each node. For the SX1276 nodes, we evaluate the
performance of EMU in chirp emulation, snipping, and multiplexing
mode, against that of traditional LoRa. For the TI CC1125 nodes,
we evaluate the performance of EMU when communicating to the
LoRaWAN gateway using chirp emulation, and compare it to the
performance obtained by the device using its native 2-GFSK mod-
ulation to communicate with another TI CC1125 device acting as
receiver (we place this device in proximity of the LoRaWAN gate-
way to ensure a fair comparison). Fig. 17(c) shows the position of the
LoRaWAN gateway and of all other nodes used in our evaluation.
EMU’s performance on a LoRa radio.We let the SX1276 devices
running EMU (marked as green circles in Fig. 17(c)) send 100 packets
to the LoRaWAN gateway using chirp emulation, snipping, and
multiplexing, for different SFs (7 and 12) as well as a fixed trans-
mission power (14 dBm). We repeat each run three times. When
running EMU in chirp snipping mode, we use a gap of 15% with
LDRO disabled for SF=7, and a 65% gap with LDRO enabled for
SF=12. When running EMU in chirp multiplexing mode, we use a
gap of 50% and enable LDRO for both SF 7 and 12. Fig. 17(a) shows
the PRR measured at the LoRaWAN gateway broken down per indi-
vidual node and EMU mode. We can see that the LoRaWAN gateway
receives most of the packets transmitted by EMU correctly, also when
nodes are relatively far (nodes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 are
placed 150, 300, 400, 350, 350, 350, 500, 900, 1100, 1350 and 1500m
away from the gateway, respectively). Please note that although the
PRR of EMU when using chirp multiplexing is approximately 100%,
the actual number of packets sent is double compared to the one

IPSN’22, May 03–06, 2022, Milan, Italy F. Yang et al.

(c) Map of nodes used in Sec. 6.2

(b) EMU's performance on a non-LoRa radio (TI CC1125)

300 m
7

11

23
4

CG5
6

89

2 3

4 5

6 7

SX1276 Transmitter

LoRaWAN gatewayG

CC1125 Transmitter

CC1125 receiverC

1011
LoRaWAN
gateway

Antenna

(a) EMU's performance on a LoRa radio (SX1276)

Figure 17: Performance of EMU in an outdoor deployment (c)
using both LoRa and non-LoRa radios. EMU sustains a high PRR
also at large distances (a). Non-LoRa radios using EMU can transmit
data to LoRaWAN gateways and increase their range (b).

sent by traditional LoRa, as two packets are sent concurrently on
two separate channels. The PRR sustained by EMU with SF=7 starts
to decline after 1.3 km, but the gateways can still receive packets
sent with SF=12 at higher distances (e.g., node 11).
EMU’s performance on a non-LoRa radio. We let the TI CC1125
nodes running EMU (marked as blue circles in Fig. 17(c)) send 100
packets to the LoRaWAN gateway using chirp emulation, SF=12,
and a fixed transmission power (0 dBm). The same nodes also send
packets using their native 2-GFSK modulation to a receiver placed
nearby the gateway using the same transmission power. We repeat
each run three times. Fig. 17(b) shows that EMU’s chirp emulation
allows the non-LoRa devices to successfully communicate with the
LoRaWAN gateway and to increase their communication range.
In fact, nodes 4–7 cannot communicate with the CC1125 receiver
when using their native 2-GFSKmodulation, but can do so using EMU.
These results hence confirm that the use of EMU is beneficial even
for non-LoRa transceivers, which can increase their communication
range and communicate directly to a LoRaWAN gateway, thereby
enabling new use cases and expanding the applicability of LoRa.

7 RELATEDWORK
We analyse related work with respect to (i) the body of literature
increasing the energy efficiency and throughput of LoRa-based
solutions, as well as (ii) solutions enabling a cross-technology com-
munication (CTC) between LoRa devices and other technologies.
Improvement of LoRa-based solutions. The architecture of Lo-
RaWANs is a star topology, where end-devices send data directly
to LoRaWAN gateways [41] making use of protocols based on
ALOHA [41]. Nodes can transmit in parallel by utilizing the or-
thogonality between combinations of LoRa parameters in terms

