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ABSTRACT

In our daily life, we are increasingly relying on connected systems
ranging from smart health care devices to industrial and intelli-
gent transportation systems, as well as smart homes and cities. The
unavailability or malfunctioning of these systems could threaten
human life, cause environmental damage, and significant financial
loss. To prevent such large scale and mission-critical systems from
malfunctioning, it is of utmost importance to establish and guaranty
reliable connections to attain a dependable networked system. Gen-
erally, mesh networking technologies are used for building such
systems since mesh networks provide the best performance charac-
teristics regarding fault-tolerance, throughput, resource usage, and
service level flexibility.

In this paper, we summarize the major challenges in depend-
able network design, to subsequently present three patterns that
approach redundancy on the hardware level, software-defined net-
working, and cross-cutting concerns like monitoring and service
discovery within distributed networked systems. These three pat-
terns should help designers and engineers in choosing the appro-
priate technologies for building dependable networked systems at
all scales. Since dependable network engineering requires a holistic
system-wide design and engineering approach, we also present a
pattern map guiding to complementary and closely related patterns.
System architects and system engineers responsible for building
mixed-criticality systems, internet-of-things (IoT), and industrial
Internet-of-Things (IIoT) systems are the target audience of the
patterns presented in this paper.

CCS CONCEPTS

+ Applied computing — Service-oriented architectures; Com-
mand and control; - Software and its engineering — Ultra-
large-scale systems;
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1 INTRODUCTION

We increasingly rely on highly inter-connected networked sys-
tems in our daily life, ranging from intelligent transportation sys-
tems [15] and industrial systems [46] to smart homes and smart
cities [14]. Since we are relying on these critical systems in such
multitude manner, it is of utmost importance to establish trust into
these systems, summarized in the statement that these systems
should be dependable [2]. Dependability is defined by multiple
attributes (availability, reliability, safety, confidentiality, integrity,
maintainability) that must be maintained and assured at a sufficient
level. This is commonly achieved by considering the risk of poten-
tial threats (faults, errors, failures), followed by applying adequate
risk reduction mechanisms (fault prevention, fault tolerance, fault
removal, fault forecasting).

Challenge of the reliable and dependable system and ser-
vice connectivity. The Threat Horizon 2017 report [17], for exam-
ple, lists "death from disruption to digital services" as one potential
threat, especially in the medical and mobility domain. The newest
Threat Horizon 2019 report [21] claims that the cause of service dis-
ruption may come "from an over-reliance on fragile connectivity". In
order to reduce the risk of digital service disruption, it is, therefore,
essential to establish and guaranty both, reliable and dependable
inter-connections of the devices within mission-critical networked
systems.

Challenge of highly dynamic and flexible connectivity.

By introducing internet-of-things (IoT) and cyber-physical system
(CPS) concepts into multiple industrial domains, the industry is
undergoing enormous change towards globalizing, flexibilizing,
decentralizing, and digitizing manufacturing processes [27, 41, 42].
This trend is embodied under the Industry 4.0 revolution (which
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Figure 1: Illustration of the dependable networking context, which can be separated into three levels: the physical, logical, and
service level. Each level is addressed by one pattern presented in this paper.

is in the process of happening) driving the need for cross-domain
interaction, highly dynamic system change, and graceful system
evolution. However, traditional production and automation systems
are designed as static silos, which are generally configured once, to
support the (dependable) information processing within the specific
system, but rarely across system and domain boundaries [33].

Need for holistic and system-wide design and engineering
approaches. The increasing need for highly dynamic and inter-
domain production and automation systems pushes the demand
for solutions that facilitate a multitude of attributes, including:
(i) system interoperability, to support the seamless vertical and
horizontal interaction and integration of heterogeneous devices
and systems across level and domain boundaries; (ii) system au-
tonomy, to successfully manage the complexity and dynamics
of largely distributed CPS, where (timely) human intervention is
extremely limited; and (iii) system dependability, to ensure the
reliable and safe interaction between the cyber and the physical
world. The building, operation, and maintenance of such large-scale
networked systems are rather complex because such systems gener-
ally consist of various networking technologies. These networking
technologies specify how the network elements communicate with
each other by forming an organizational framework consisting of
information-, routing-, and communication protocols. This frame-
work directly influences the interconnection (i.e., topology) of the
network elements and the traffic flow through the network [26].
Therefore, a holistic system-wide design and engineering ap-
proach is essential for appropriately choosing both, the net-
work technologies and the network topology.

Our contribution: Dependable Mesh Networking Patterns.
In this paper, we present three architectural patterns: (1) the PHYS-
ICAL MESH PATTERN, (2) the LOGICAL MESH PATTERN, and
(3) the SERVICE MESH PATTERN. Each pattern addresses the chal-
lenges mentioned above at specific technical levels with its focus

on dependable networking. Additionally, each pattern establishes
the context for the application of various related patterns; hence,
providing a solid starting point for a holistic system-wide design
and engineering approach. Figure 1 shows the technical context
and the relationship between the patterns presented in this paper,
while the pattern map in Figure 2 sets the context and connections
to related patterns.

The remainder of this paper is organized as follows. In Section 2,
we introduced the basic design principles in dependability engineer-
ing, followed by the explanation of typical characteristics, qualities,
and requirements of modern mixed-criticality networked systems
in Section 3. In Section 4 two patlets are presented, which are used
by the subsequently epxlained PHYSICAL MESH PATTERN in
Section 5, the LOGICAL MESH PATTERN in Section 6, and the
SERVICE MESH PATTERN in Section 7. A final conclusion is given
in Section 8.

1.1 Related patterns

The discussed and presented design space in this work is only an
excerpt of the overall design space, since networking and depend-
ability are addressing huge system engineering and research fields.
In the following, we provide a list of pattern languages and pattern
books that we think are closely related to the topics discussed in
this work. The relationships between these patterns are shown in
Figure 2.

Networking and cloud-computing patterns. The following
patterns focus on building distributed service-oriented applications,
the coordination between the services, and the efficient manage-
ment of data and computing resources.

e Engineering software for the cloud [5, 38-40]

e Patterns for software orchestration on the cloud [6]
o A pattern language for microservices [32]

o A pattern language for distributed computing [7]
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shown patterns are provided in Section 1.1.

