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Abstract—Ultra-wideband (UWB) ranging estimates taken in
Line-of-Sight (LoS) conditions are typically centimeter accurate,
but large errors may occur when devices are in Non-Line-of-Sight
(NLoS). Several techniques, often based on machine learning,
have been proposed to correct NLoS-induced ranging errors.
These techniques are typically designed to effectively correct
ranging estimates obtained in NLoS conditions, but significantly
worsen the ranging estimates taken in LoS. We show that
this problem stems from the method commonly used to label
LoS/NLoS conditions and to train classification and regression
models, which results, among others, in error correction tech-
niques being applied to LoS samples that are erroneously classi-
fied as NLoS. To tackle this problem, we propose ranging error
labeling (RELa); an approach that defines more suitable labels,
based on the severity of the ranging error, to guide the decision
of whether applying ranging error correction and the selection
of which data should be used to train the error correction model.
The effectiveness of RELa hinges on the careful selection of two
thresholds: one identifying which ranging estimates should be
corrected (α), and one defining the training set used for the error
correction model (β). After deriving suitable values for these
two thresholds empirically and showing their applicability to
different settings and UWB platforms, we evaluate and prove the
effectiveness of RELa. Our experimental results show that RELa
reduces the error introduced on ranging estimates taken in LoS
by up to 99%, without significantly impacting the effectiveness
of ranging error correction in NLoS conditions.

Index Terms—Channel impulse response, UWB, NLoS condi-
tions, Ranging correction, Machine learning, Embedded systems.

I. INTRODUCTION
The popularity of UWB systems is soaring, driven by their
increasing integration into modern smartphones [1] and adop-
tion in both industrial [2] and automotive [3] applications.
UWB radios spread the signal energy across a large bandwidth
(≥ 500 MHz) by transmitting short signal pulses (≈ 2 ns). This
provides an excellent time resolution allowing UWB receivers
to precisely derive the time-of-arrival (ToA) of a signal and
estimate the distance between two devices, which is pivotal
for accurate ranging and localization [4].
Whilst UWB ranging generally achieves cm-level accuracy in
Line-of-Sight (LoS) conditions, its performance degrades in
Non-Line-of-Sight (NLoS) conditions, which may introduce
errors up to several meters [4], [5]. To improve the accuracy of
UWB ranging in NLoS, state-of-the-art (SoA) approaches [5],
[6] commonly follow a two-stage approach: first, they classify
whether devices are in LoS or NLoS; then, they correct the
ranging estimates in case of NLoS conditions, typically using
regression-based machine learning (ML) models [7], [8].

(a) LoS

(b) NLoS
Fig. 1: Ranging error when applying (corrected) or not ap-
plying (uncorrected) SoA ranging correction methods [8], [9].
The correction is clearly effective in NLoS conditions (b), but
has a negative impact on ranging estimates taken in LoS (a).
90th: 90th percentile of the absolute ranging error; MAE: mean
absolute error; MedAE: median absolute error.

Limitations of existing solutions. SoA approaches are de-
signed to effectively correct ranging estimates obtained in
NLoS conditions [7]–[11], but tend to affect negatively ranging
estimates taken in LoS, due to misclassification of LoS sam-
ples. Fig. 1 illustrates this problem using concrete examples
from the literature based on either support vector machines
(SVMs) with handcrafted features extracted from the channel
impulse response (CIR) or extreme gradient-boosted trees
(XGBoost) fed directly with raw CIR samples [8], [9]. Whilst
these approaches can effectively reduce NLoS-induced ranging
errors by 25–49% (Fig. 1b), they also significantly worsen
the ranging error in LoS conditions (Fig. 1a). For example,
Gallacher et al. [8] have shown that the median absolute
error (MedAE) of ranging estimates taken in LoS increases
from 6.2 to 19.3 cm (+211%), whereas the 90th percentile of
the absolute ranging error (90th) in LoS – which captures
how far the error is spreading – increases from 20.3 to
53.5 cm (+164%). This is due to ranging correction being
applied to LoS samples that are misclassified as NLoS. Note
that the accuracy of the LoS/NLoS classification used to infer
if the correction should be applied is between 75 and 83%.
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The gap to fill. These results highlight that the impact of
existing error correction approaches on ranging estimates taken
in LoS conditions is not negligible. We hence aim to find a
way to effectively correct ranging estimates taken in NLoS,
but without affecting significantly those taken in LoS. After
analyzing one of the most comprehensive public UWB datasets
in the literature (§III), we found that every fourth LoS sample
is commonly misclassified as NLoS (i.e., it undergoes error
correction, which lowers the estimated distance by a certain
amount). This results in the estimated distance of misclassified
LoS samples (which commonly have a relatively small ranging
error of ±25 cm) being lowered by up to 65 cm after applying
SoA correction methods (i.e., there is an unnecessary over-
correction of ranging estimates that have small errors).
Contributions. We show that the problem lies in the method
that is commonly used to label LoS/NLoS conditions (we
refer to this labeling strategy as traditional labeling (TraLa))
and to train classification and regression ML models used to
correct the ranging estimates. In this work, we propose instead
Ranging Error Labeling (RELa), a method that employs labels
based on the severity of the ranging error to train NLoS classi-
fication and error correction models (§IV). Specifically, RELa
defines two ranging error thresholds: α for classification (to
inform whether applying error correction), and β for regression
(to select the data used to train the correction model).
As the effectiveness of RELa depends on the selection of these
two thresholds, we show how to empirically derive suitable
values for α and β through the use of a specifically-designed
cost function (§V). We benchmark RELa on four datasets: one
that is publicly available [7], [12], and three that we collected
using UWB devices from different manufacturers (Qorvo and
NXP). Our results indicate that the use of RELa allows us to
achieve a ranging error correction performance comparable to
TraLa, while not affecting (or affecting in a negligible way)
ranging estimates taken in LoS. That is, RELa effectively
corrects ranging estimates taken in NLoS, while reducing the
negative impact of error correction on LoS ranging estimates
by up to 99% compared to SoA approaches. Our results also
show that we can derive generic values for α and β that
perform well across the four datasets considered in our study,
regardless of the employed UWB platform (§VI).