of SF, frequency and BW [7, 84]. However, this still results in a
high number of collisions [47], especially when nodes are placed
densely [1, 5], which leads to a higher packet loss, latency, and
energy expenditure. Therefore, researchers have proposed several
techniques to avoid such collisions and mitigate their impact. These
include lightweight scheduling algorithms [50], TDMA-basedmech-
anisms [76], optimal resource allocation schemes [12, 21, 25] and
novel carrier sensing approaches [24, 36]. Moreover, the use of
directional antennae [77] also allows to mitigate the detrimental
impact of packet collisions. Researchers have also derived solutions
to disentangle collided packets at the gateway [20, 31, 74, 75, 78, 81]
and to receive more information from received packets [42] or
waveforms [18], thereby improving goodput and reducing the send-
ing attempts of end devices. A few works such as Chime [23] have
also focused on mitigating the effects of multipath by means of an
improved frequency selection. In contrast to all these works, EMU
improves the efficiency and throughput by modifying the PHY (i.e.,
by snipping and multiplexing chirps) on the transmitting device.
Cross-technology communication with LoRa devices. CTC
enables devices with different radio technologies to directly com-
municate without the need of multi-radio gateways [32, 37]. Most
of the work on CTC has focused on Wi-Fi, BLE, and IEEE 802.15.4
(ZigBee) devices operating in the 2.4 GHz ISM band [15, 29, 30, 82].
With the emergence of LoRa devices operating at 2.4 GHz [58], a
few works have also enabled CTC between LoRa and other tech-
nologies sharing these frequencies. For example, XFi [40] enables
Wi-Fi receivers to receive simultaneously eight streams of LoRa
packets; BLE2LoRa [38] allows BLE devices to communicate with
LoRa devices; whereas Wi-Lo [26] allows a Wi-Fi device to send
LoRa-compliant packets. Whilst BLE2LoRa [38] and Wi-Lo [26]
also emulate a CSS signal, they only embed LoRa symbols within
a Wi-Fi or BLE packet. EMU, instead, constructs each individual
chirp chip-by-chip, which results in a more fine-grained emulation.
c-Chirp [80] builds a chirp-based CTC channel between ZigBee and
Wi-Fi, but without targeting LoRa devices. Finally, LoRaBee [61]
achieves CTC from LoRa to Zigbee devices operating in the sub-
GHz band, whereas EMU allows non-LoRa devices to communicate
to off-the-shelf LoRa receivers and LoRaWAN gateways.

8 CONCLUSIONS
We have presented EMU, a framework that enables the emulation,
snipping, and multiplexing of LoRa chirps on commercial IoT de-
vices equipped with low-power sub-GHz transceivers. By emulating
chirps with a (G)FSK/OOK modulator, EMU generates LoRa packets
that can be decoded by off-the-shelf LoRa receivers and LoRaWAN
gateways. Chirp snipping, i.e., artificially removing a sequence of
chips and placing the radio in low-power mode, allows to reduce
the energy consumption while retaining a reliable communication.
Chirp multiplexing exploits the gaps introduced by chirp snipping
to transmit portions of another chirp on a separate channel, thereby
enabling the concurrent transmission of two LoRa packets at once,
which allows to increase throughput. We strongly believe that EMU’s
modular framework and open-source availability will enable new
use cases and expand the applicability of LoRa technology.
Acknowledgements. This work is partially funded by the National
Science Foundation of China (No. 61902188).

EMU: Increasing the Performance and Applicability of LoRa through Chirp Emulation, Snipping, and Multiplexing IPSN’22, May 03–06, 2022, Milan, Italy

REFERENCES
[1] F. Adelantado et al. 2017. Understanding the Limits of LoRaWAN. IEEE Commun.

Mag. 55, 9 (2017).
[2] T. Attia et al. 2019. Experimental Characterization of Packet Reception Rate in

LoRaWAN. In Proc. of the 4th CoRes Conf.
[3] A. Augustin et al. 2016. A Study of LoRa: Long Range & Low Power Networks

for the Internet of Things. Sensors 16, 9 (2016).
[4] W. Ayoub et al. 2020. Technology Selection for IoT-Based Smart Transportation

Systems. In Vehicular Ad-hoc Networks for Smart Cities.
[5] D. Bankov et al. 2016. On the Limits of LoRaWAN Channel Access. In Proc. of the

3rd EnT Conf.
[6] P. J. Basford et al. 2020. LoRaWAN for Smart City IoT Deployments: A Long

Term Evaluation. Sensors 20, 3 (2020).
[7] M. Bor et al. 2016. Do LoRa Low-Power Wide-Area Networks Scale?. In Proc. of

the 19th MSWiM Conf.
[8] M. Bor et al. 2016. LoRa for the Internet of Things. In Proc. of the 1st MadCom