Patterns for parallel programming [28]
Patterns for Resource Management [22]

dleware solutions [47]
Enterprise integration patterns
Messaging patterns?

1

IoT and edge-computing patterns. The following patterns fo-
cus on the integration and interconnection of distributed and em-
bedded and resource constraint devices, which are generally used
to connect the physical world with the cyber world in the context

of Industry 4.0 applications and CPS.

e Microservice patterns for the life cycle of industrial edge

software [24]

e Design patterns for the industrial Internet of Things [4]

!https://www.enterpriseintegrationpatterns.com/

Zhttps://docs.microsoft.com/en-us/azure/architecture/patterns/category/

messaging

Patterns for concurrent and networked objects [34]

Remoting patterns: design reuse of distributed object mid-

things [8]

A microservice architecture for the industrial internt-of-

e 0T Device Security the Hard(ware) way [35]

o IoT design patterns: computational constructs to design,

build and engineer edge applications [31]

Pattern-based development of embedded systems for safety

and security [30]

tems [43]

2

Design patterns for safety-critical embedded systems [1]
e On patterns for decentralized control in self-adaptive sys-

DESIGN RATIONALE

In general, various means are required, and various aspects must be

considered to attain a dependable networked system. In this section,

we briefly introduce these aspects, describing the rationale behind

dependable mesh networking and the patterns presented in this

mesh networking.

paper. Section 3 provides a more detailed discussion of dependable
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Figure 3: Variations of mesh topologies (adapted from [26]).

2.1 Mesh Networking in the Context of
Dependable System Engineering

In this work, we specifically focus on the networking aspects that
must be considered when building large-scale mission-critical CPS.
One of the vital design-principle is redundancy, which is gener-
ally applied for obtaining highly available and reliable networks
and systems. The principle of diverse redundancy is commonly
applied in safety-critical domains to reduce the risk of common
cause failures. Safety-critical and mission-critical systems, often
require the implementation of fault-tolerant mechanism. In the
case of distributed or large-scale systems, where (timely) human
intervention is limited, it is generally necessary to achieve a certain
level of system autonomy to automatically or autonomously exe-
cute fail-operational or self-healing mechanisms for ensuring
continues system operation.

Compared to all other network topologies, the mesh topol-
ogy provides the best performance characteristics regarding
fault-tolerance, resource usage, service flexibility, as well as
throughput [26], which is the primary reason for presenting de-
pendable mesh networking patterns in this work. Another advan-
tage of mesh typologies is that they can be incrementally built,
allowing to start with simpler network topology, and whenever
the network traffic increases or additional redundancy is required,
links and nodes can be dynamically added. Figure 1 shows such a
mesh topology, where redundant links enable the establishment
of multiple routes between a shared set of nodes. These links can
either be used to increase the overall throughput of the network or
to enhance the fault-tolerance of the network.

Despite all these advantages, the mesh topology is typically
the most expensive topology to implement [26], because a mesh
topology requires the highest amount of resources compared to
all other topologies (e.g., bus, ring, start), which is manifested in
the high amount of nodes and links. To this fact, the scalability
of mesh topologies is limited, and since every hop in the network
adds additional communication latency, mesh networked systems
generally require additional intelligence to ensure the efficient
traffic routing and guaranteed end-to-end (e2e) quality of service
(QoS) provisioning.

In order to address these constraints, variations of mesh topolo-
gies have been defined, which are shown in Figure 3. The degree of
difference between mesh topology variations is usually measured
in terms of the distribution of connected nodes [26].

o In a flat mesh, the node distribution is uniform.

o In a partial mesh, the distribution of connected nodes is less
uniform, which might result in a network breakdown, if a
highly connected node fails.

e In a constrained or bounded mesh, links, and nodes are con-
solidated, allowing the re-routing of traffic in the case of a
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failure, only by using the remaining consolidated links and
nodes as a fallback.

The node and link consolidation in a constraint mesh topology
generally reduces the implementation cost of the mesh network
by still providing a sufficient level of fault-tolerance. Constrained
mesh topologies are therefore more typical in practice since they
provide a balance between cost and performance [26]. The example
in Figure 1 is also a depiction of such a constrain mesh network,
where two physical links between CPS; and CPS; are consolidated
on the virtual network layers for redundancy reasons.

In summary, it can be said that a holistic system-wide design and
engineering approach is essential for efficiently building depend-
able mesh networked CPS. Therefore, this paper presents three
patterns: the PHYSICAL MESH PATTERN, the LOGICAL MESH
PATTERN, and the SERVICE MESH PATTERN. Each pattern ad-
dresses design challenges on another technical level and topology
layer, which further establishes the context for related patterns,
effectively facilitating holistic system engineering.

2.2 Pattern and Patlet Mining

The patterns and patlets presented in the remainder of this work
were mined out of system architectures that are commonly used in
various networking domains including the Internet, telecommuni-
cations, web services, and cloud computing [6, 11, 12, 16, 37], as well
as from IoT, industrial Internet-of-Things (IIoT), and Industry 4.0
production and automation systems [8, 24, 27, 41, 42]. In these do-
mains the "separation of policy from mechanisms"-principle
is broadly used for organizing and structuring the network-centric
and cloud-based computing systems, for facilitating the manage-
ment and operation of the distributed (network-)infrastructure.
The most prominent examples are the software defined network-
ing (SDN) principle, and the service mesh principle. The SDN princi-
ple is heavily used by service providers in the Internet and telecom-
munications domains for infrastructure management and network
service provisioning to multiple tenancies. The service mesh prin-
ciple, on the other hand, is a relatively new approach, which has its
origin in the cloud-computing domain, where service meshes are
used to mediate, configure, monitor, and control the in-coming and
out-going data traffic of all services that participate in the service
mesh.