II. STATE OF THE ART REVIEW

UWB receivers can precisely estimate the time-of-arrival
(ToA) of a received signal by identifying the direct path in
the estimated CIR. This precise ToA estimation is essential
for determining the time-of-flight (ToF) of the radio signal be-
tween two devices, which in turn allows for accurate distance
(ranging) measurements. In LoS cases, i.e., when no obstacle
is present between two devices, the direct path is correctly
recognized as the first peak in the estimated CIR exceeding a
given noise threshold. In NLoS cases, the direct path may be
attenuated by the presence of some obstacle(s) and deemed as
noise: as a result, the UWB receiver may erroneously identify
later peaks in the CIR that correspond to reflections from
walls and scattering from other objects as the direct path. This

introduces an error in the ToA estimates and skews the ranging
measurements, a well-known problem in indoor environments
where NLoS conditions are common [13].
NLoS detection and correction. Many techniques have been
developed to identify (i.e., classify) whether UWB ranging
occurs in NLoS conditions [5], [6], [14], [15] and to correct
ranging estimates taken in NLoS [7], [13]1. Numerous works
leverage ML solutions based on manually-crafted features for
NLoS classification and ranging error correction [16], [17].
For example, Maranò et al. [13] and Stocker et al. [7] make
use of six to nine features in conjunction with SVMs. How
to improve feature selection has also been the goal of several
studies, in order to optimize accuracy [7], [11], and to reduce
computation times by processing less CIR samples [8] and
by reducing the feature extraction times [18]. The community
has also investigated ML solutions based on self-learning fea-
tures, including deep neural networks (DNNs) [10], [19] and
transformer-based classifiers [20]. In this context, automatic
feature extraction by directly inputting the CIR to XGBoost
decision trees can also be leveraged to create lightweight mod-
els [8]. The latter can run on constrained embedded devices
and are hence becoming increasingly more attractive to reduce
latencies and avoid off-loading tasks to edge devices [18], [21].
Enhanced labeling. Existing works commonly use manually-
annotated LoS/NLoS labels. A few works have created a third
label to identify ranging measurements taken in “weak” NLoS
conditions (WLoS), i.e., in scenarios where the presence of ob-
stacles of certain size or material (such as wooden chairs or PC
monitors) introduce a relatively small ranging error [7], [22].
However, if and how this additional class can be leveraged to
improve NLoS classification and error correction performance
is not fully clear: for example, in [7] WLoS samples have not
been considered for training, whereas in follow-up work [9]
the WLoS and NLoS classes have been merged and evaluated
together. Other works have proposed to use labels based on the
ground truth ranging error for classification. Stocker et al. [9]
have observed on-par classification performance when using
TraLa and synthetic labels derived by applying a threshold on
the ranging error. In [11] and [23], data was labeled as LoS
when the true distance was below 25 or 30 cm. Kim et al. [24]
have split the ranging samples in decile classes according
to the ranging error (i.e., in ten classes with equal numbers
of samples), providing an extended Kalman filter framework
with the uncertainty range of the ranging estimate as given
by the estimated decile class of the sample. This was shown
to achieve an almost-perfect classification performance [25],
but its use for NLoS-induced error correction [24] was not
explicitly investigated. In contrast, in this work, we are the
first to show that the use of labels embedding the severity of
the ranging error can significantly benefit the performance of
NLoS-induced error correction, especially in LoS conditions.