Workshop.
[9] M. Bor et al. 2017. LoRa Transmission Parameter Selection. In Proc. of the 13th

DCOSS Conf.
[10] T. Bouguera et al. 2018. Energy Consumption Model for Sensor Nodes Based on

LoRa and LoRaWAN. Sensors 18, 7 (2018).
[11] C. Bouras et al. 2021. Energy Efficient Mechanism for LoRa Networks. Internet

of Things 13 (2021).
[12] C. Caillouet et al. 2019. Optimal SF Allocation in LoRaWAN Considering Physical

Capture and Imperfect Orthogonality. In Proc. of the 38th GLOBECOM Conf.
[13] M. Cattani et al. 2017. Adige: An Efficient Smart Water Network based on

Long-Range Wireless Technology. In Proc. of the 3rd CySWATER Workshop.
[14] M. Cattani et al. 2017. An Experimental Evaluation of the Reliability of LoRa

Long-Range Low-Power Wireless Communication. JSAN 6, 2 (2017).
[15] K. Chebrolu et al. 2009. Esense: Communication through Energy Sensing. In Proc.

of the 15th MobiCom Conf.
[16] Y. Cheng et al. 2018. Secure Smart Metering based on LoRa Technology. In Proc.

of the 4th ISBA Conf.
[17] S. Demetri et al. 2019. Automated Estimation of Link Quality for LoRa: A Remote

Sensing Approach. In Proc. of the 18th IPSN Conf.
[18] A. Dongare et al. 2018. Charm: Exploiting Geographical Diversity through

Coherent Combining in LP-WANs. In Proc. of the 17th IPSN Conf.
[19] A. Dunkels et al. 2007. Software-based On-line Energy Estimation for Sensor

Nodes. In Proc. of the 4th EmNetS Workshop.
[20] R. Eletreby et al. 2017. Empowering low-power wide area networks in urban

settings. In Proc. of the 31st SIGCOMM Conf.
[21] A. Farhad et al. 2020. Resource Allocation to Massive Internet of Things in

LoRaWANs. Sensors 20, 9 (2020).
[22] B. Foubert et al. 2020. Long-RangeWireless Radio Technologies: A Survey. Future

Internet 12, 1 (2020).
[23] A. Gadre et al. 2020. Frequency Configuration for Low-Power Wide-Area Net-

works in a Heartbeat. In Proc. of the 17th NSDI Conf.
[24] A. Gamage et al. 2020. LMAC: Efficient Carrier-Sense Multiple Access for LoRa.

In Proc. of the 26th MobiCom Conf.
[25] W. Gao et al. 2020. AdapLoRa: Resource Adaptation for Maximizing Network

Lifetime in LoRa networks. In Proc. of the 28th ICNP Conf.
[26] P. Gawlowicz et al. 2021. Wi-Lo: Emulating LoRa using COTS WiFi. CORR –

arXiv preprint 2105.04998 (2021).
[27] R. Ghanaatian et al. 2019. Lora Digital Receiver Analysis and Implementation. In

Proc. of the 44th ICASSP Conf.
[28] J. Haxhibeqiri et al. 2018. Sub-Gigahertz Inter-Technology Interference. How

Harmful is it for LoRa?. In Proc. of the 4th ISC2 Conf.
[29] R. Hofmann et al. 2019. X-Burst: Enabling Multi-Platform Cross-Technology

Communication between Constrained IoT Devices. In Proc. of the SECON Conf.
[30] R. Hofmann et al. 2021. SERVOUS: Cross-Technology Neighbour Discovery and

Rendezvous for Low-Power Wireless Devices. In Proc. of the 18th EWSN Conf.
[31] B. Hu et al. 2020. SCLoRa: Leveraging Multi-Dimensionality in Decoding Collided

LoRa Transmissions. In Proc. of the 28th ICNP Conf.
[32] W. Jiang et al. 2017. BlueBee: A 10,000x Faster Cross-Technology Communication

via PHY Emulation. In Proc. of the 15th ACM SenSys Conf.
[33] jkadbear. 2021. LoRaPHY – A complete MATLAB implementation of LoRa PHY.