3 DEPENDABLE MESH NETWORKING

In Section 2.1, we introduced the basic design principles in depend-
ability engineering for distributed systems, as well as the impor-
tance of redundancy and fault-tolerance mechanisms, which are
best supported by mesh network topologies. In this section, we
provide a more detailed discussion of dependability engineering,
summarizing the state-of-the-art and recent trends that can be
observed in industry and research.

In Section 3.1, we first explain the characteristics of a modern
mixed-criticality networked system. In Section 3.2, we then explain
the system requirements and system qualities that must be attained
in order to achieve the desired system characteristics.
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3.1 System Characteristics

Service-oriented system architectures. Nowadays, modern
large-scale applications are no longer developed as monoliths. In-
stead, their design is based on a distributed service-oriented ar-
chitecture (SoA)-style facilitating multiple dependability attributes
such as system availability and reliability, as well as system scala-
bility and maintainability. The best-known examples of such sys-
tems are modern cloud-deployed applications, which use container-
ization and virtualization in combination with microservice and
serverless architectures [4, 32, 38, 39]. The ever increasing demand
for connectivity is the primary driver why these design princi-
ples are no longer limited to cloud applications only. By introduc-
ing IoT and CPS concepts into multiple industrial domains, the
industry is undergoing enormous change towards highly inter-
connected and globally distributed automation and control sys-
tems [10, 23, 25, 29, 44, 45]. Following this trend, the industry is
facing interoperability challenges between devices and systems
driving the demand for flexible and dynamic communication in-
frastructure [8, 44].

System dynamics. Traditionally, the configuration of automa-
tion and control systems did not significantly change during opera-
tion. However, with the introduction of IoT concepts, the upcoming
CPS become highly dynamic, embodied in loosely connected de-
vices that come together as temporary configurations of smaller
systems, which again dissolve and give place for new configura-
tions making the number of configurations over the system lifetime
unknown and potentially infinite. Therefore, the implementation
of automated (and even autonomous) system adaption becomes
necessary to cope with the increasing system dynamics and poten-
tially unexpected behavior and changes. Especially in the context of
large-scale, distributed, and mission-critical systems, where (timely)
human intervention in the case of failures is limited, it is vital to
have autonomous self-healing mechanism in place to guaranty
continues system operation.

System autonomy. Modern large-scale and mission-critical sys-
tems become ever more complicated due to the increasing num-
ber of connections and inter-domain dependencies. Handling this
system complexity often requires the autonomous (no human in
the loop) establishment and maintenance of reliable machine-to-
machine (M2M) and service-to-service (S2S) communication chan-
nels to guaranty system dependability and the stringent QoS re-
quirements. These requirements include the timely and guaranteed
delivery of data packets within the networked system, even over
unreliable channels, with guaranteed latency boundaries and high
throughput ratios.

3.2 System Qualities and Requirements

Dependability. Dependability is defined by multiple attributes
that must be maintained and assured at a sufficient level, including
(i) availability, the readiness for correct service; (ii) reliability, the
continuity of correct service; (iii) safety, the absence of catastrophic
consequences on the user(s) and the environment, (iv) integrity,
the absence of improper system alterations;(v) maintainability, the
ability to undergo modifications and repairs; and (vi) confidential-
ity, the absence of unauthorized disclosure of information. These
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attributes can be only attained if dependability engineering is seen
as a holistic system-wide engineering approach considering fault
prevention means, for preventing the occurrence or introduction
of faults; fault tolerance means, for avoiding service failures in the
presence of faults; as well as fault removal means, for reducing the
number and the severity of faults [3].

In dependability engineering, especially the idea of safety and
security co-design has become a significant trend of recent publica-
tions. Moreover, this trend is expected to appear more often in the
future, since the upcoming security standards for safety-critical do-
mains, and the requirements on communication and coordination
between safety and security (i.e., safety vs. availability, integrity,
confidentiality). Like dependability engineering, safety and security
engineering both focus on system-wide features and need to be
adequately addressed during system design, since they frequently
appear to be in total contradiction to the overall system features.

Formerly, security played only a secondary role in industrial
automation systems, since these systems were not connected to
the Internet or the outer world. Future IIoT systems, however, will
be globally distributed and will rely on private and public cloud
infrastructures to realize cross-domain services, which puts security
at the center of IIoT systems and the Industry 4.0 era. Hence, the
integration of security mechanisms across all system hierarchy
levels is required to prevent unwanted access or malicious attacks
on these systems.

Failure detection and failure recovery. Although failure de-
tection and failure recovery are already (partially) targeted by the
dependability force, it is worth to mention that in the distributed
system context it is of utmost importance to prevent a network or
service failure from cascading to other services.

Scalability. A trend in the Industry 4.0 era is the utilization
of advanced data analytics tools to realize entirely new thinking
about production management and factory transformation [23]. By
installing appropriate sensors, various signals (e.g., vibration, pres-
sure, heat development) can be extracted from the process under
control for predictive analytics, product optimization, and more
“informed” strategic decisions. The resource-intensive data analyt-
ics tools generally operate in cloud environments, which requires
efficient data transfer from the field and edge devices to cloud sys-
tems. While these concepts are currently under development in
industrial application domains, the consumer industry has already
implemented these concepts using sensors integrated into smart
wearables.

Another particular scalability challenge of IoT and industrial
automation systems lies in the application itself: As more and more
data points can be captured, smart and scalable data processing
concepts are required to master the data exchange, storage, and
processing efficiently, all in a distributed manner [33].

Interoperability and Connectivity. Supporting efficient sys-
tem-wide communication in large-scale and mission-critical net-
worked systems is challenging since these systems are equipped
with different hardware resources, may operate at different fre-
quencies and under different timing constraints. Additionally, the
industry is facing interoperability challenges between devices and
systems due to the market and technology fragmentation. The main
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Figure 4: Concept of the control/data plane patlet in the con-
text of dependable CPS networks.

issues that must be addressed are the horizontal interoperability
between the hierarchy levels within one business domain, as well
as the vertical interoperability between different business domains.