1Please note that several methods in the literature focus on leveraging
consecutive ranging estimates for NLoS classification [5], [14], or mitigate the
NLoS problem by leveraging device diversity (e.g., by performing a selection
of the best available anchors at runtime [8]). In this study, we instead focus
on the NLoS classification and correction of individual ranging estimates.



(a) Confusion matrix (b) LoS (c) NLoS
Fig. 2: Classification and error correction performance of XG-
Boost [8] evaluated on the STOCKER CPS dataset using TraLa.

III. DEMYSTIFYING NLOS-INDUCED RANGING ERRORS

As teased in Fig. 1, SoA error correction approaches based on
TraLa negatively affect ranging estimates taken in LoS, which
are commonly centimeter accurate. In this section, we identify
the root cause of the problem by re-implementing SoA models
(specifically, the lightweight XGBoost models from [8]) and
by evaluating their performance in detail on publicly-available
datasets (specifically, the STOCKER CPS dataset [7], [12]).
Classification performance. Fig. 2a shows the classification
performance of the re-implemented XGBoost classifier based
on the classifier’s predictions and the ground truth labeling as
a confusion matrix. The latter splits the data into four cases:

• true negatives (TN): correctly classified LoS samples,
• false positives (FP): LoS cases misclassified as NLoS,
• false negatives (FN): NLoS cases misclassified as LoS,
• true positives (TP): correctly classified NLoS samples.

The ranging correction is applied to samples predicted as
NLoS, i.e., the FP and TP. It follows that: (i) the improvement
of the NLoS ranging performance is achieved through ranging
correction on the TP samples, whereas (ii) the negative effects
on LoS ranging are caused by applying erroneous ranging
corrections to the FP through a model trained on NLoS
samples. We observe a FP rate of 9.71 % (see Fig. 2a), which
corresponds to 27.36% of all LoS samples, i.e., roughly every
fourth LoS sample is misclassified as NLoS.
Fig. 3a shows the distribution of the ranging error for each of
the four cases identified in the confusion matrix (TN, FP, FN,
TP) before applying error correction (uncorrected). We can
notice that a significant amount of NLoS samples (50% of FN
and 33% of TP) have ranging errors in the same range as LoS
samples (TN and FP). This shows that the traditional LoS and
NLoS labels only refer to whether the direct path was visually
free or blocked by an obstacle, and do not accurately reflect
whether the ranging accuracy is affected. Whilst the impact
of NLoS cases misclassified as LoS (FN) on the final ranging
estimates is not severe (as they do not get corrected and have
a MedAE of only 18.9 cm), the impact of FP and TP is much
more relevant, as discussed next.
Error correction performance. Fig. 2b and 2c show the
mean absolute ranging error (MAE) and the 90th percentile
of the absolute ranging error (90th) before (uncorrected) and
after (corrected) applying error correction using XGBoost with
TraLa on LoS and NLoS samples, respectively. Because error
correction is applied to almost every fourth LoS sample,
the MAE in LoS conditions increases from 5.9 to 13.9 cm

(a) Before applying error correction

(b) Before and after applying error correction on FP

(c) Before and after applying error correction on TP
Fig. 3: Ranging error distribution as a function of LoS/NLoS
(mis)classification before and after applying error correction.

(+137%), whereas the 90th increases from 12.3 to 34.9 cm
(+184%). Fig. 3b and 3c show the distribution of the ranging
error for FP and TP, respectively, before and after applying
error correction. When LoS samples are misclassified (FP
case), they undergo error correction, which lowers their (origi-
nally rather accurate) ranging estimates by up to 65 cm. NLoS
samples (TP) with a small ranging error are affected in a
similar way, with unnecessary over-corrections of the ranging
estimates resulting in errors up to -100 cm.
Takeaways. These results highlight the limits of TraLa and
confirm the need to improve the performance of ranging
error correction schemes following the traditional two-stage
approach. First, the classifier used to inform whether error
correction should be applied needs to identify ranging samples
with high error (so to avoid that correction is applied to rang-
ing samples with low error). Second, to avoid over-correcting
ranging samples with relatively low error, the error correction
model (i.e., the regression model) needs to be trained using a
high amount of ranging samples with low error, possibly by
including samples taken in LoS conditions in the training set.