[Online] https://github.com/jkadbear/LoRaPHY – Last access: 2021-10-29.
[34] B. Kempke et al. 2016. SurePoint: Exploiting UWB Flooding and Diversity to

Provide Robust, Scalable, High-Fidelity Indoor Localization. In Proc. of the 14th
ACM SenSys Conf.

[35] R. K. Kodali et al. 2018. Smart Farm Monitoring Using LoRa Enabled IoT. In Proc.
of the 2nd ICGCIoT Conf.

[36] N. Kouvelas et al. 2020. P-CARMA: Politely Scaling LoRaWAN. In Proc. of the
17th EWSN Conf.

[37] Z. Li et al. 2017. WEBee: Physical-Layer Cross-Technology Communication via
Emulation. In Proc. of the 23rd MobiCom Conf.

[38] Z. Li et al. 2020. BLE2LoRa: Cross-Technology Communication from Bluetooth
to LoRa via Chirp Emulation. In Proc. of the 17th SECON Conf.

[39] C.-H. Liao et al. 2016. Revisiting the So-Called Constructive Interference in
Concurrent Transmission. In Proc. of the 41st LCN Conf. IEEE.

[40] R. Liu et al. 2020. XFi: Cross-technology IoT Data Collection via Commodity
WiFi. In Proc. of the 28th ICNP Conf.

[41] LoRa Alliance. 2017. LoRaWAN Specification, v1.1. [Online] https://bit.ly/
2F0QbQM – Last access: 2021-10-29.

[42] P. J. Marcelis et al. 2017. DaRe: Data Recovery through Application Layer Coding
for LoRaWAN. In Proc. of the 2nd IoTDI Conf.

[43] K. Mekki et al. 2019. A Comparative Study of LPWAN Technologies for Large-
Scale IoT Deployment. ICT Express 5, 1 (2019).

[44] N. Naik et al. 2018. LPWAN Technologies for IoT Systems: Choice Between Ultra
Narrow Band and Spread Spectrum. In Proc. of the 4th ISSE Conf.

[45] M. N. Ochoa et al. 2017. Evaluating LoRa Energy Efficiency for Adaptive Networks:
From Star to Mesh Topologies. In Proc. of the 13th WiMob Conf.

[46] J. Petäjäjärvi et al. 2015. On the Coverage of LPWANs: Range Evaluation and
Channel Attenuation Model for LoRa Technology. In Proc. of the 14𝑡ℎ ITST Conf.

[47] A. Rahmadhani et al. 2018. When LoRaWAN Frames Collide. In Proc. of the 12th
WiNTECH Conf.

[48] U. Raza et al. 2017. Low PowerWide Area Networks: An Overview. IEEE Commun.
Surv. Tutor. 19, 2 (2017).

[49] Red Oak Farm. [n.d.]. Learning about Emu Feathers. [Online] http://www.
redoakfarm.com/learning_about_feathers.htm – Last access: 2021-10-29.

[50] B. Reynders et al. 2018. Improving Reliability and Scalability of LoRaWANs
Through Lightweight Scheduling. IoT-J 5, 3 (2018).

[51] P. Robyns et al. 2018. AMulti-Channel Software Decoder for the LoRaModulation
Scheme. In Proc. of the 3rd IoTBDS Conf.

[52] M. Saelens et al. 2019. Impact of EU Duty Cycle and Transmission Power Limita-
tions for Sub-GHz LPWAN SRDs: An Overview and Future Challenges. J. Wirel.
Commun. Netw. (2019).

[53] M. Sandell et al. 2019. Application Layer Coding for IoT: Benefits, Limitations,
and Implementation Aspects. IEEE Syst J. 13, 1 (2019).

[54] Semtech. 2015. AN1200. 22 LoRa Modulation Basics. [Online] https://sforce.co/
30OFbAV – Last access: 2021-10-29.

[55] Semtech. 2018. Application Note: Recommendations for Best Performance. [On-
line] https://bit.ly/3G9h0Nu – Last access: 2021-10-29.

[56] Semtech. 2019. An In-depth Look at LoRaWAN Class A Devices. [Online]
https://bit.ly/3H3oalN – Last access: 2021-10-29.

[57] Semtech. 2019. SX1268 Datasheet. [Online] https://sforce.co/3pnhGJg – Last
access: 2021-10-29.

[58] Semtech. 2020. Long Range, Low Power, 2.4 GHz Transceiver with Ranging
Capability. [Online] https://bit.ly/2F0QbQM – Last access: 2021-10-29.