Graceful system evolution. This vertical and horizontal inter-
operability is exemplified in the interconnected CPS scenario shown
in Figure 1. In such scenarios, it is essential that the systems can
efficiently adapt to future changes in both technology and system/-
functional requirements. This necessity of adaptation might arise
due to technology advances, standardization, dynamic device in-
tegration unknown at the design time, and due to security flaws,
which might result in changes of the communication infrastructure,
protocols, or the software architecture itself. These adaptations may
be performed manually by system developers or in an automated
fashion by implementing continuous integration (CI)/continuous
deployment (CD) pipelines and by supporting self-adaptiveness.

Architectural and behavioral self-adaptation, together with CI
and CD will play a significant role in future IIoT systems to facilitate
efficient system changes, updates, and graceful system evolution,
while still maintaining dependability [9, 19, 20, 23].

4 DEPENDABLE MESH NETWORKING
PATLETS

In this section we present two patlets, which are used by the
subsequently explained PHYSICAL MESH PATTERN, the LOG-
ICAL MESH PATTERN, and the SERVICE MESH PATTERN. The
two patlets are based on the "divide and conquer"-principle or the
"separation of policy from mechanisms"-principle, which are estab-
lished design-principles in the Internet and telecommunications
domain [11, 12].

4.1 The Control/Data Plane Patlet

In order to ensure the reliable and dependable operation of a dis-
tributed system, it is essential to support numerous cross-cutting
concerns. To minimize the effects of cross-cutting concerns and to
obtain a loose coupling between the actual system implementation
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and its management functions, apply the architectural princi-
ple - "separation of policy from mechanisms”, which splits the
networked system into two isolated planes: the control plane and
the data plane. Figure 4 illustrates the CONTROL/DATA PLANE
PATLET in the context of networked systems, highlighting the
different responsibilities of

e the control plane, the policy;

o the data plane, the mechanism; and

o the shared media, the communication channel connecting
the two planes.

The "layers pattern” [7] and the "separation of processing and coor-
dination in computer systems pattern” [18] are two closely related
patterns, which are also based on the "divide and conquer"-principle
or the "separation of policy from mechanisms"-principle.

4.2 The Service-oriented Control/Data Plane
Patlet

The SERVICE-ORIENTED CONTROL/DATA PLANE PATLET ex-
tends the CONTROL/DATA PLANE PATLET with service-oriented
features, providing a generic service-oriented framework that al-
lows to apply the "separation of policy from mechanism" de-
sign principle on both, hardware and software level. Figure 5 illus-
trates this framework, which also consists of two planes:

o the data plane, comprised of several distributed and inter-
connected (hardware/software) components or services; and

e the control plane, comprised of several distributed (hard-
ware/software) controllers and an (optional) orchestrator
service.

All components are interconnected via (service-oriented) interfaces
abstracting the implementation details of the partners, enabling
a loose coupling between the components. The responsibility of
the orchestrator service is the coordination and management of
the controllers on the control plane, which themselves are respon-
sible for configuring, monitoring, and managing the (hardware/-
software) components on the data plane. Depending on the timing
constraint imposed on the controller functionality, the framework
distinguishes between a real-time controller, capable of executing a
certain control command within a guaranteed time window, and a
(non real-time) controller providing no guaranties about execution
and response times to requested control commands.

5 THE PHYSICAL MESH PATTERN:
APPROACH REDUNDANCY ON
HARDWARE LEVEL

5.1 Context

You are designing the physical network topology of a distributed,
large-scale, or mission-critical system, where highly reliable and
dependable network and system operation is essential.
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5.2 Problem

In order to guarantee system reliability and dependability,
itis necessary to establish dependable communication chan-
nels on the physical network level. These dependable chan-
nels must be established between various heterogeneous de-
vices that share a common (heterogeneous) physical media,
network infrastructure, or computing platform.

5.2.1 Forces.

o Resilience: The loss of a single connection must not cause
communication disruptions or failures that propagate through
the whole network.

e Performance: Multiple connections should be aggregated

transparently into a single connection providing higher through-

put.

e Unattended Operation: The above operations must be per-
formed continuously and autonomously according to a given
configuration (e.g., use one out of four available connections,
and keep the remaining as redundancy).

e In-band Signaling: Devices are not allowed to use addi-
tional communication links for network, link, and commu-
nication coordination.

e Co-existence: User data must remain unaffected by the
specifically used hardware link or device implementation.

5.3 Solution

Physically redundant network links are either turned off
and reserved as spare links or, the redundant links are aggre-
gated into a single higher-performance link (i.e., increased
throughput). To that purpose, apply the CONTROL/DATA
PLANE PATLET to separated the network traffic into two
parts (as shown in Figure 6):

e the processing part (i.e., the data plane), the sending
of user data (i.e., the payload data); and into

e the control part (i.e., the control plane), the manage-
ment of connections and links via header data (i.e., the
PHY header).
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To ensure the uninterrupted operation of the network, physi-
cally redundant network links are used, which generally requires
dedicated hardware support, e.g., a seamless failover between links
in the case a link becomes unavailable or overloaded. A redundant
network link might either be turned off, transfers redundant data,
or can be aggregated into channels that perform balancing to split
the traffic across all available links in the mesh network, effectively
increasing the network throughput.

Beside seamless network operation, it is also possible to provide
an even load distribution across all devices by either traffic routing,
or by considering non-functional metrics such as cost or energy
consumption representing a link as an objective function. The de-
livery of network packets across a set of available up-links to the
internet, for example, utilizes the link with the lowest cost.

As a result, the two forms of traffic (i.e., control and user traf-
fic) can be interpreted as two distinct communication planes (i.e.,
communication layers). However, the physical mesh pattern does
not assign specific resources to each plane; instead, the pattern
encapsulates both planes within a shard media or connection, as
exemplified in Figure 6. Unlike the LOGICAL MESH PATTERN
(see Section 6), the physical mesh pattern cannot partition or
isolate resulting networks from each other, nor does the pat-
tern hide the control plane traffic from other network par-
ticipants that share the same media.

The ultimate goal of the physical mesh pattern is, to maintain
link redundancy by in the first place removing redundant links for
cost-function optimization, and secondly making the removed links
immediately available again, in the case they are required, without
the user noticing these changes.

5.3.1 Consequences.
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Resilience: Redundant links are marked as spare in case a
link becomes unavailable. In such an event, one of the spare
connections seamlessly takes over for the failed link.
Performance: Redundant links can be aggregated into a
single, higher performance link. This is achieved by balanc-
ing the load across all available links, exposing only a single,
more powerful link to the user.

Unattended Operation: The maintenance of reliable con-
nections is managed by each device individually, without a
human in the loop.

In-band Signaling: Applying the CONTROL/DATA PLANE
PATLET allows the same link to be used for all communica-
tion. No additional links are required to exchange control
data between devices.

Co-existence: While the user data is entirely separate from
the control data, no true separation exists between control
and data traffic. A user with access to a network segment
can inject malicious control data, which could jeopardize the
entire network.

5.4 Known uses

Dependable networks traditionally rely on wired infrastructure,
typically modified versions of Ethernet to ensure reliable and unin-
terrupted communication. The spanning tree protocol (STP), orig-
inally standardized as IEEE 802.1D, is a well-established mecha-
nism to turn of redundant connections between devices like, e.g.,
switches can be used to avoid loops within a network. The protocol
has been extended for faster response times with the IEEE 802.1w
rapid spanning tree protocol which has since become part of the
IEEE 802.1Q-2014 standard. The STP is primarily used to avoid
switching loops, where a packet would be forwarded (in the worst
case indefinitely) along a loop within a network. This is often caused
by additional cables that are installed for failover operation. These
redundant links would have to be marked manually as not used
by disabling the port on the device. However, the STP addresses
this issue, by initially blocking all user traffic when a link becomes
available, only sending out control traffic. The link with the lowest
metric, typically the fastest available, is then chosen as preferred
and all redundant links remain unavailable for user traffic. If all
links are equally “expensive” (e.g., all links are 1GBps connections),
redundant links are turned off and only a single, e.g., 1GBps connec-
tion between the devices remains. The redundant links are spare
links, which are only activated, if the active connection experiences
node or link failures, as shown in Figure 6.

An alternative approach is, to aggregate the links into what
is typically referred to as a channel. Link aggregation has been
implemented by many vendors but has since moved to a set of stan-
dardized protocols. The link aggregation control protocol (LACP),
which is part of the IEEE 802.1ax standard, can negotiate channels
automatically, quite similar to the STP, which is used to configure
spares. However, the LACP enables redundant links to be used si-
multaneously allowing to provide a 2GBps channel, if two 1GBps
links are available.

J. Dobaj et al.

Commonly wireless communication technologies are not used
for the management and control of critical infrastructure. How-
ever, specific tasks, such as monitoring or sensing, can be per-
formed via wireless communication channels. WirelessHART [36]
and 6TSCH [13], for example, are well-known implementations of
wireless protocols for such use cases in industrial environments.
While these protocols are designed to be suited for real-time control,
their real-time operation cannot be guaranteed due to the shared
nature of the freely available radio frequency (RF) spectrum (indus-
trial, scientific, and medical (ISM) band) as the shared transmission
medium. This lack of guaranteed (real-time) data transmission, is
one essential reason for not adopting wireless technologies in safety-
critical environments, where guaranteed timely and predictable
behavior is generally inevitable.

A special consideration when using wireless protocols is the
circumstance of having only one truly shared channel, which can
be accessed by any radio. However, similarly to frequency modula-
tion (FM)-radio stations, where a band of the spectrum (in many
nations in the area of 80 MHz to 100 MHz) is further subdivided
into channels (which, e.g., would be a single station for FM-radio),
only specific frequency ranges can be used free of charge. The
frequency ranges must be obtained from the appropriate authori-
ties like cellular bands are auctioned off by individual nations to
telecommunication providers. There may also be additional restric-
tions on the use of specific frequencies, such as being only allowed
to use the medium for a specific portion of the time or with limited
transmission power. In these use-cases, a control plane is used to
coordinate neighboring devices to avoid collisions.

For example, protocols, such as 6TSCH or WirelessHART, are
based on IEEE 802.15.4 and use multiple channels as individual
connections. The standard specifies 16 channels, each separated by
5 MHz in the range of 2.405 GHz to 2.48 GHz. While the shared
nature of the medium would typically make it impossible for multi-
ple devices to send at the same time, the separation into different
channels makes it possible for neighboring devices to send data at
the same time by using different frequencies which do not interfere
with one another. The control plane is used to coordinate which
nodes send or receive on which channel.

6 THE LOGICAL MESH PATTERN:
APPROACH SOFTWARE DEFINED
NETWORKING

6.1 Context

You have applied the PHYSICAL MESH PATTERN to establish
dependable communication channels on the physical network lev-
el/topology.

6.2 Problem

Often this physical network topology is rather complex, ex-
periences frequent change, is shared by multiple tenancies,
and is comprised of various (heterogeneous) devices, com-
puting platforms, and (sub-)networks.

6.2.1 Forces.

o Abstraction of complex topologies: Devices need to be
able to communicate without the user knowing about the
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Figure 7: Concept of the logical mesh pattern.

underlying physical network topology. Change of physical
network infrastructure/topology should be transparent to
applications and services that utilize the network.

e Virtual networking: Addresses in the logical network can
be assigned as if they were on the same physical network.

e Multi-tenancy: Operators need to be able to allow multiple
tenants to share a physical network without the ability to
observe or modify other user data or control traffic.

o Security: The network traffic of individual users must be
protected from alteration or access by others. This holds true,
even if the underlying network is not trustworthy, e.g., the
Internet.

¢ Quality of Service: To provide guaranteed e2e QoS pro-
visioning, it is often necessary to prioritize data packets
according to specific operator needs.