[59] Semtech. 2020. SX1276-7-8-9 Datasheet. [Online] https://sforce.co/3lWhC11 –
Last access: 2021-10-29.

[60] Semtech’s LoRa Developer Portal. 2021. LoRa Device Mobility: An Introduction
to Blind ADR. [Online] https://bit.ly/3sUO5Hc – Last access: 2021-10-29.

[61] J. Shi et al. 2019. LoRaBee: Cross-Technology Communication from LoRa to
ZigBee via Payload Encoding. In Proc. of the 27th ICNP Conf.

[62] N. Silva et al. 2019. Low-Cost IoT LoRa Solutions for Precision Agriculture
Monitoring Practices. In Proc. of the 19𝑡ℎ EPIA Conf.

[63] J. P. S. Sundaram et al. 2020. A Survey on LoRa Networking: Research Problems,
Current Solutions, and Open Issues. IEEE Commun. Surv. Tutor. 22, 1 (2020).

[64] F. Sutton et al. 2015. Bolt: A Stateful Processor Interconnect. In Proc. of the 13th
ACM SenSys Conf.

[65] F. Sutton et al. 2017. The Design of a Responsive and Energy-efficient Event-
triggered Wireless Sensing System. In Proc. of the 14th EWSN Conf.

[66] J. Tapparel. 2019. Complete Reverse Engineering of LoRa PHY. Technical Report.
EPFL, Lausanne.

[67] J. Tapparel et al. 2020. An Open-Source LoRa Physical Layer Prototype on GNU
Radio. In Proc. of the 21st SPAWC Conf. 1–5.

[68] L. Tessaro et al. 2018. LoRa Performance in Short Range Industrial Applications.
In Proc. of the 23rd SPEEDAM Symp.

[69] Texas Instruments. 2009. CC1100 Low-Power Sub- 1 GHz RF Transceiver. [On-
line] https://bit.ly/3G1yYSh – Last access: 2021-10-29.

[70] Texas Instruments. 2014. CC1125 Ultra-High Performance RF Narrowband Tran-
sceiver. [Online] https://bit.ly/2ZavXhC – Last access: 2021-10-29.

[71] The Things Network. 2021. ABP vs OTAA. [Online] https://www.
thethingsindustries.com/docs/devices/abp-vs-otaa/ – Last access: 2021-10-29.

[72] The Things Network. 2021. Regional Parameters. [Online] https://bit.ly/3JFkOas
– Last access: 2021-10-29.

[73] P. Tian et al. 2021. ChirpBox: An Infrastructure-Less LoRa Testbed. In Proc. of
the 18th EWSN Conf.

[74] S. Tong et al. 2020. CoLoRa: Enabling Multi-Packet Reception in LoRa. In Proc. of
the 39th INFOCOM Conf.

[75] S. Tong et al. 2020. Combating Packet Collisions Using Non-Stationary Signal
Scaling in LPWANs. In Proc. of the 18th MobiSys Conf.

IPSN’22, May 03–06, 2022, Milan, Italy F. Yang et al.

[76] R. Trüb et al. 2018. Increasing Throughput and Efficiency of LoRaWAN Class A.
In Proc. of the 12th UBICOMM Conf.

[77] T. Voigt et al. 2017. Mitigating Inter-Network Interference in LoRa Networks. In
Proc. of the 14th EWSN Conf.

[78] X. Wang et al. 2019. mLoRa: AMulti-Packet Reception Protocol in LoRa networks.
In Proc. of the 27th ICNP Conf.

[79] Z. Wang et al. 2020. Online Concurrent Transmissions at LoRa Gateway. In Proc.
of the IEEE INFOCOM Conf.

[80] D. Xia et al. 2020. c-Chirp: Towards symmetric cross-technology communication
over asymmetric channels. In Proc. of the 17th SECON Conf.

[81] X. Xia et al. 2019. FTrack: Parallel Decoding for LoRa Transmissions. In Proc. of
the 17th ACM SenSys Conf.

[82] Z. Yu et al. 2018. Crocs: Cross-Technology Clock Synchronization for WiFi and
ZigBee. In Proc. of the 15th EWSN Conf.

[83] W. Zhao et al. 2017. Design and Implementation of Smart Irrigation System Based
on LoRa. In Proc. of the 1st LPWA4IoT Workshop.

[84] D. Zorbas et al. 2018. Improving LoRaNetwork Capacity UsingMultiple Spreading
Factor Configurations. In Proc. of the 25th ICT Conf.