6.3 Solution

Create alogical network overlay by establishing logical com-
munication channels on top of the physical network topol-
ogy, which abstracts the underlying physical network topol-
ogy and infrastructure (i.e., the links and nodes), finally pro-
viding a homogeneous and transparent view on the network
to the applications running on the service level. To that pur-
pose, apply the SERVICE-ORIENTED CONTROL/DATA PLA-
NE PATLET to separated the network traffic into two parts
(as shown in Figure 7):
e the processing part (i.e., the data plane), the sending
of user data; and into
e the control part (i.e., the control plane), the sending
of control data for the management of the logical con-
nections/links.
The logical networks created by applying the logical mesh pat-
tern are entirely separated from one another, making inter-network
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attacks infeasible, which effectively reduces the potential attack sur-
face. To this goal, it is generally required to support logical network
overlays on the operating system level as well as on the network
interface level, which enables the configuration of drivers and ded-
icated network hardware residing on the physical level, which is
also shown in Figure 7. Besides the separation of networks, the
logical mesh further provides prioritized message/package delivery
and band-limits specifiable for all network participants.

As aresult, the two forms of traffic, i.e., control traffic and user
traffic, can be interpreted as to distinct communication planes
(i.e., communication layers). Unlike the PHYSICAL MESH PAT-
TERN (see Section 5), the logical mesh pattern encapsulates
the communication planes, even if they share the same net-
work media or connection. For example, the logical mesh pattern
allows encapsulating raw Ethernet traffic within a TCP-connection
atop an existing network, effectively creating a new logical network
atop, which is called network overlay. This encapsulated network
can be routed through e.g. the Internet to overcome boundaries of
the local network, abstracting the underlying topology in the pro-
cess. Unlike the SERVICE MESH PATTERN (see Section 7),
the logical mesh pattern does not know the concept of ap-
plications or services, which utilize the created overlay or
logical mesh network.

The ultimate goal of the logical mesh pattern is to provide a
software-defined interface for network operators, providing them
with partition capabilities and QoS policies to build several logical
overlay networks, abstracting/hiding the actual topology of the
underlying (physical and logical) networks, as illustrated in Figure 1.

6.3.1 Consequences.

Abstraction of complex topologies. An entire logical net-
work is overlayed on top of the physical network, and the
logical data traffic is encapsulated within packets. In an over-
layed topology, typically all devices have a direct connection
to each other device on that network, no matter the under-
lying topology and potentially occurring changes therein.
Virtual networking. To the physical network (i.e., the phys-
ical nodes), the additional control data from the logical net-
work overlay is indistinguishable from any other data traffic
that is sent through the network. For any physical device or
service in the network, the logical network behaves identical
to any other physical network, allowing to change logical
network setting without affecting the physical network or
service infrastructure.

Multi-tenancy. Data from multiple tenants can be trans-
mitted simultaneously on the same physical media, as they
are regular data traffic to the physical network. However,
each tenant is only provided with traffic from his own logical
network, either on a port on a switch or a network interface
on a physical or virtual machine. This also hides all control
data of the physical network from all tenants.

Security. As all the logical network traffic is transmitted as
if it were normal user/payload data on the physical network,
a user can still receive all data. However, the logical network
can add an encryption layer making it infeasible to access
the content of transmitted data. The additional encryption
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layer does not impact the traffic routing through the net-
work but adds additional computational effort on the sender
and receiver nodes. If required, the logical network can be
configured to assign each tenant an individual key.
Quality of Service. On a single machine, QoS policies can
be used to prioritize data from, e.g., a single virtual machine
or specific processes on the host. Switches and routers, how-
ever, need specific support for QoS policies on a per-packet
level. The coordination of these QoS policies across shared
networks, such as the Internet, is not possible in all cases
meaning, that e2e QoS provisioning still depends on both,
the physical network support and the logical network sup-
port for QoS policies, which both must be coordinated across
multiple networks, as well as the physical and the logical
network topologies.

6.4 Known uses

While the communication range of wired devices may seem trivially
bound to the reach of the cable used to communicate, abstractions
such as IP already allow multi-hop communication. In large data-
centers, where multiple tenants use the same physical infrastructure
to run virtual machines, hosted physical machines, and logical
networks of their own, to e.g., run a web server with a separate
database and authentication server. When considering the changes
imposed by cloud computing in general (i.e., offloading ones own
IT services to a third party’s data-center), a single data-center can
be shared by hundreds or thousands of tenants, many of which
are actually competing with one another. In addition, to optimize
services on a global scale, it may be required to link multiple data-
centers, located in vastly different parts of the world. This is done
by establishing a (secure) tunnel between sites/data-centers. For
the above purposes of on the one hand splitting a local network
among many tenants and on the other combining multiple sites as
if they were directly connected, VXLAN is often used. It allows the
overlay of multiple networks through the Internet between sites and
while (virtual) machines may be separated by vast distances across
multiple data-centers, appear to be on the same network. There are
a number of solutions, such as OpenStack3 and CloudStack?, which
include the necessary tools to manage logical mesh networks.

In wireless communication, achieving multi-hop communication
requires more effort. In the case of single-hop communication,
devices need first to discover one another, synchronize and agree on
the usage of both, the frequency and the timing channel. For multi-
hop wireless networks, these efforts need to be coordinated not
only between neighboring devices, but they must be coordinated
within the whole network. 6TSCH [13], for example, creates a
mesh network in conjunction with RPL - the routing protocol for
low-power and lossy networks. Therefore, 6TSCH creates multiple
directed acyclic graphs, which are overlaid to indicate the flow
of communication towards a router or destination device. Each
device must learn its distance to the destination and pass it on to
the devices it relays messages for.

Shttps://www.openstack.org/
“https://cloudstack.apache.org/
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A different approach is used by Bluetooth Mesh®, which does
not rely on network model learning, instead Bluetooth Mesh uti-
lizes cryptography to separate the forwarding of messages and
application data by using different keys to encrypt the data. Blue-
tooth Mesh builds on top of Bluetooth Low Energy (BLE) Core
specification and defines a Bearer Layer to facilitate communica-
tion between the individual devices. Typically the advertisement
feature is of BLE is used to communicate among the mesh devices,
while the Generic Attribute Profile (GATT) is sometimes used to
communicate with legacy devices, which do not natively support
Bluetooth Mesh. This layer represents our physical mesh pattern,
as up to this layer, each device in the communication range can
receive the messages sent by a device. The network layer takes care
of the relay and forwarding functionality while the transport layers
handle the encryption, authentication as well as the segmentation
of messages. These layers represent the logical mesh pattern, as
they provide a virtual network on top of the physical mesh, which
can reach beyond the bounds of a single device (multi-hop commu-
nication). The encryption in the transport layer uses a key which is
shared across all devices within the logical mesh. The access layer
allows multiple services, defined in the model layers, to commu-
nicate across the logical mesh, with each service using a different
key on top of the key used by the transport layer. Therefore, while
all devices within the logical mesh can decrypt the messages for
forwarding, the application data can only be decrypted by devices
which also have the correct application key.

7 THE SERVICE MESH PATTERN:
APPROACH CROSS-CUTTING CONCERNS

7.1 Context

Context 1. You have applied the MICROSERVICE ARCHITEC-
TURE PATTERN [32], or your are building a large-scale distributed
networked system, that consists of loosely-coupled software com-
ponents or services.

Context 2. You are in context 1 and you have also applied the
PHYSICAL MESH PATTERN to establish dependable communi-
cation channels on the physical network level; and/or you have
applied the LOGICAL MESH PATTERN on top of the PHYSICAL
MESH PATTERN.

7.2 Problem

In distributed (dependable) networked systems it is neces-
sary to implement the distributed system logic and distribut-
ed system functions on the service level, which generally
requires the implementation of various cross-cutting con-
cerns, including:

e service discovery, allowing to transparently provide the avail-
ability information of service instances, functions, and de-
vices;

e health checking, which enables always to know the state
of service instances and devices, whether they are ready to
accept network traffic or not;

Shttps://www.bluetooth.com/specifications/mesh- specifications/
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Figure 8: Concept of the service mesh pattern.

authentication and authorization, allowing to cryptographi-
cally attested if a caller/service/device is allowed to invoke a
specific requested service or function;

observability, providing detailed statistics, logging, and dis-
tributed tracing data to enable distributed debugging features
and advanced network traffic analysis;

routing and load balancing, to enable clustering of services
and devices as well as the transparent and efficient transport
of data through the network;

externalized configuration, to allow the decoupling of ap-
plication and device configuration data from the actual de-
ployment in order to ease or automate the management of
security and QoS policies throughout the whole system life-
cycle, including system development, testing, startup, and
operation.

Forces.

Loose coupling: Cross-cutting concern should not yield a
tight coupling of system services and functions - a so-called
monolith.

Graceful system evolution: Cross-cutting concerns should
not restrict the graceful system evolution.
Interoperability: Cross-cutting concerns should not limit
the system interoperability.

Dependability: The system dependability must remain un-
affected by cross-cutting concerns, meaning that the intro-
duction of common cause failures, as well as single and
multi-point failures, must be prevented, when introducing
cross-cutting concerns.

Scalability: The coordination and management of cross-
cutting concerns should not limit the system scalability.

service level
1

infrastructure level
|
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Figure 9: The infrastructure-as-a-service (IaaS) framework
representing the solution for context 2.

7.3

e Transparency: The residence of services should not influ-
ence the system logic, the system functions, and the estab-
lishment of service communication channels.

e Holistic system view: The discovery of the system and
service topology, as well as the aggregation of system state
information (e.g., health-state, resource usage), should be
supported in an efficient manner.

e Policy management: The management and configuration
of security and QoS policies should be supported in an effi-
cient manner.

e Development focus: The implementation of cross-cutting
concerns should not be the focus of system developers; in-
stead, system developers should be able to focus on develop-
ing system and service functions.

e System complexity and maintenance: The implementa-
tion of cross-cutting concerns should not increase the main-
tenance effort and system complexity.

Solution

To minimize the effects of cross-cutting concerns and to ob-
tain aloose coupling between the actual service implementa-
tions and their management logic, apply the SERVICE-ORI-
ENTED CONTROL/DATA PLANE PATLET to separated the
service communication layer(s) into two parts:

o the data plane, which isolates the service-functionality
from the service-communication logic by routing the
entire in-coming and out-going service traffic through
associated proxies; and into

o the control plane, which mediates the service-commu-
nication traffic on the data plane by configuring, mon-
itoring, and controlling the behavior of the associated
service-proxies.

Solution for context 1. Figure 8 illustrates the solution for con-

text

1, where the data plane consists of several distributed service



EuroPLoP ’19, July 3-7, 2019, Irsee, Germany

instances, all communicating via associated proxies. These prox-
ies are configured, monitored, and controlled by the controllers
(i.e., distributed control-services) residing on the control plane. In
general, an optional orchestrator service is deployed (i.e., the ser-
vice mesh orchestrator) to coordinate the distributed controllers
on the control plane, and to obtain a holistic view of the entire
service level (i.e., the data plane services and the data plane service
communication).

Solution for context 2. Figure 9 illustrates the solution for con-
text 2, where all patterns presented in this paper are applied si-
multaneously. The resulting system architecture is structured into
three main planes:

e The southbound data plane, comprised of all network de-
vices on the physical-level - representing the network infras-
tructure of the system;

o the northbound data plane, comprised of all software/ser-
vice functions required to fulfill the purpose of the system;
and

o the control plane, comprised of all hardware and software
controllers that are required to orchestrate and configure the
components and systems residing on the northbound and
southbound data planes.

The composition orchestrator, at the control plane’s core, ag-
gregates all monitoring, management, and orchestration mecha-
nism and therefore, provides a holistic view of the entire distributed
system including the network nodes on the physical and logical
level, as well as all services on the service level. This holistic view
is obtained by aggregating the information about the physical level,
the logical level, and the service level, which is captured by the con-
trollers on the control plane. Apart from acting as an information
source, the composition orchestrator can also be used to provide
access to specific software, hardware, and network functions to
applications on the end-user level. These end-user applications
can use the holistic view to implement the advanced deployment,
interoperability, and resilience mechanisms on top of it, by dynam-
ically (i.e., at run-time) composing the software, hardware, and
network functions. Summing up, applying all three pattern results
in a framework that enables the provisioning of hardware and
software functions via service-interfaces, which effectively imple-
ments the infrastructure-as-a-service (laaS) paradigm [12]. In the
article Towards Cyber-Physical Infrastructure as-a-Service in the Era
of Industry 4.0 [10], the presented concepts are discussed in more
detail.

7.3.1 Consequences.

Loose coupling: A loose coupling is achieved by two means.
First, the communication logic is encapsulated from the ser-
vice implementation via proxies, which allows changing the
service function or communication method without the need
to update the other mechanism. Second, the isolation into a
control plane and a data plane allows exchanging one plane,
without the need to change the other plane, as long as the
interface between the planes remains constant.

Security: System security is on the one hand increased by
easing the service isolation via communication means, and
on the other hand, the system security increases, because
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the service mesh allows changing communication policies
by configuring the connection settings of a proxy. Addi-
tionally, service mesh implementations support setting up
a public-key-infrastructure (PKI)-based authentication and
authorization mechanisms on the proxy level, which can be
monitored and managed by the control plane.
Development focus: The loose coupling and the encapsu-
lation of the communication logic within the proxies allows
developers to focus on the service and system function im-
plementation, instead of writing communication and net-
working code.

Interoperability: The interoperability of the system in-
creases, since the proxy-service architecture eases the in-
tegration of third-party services by supporting the efficient
implementation of the API-Gateway Pattern®; since an API-
Gateway can be simply implemented in the form of [Proxy]
connects to [API-Gateway-Service] connects to [third-party
service], which allows to let an initially incompatible third-
party service to join the service mesh.

Graceful system evolution: The loose coupling and the
increased interoperability also facilitate graceful system evo-
lution.

Dependability: System dependability can be increased by
deploying redundant services (on different network nodes),
which can be easily interconnected and monitored via ob-
serving the communication that runs across the proxies.
In the case of a connection loss to the control plane, the
data plane can still continue operating by establishing (re-
dundant) peer-to-peer connections between various proxies
residing on different devices. This requires the service dis-
covery mechanisms (i.e., access to the control plane) only
once during the connection setup, and in the case of a failure,
the proxy can automatically trigger or execute the fail-over
handling by switching to a spare connection.
Dependability and fault-tolerance: The routing of the
traffic through the proxies allows to inject communication
faults for simulating network failures, and it also supports
load-testing by injecting additional messages on the data
plane according to configured patterns dictated by the con-
trol plane.

Transparency: The entire communication is routed through
the proxies, which isolates cross-cutting concerns, such as
service discovery, communication establishment and man-
agement, and message routing, from the service logic.
Holistic system view: Since each service uses a proxy to
join the service mesh, it is possible to create a holistic system
view by aggregating all the information within, e.g., the
composition orchestrator.

Policy management: The management and configuration
of security and QoS policies on service level can be fully
controlled and configured by the control plane via instru-
menting the proxies associated to the services on the data
plane.

Shttps://microservices.io/patterns/apigateway.html
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QoS orchestration: The composition orchestrator (see Fig-
ure 9) can configure all hardware devices and software ser-
vice via the connected controllers, which enables not only
the monitoring of the entire network traffic but also the or-
chestration of network hardware for establishing dedicated
e2e communication channels that provide a guaranteed QoS
level.

Scalability: On the one hand, the scalability is increased,
since services meshes facilitate fast system evolution by
enabling the easy integration of new services into the service
mesh, as well as by supporting load-balancing and traffic
routing.

Scalability: On the other hand, the scalability of the system
is limited by the additional communication overhead and the
increased resource usage, since every service gets assigned
an associated proxy.

System complexity and maintenance: Adding additional
features, of course, increases the system complexity and the
maintenance effort. Furthermore, setting up, configuring,
and operating a fully-featured service mesh in a production
environment, which also implements the entire list of cross-
cutting features mentioned in the problem section, requires
much initial effort and know-how. However, it should be
worth the effort, once the service mesh is established and
CI/CD pipelines are set up.

7.4 Known Uses

The trend in modern large-scale system development is heading
towards distributed and loosely-coupled service-oriented architec-
tures, so-called microservice architectures. This distributed SoA-
style has its origin in the cloud-computing domain, where it became
prominent due to its high flexibility, which enables the co-existence
of various operations technology and heterogeneous development
environments and teams, all at the same time. While this SoA-trend
can also be observed in industrial environments [8, 10, 27, 41, 42],
it is most prominent in modern cloud-computing [11, 12, 16, 37].
To efficiently manage and make use of the great flexibility pro-
vided by (micro)service architectures, today’s systems rely on novel
technologies and design patterns like containerization, serverless
architectures, CI, and CD. An essential feature, all these approaches
require, is the efficient implementation of several cross-cutting con-
cerns, which resulted in the development of various service mesh
implementations like:

e Istio’ - open source project by Google Inc.

e Linkerd® - open source project

e Consul® - open source project by HashiCorp
o Kong!? - open source project by KongHQ

Figure 10 shows the architecture of the Istio framework, which
is a Google Inc. open source project. Several components of this
architecture can be mapped to the components shown in Figure 9,
such as the mixer component can be mapped to the telemetry
data & and logging controller. The service mesh orchestrator,

https://istio.io/
8https:/linkerd.io/2/architecture/
“htps://www.consul.io/
Ohttps://konghq.com/solutions/service-mesh/
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for example, represents the entire Istio framework mostly, since Istio
is a generic service mesh implementation allowing the integration
of various controllers via adapters. A more detailed discussion and
explanation of the mentioned service mesh implementation can be
found on their official web site and in several blog posts!:12:13,

8 CONCLUSION

In this work, we explained the importance of mesh networking in
the context of dependable system design and outlined the need for a
holistic system-wide design and engineering approaches. To guide
engineers in dependable networked system design, we presented
three mesh networking patterns for building dependable mixed-
criticality networked systems at all scales. Each of the presented
patterns addresses specific design challenges on different technical
levels and further provides the context for the application of related
patterns.

Although this work focuses explicitly on dependable mesh net-
worked systems, the presented patterns are applicable in various
networking contexts, which are more general and where system
dependability is subsidiary, and for example, system availability
and interoperability are the primary quality criteria instead.
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