IV. RANGING ERROR LABELING (RELA)
Building upon these results, we design RELa: a novel labeling
method that improves the performance of classifier and regres-
sion models used to correct NLoS-induced ranging errors.
RELa uses two thresholds that capture the severity of the
ranging error: α and β, as shown in Fig. 4. α splits the data
employed to train the classifier (used to inform whether error
correction needs to be applied) into the low ranging error
(LoRE) and high ranging error (HiRE) classes. Samples clas-
sified as HiRE undergo correction, whereas samples classified
as LoRE are not corrected. β is used to select which data
should be used to train the regression model: all samples with
ranging error ≥ β are included in the training set.

Fig. 4: Overview of RELa’s ranging error thresholds α and β.



Fig. 5: Two-stage ranging error correction using RELa.

Fig. 5 summarizes how to apply RELa when performing
ranging error correction. Ranging samples classified as HiRE
(where α specifies what is considered high or low ranging
error) are corrected by a regression model trained on samples
with a ranging error ≥ β. Both classifier and regression
models use features extracted from the CIR (either manually
or automatically), as commonly done in the literature (see §II).

V. RELA: THE ROLE OF α AND β

The effectiveness of RELa hinges on the careful selection of
its two thresholds. We hence need to study the classification
and regression performance of SoA models as a function of
different α and β values, and compare it with the use of TraLa.
After detailing our empirical methodology (§V-A), we present
the results characterizing RELa’s performance as a function
of α (§V-B) and β (§V-C). We then perform an ablation
study comparing the use of RELa and TraLa (and their
combinations) to train classifier and regression models (§V-D).

A. Experimental Setup & Methodology
Models. We perform our study using the XGBoost classifi-
cation and regression models based on decision trees (DTs)
proposed by Gallacher et al. [8], as these represent the SoA
of lightweight ML models that can be implemented on con-
strained UWB devices. These models are fed with raw CIR
samples, and autonomously learn the set of relevant features.
We parametrize these models following the authors’ guidelines
(i.e., with a maximum of 30 trees and a maximum depth of
3 [8]), which results in compact models of 7 and 12 kB for
classification and regression, respectively, after quantization.
Datasets. We evaluate in detail the role of α and β using the
STOCKER CPS dataset [7], [12], which is one of the most
comprehensive publicly-available datasets of UWB ranging
measurements in LoS and NLoS conditions2, and the same
one used for our initial analysis in §III. Note that, although we
only present results for STOCKER CPS and XGBoost in this
section due to space limitations, similar trends are observed
for different datasets and models, as discussed in §VI.
Data preparation. UWB ranging estimates often contain a
small constant bias that is device-dependent. We estimate and
correct this bias by considering all LoS samples taken at a
certain distance (3 m), and by computing the corresponding
deviation in the ranging estimates. For the STOCKER CPS
dataset, we have observed (and subtracted) a bias of 3.41 cm.
We filter ranging outliers as in [8], i.e., by calculating the
median of measurements taken in the same position, and by
removing samples that exceed 2.5x the standard deviation.

2In this dataset, data is labeled using three classes: LoS, WLoS, and NLoS
(see §II). Hence, we merge WLoS and NLoS samples together as done in [9].

TABLE I: ωc,m factors for the STOCKER CPS dataset.

Metric

Line-of-Sight (LoS) Non-Line-of-Sight (NLoS)
exp. best

[cm]
required

[cm]
ωc,m
[cm]

exp. best
[cm]

required
[cm]

ωc,m
[cm]

90th 12.29 15.36 3.07 89.49 89.44 8.95
MAE 5.88 7.35 1.47 39.5 43.45 3.95

To tackle dataset imbalance, we perform a stratified 5-fold
split to divide the dataset into training and testing sets
that are different from each other, but that share the
same distribution of LoS/NLoS labels. We do this using
StratifiedGroupKFold (a Python scikit-learn li-
brary), and by performing the group split based on character-
istics of the dataset (e.g., room and setup ID) that correspond
to different real-world environments.
For each ranging sample, we scale the CIR and align the
position of the first peak at 20 ns: we then feed the classifier
and regression models with the first 60 ns of the CIR.
Performance metrics. We evaluate performance using the
same metrics used in §III. That is, we analyze the distribution
of TP, TN, FP, and FN after performing classification, and we
compute the mean absolute ranging error (MAE) as well as
the 90th percentile of the absolute ranging error (90th) before
and after applying error correction. We calculate performance
separately for measurements taken in LoS and NLoS to allow
a direct comparison with SoA approaches using TraLa.
To quantitatively rank the analyzed models based on their
error correction performance, we define a cost function (Eq. 1)
that accounts for the sustained MAE and 90th in both LoS
and NLoS conditions, and privileges models having a good
performance across both conditions. The costs are defined with
respect to a given list of models to be compared (e.g., XGBoost
trained with different values of α and β) per dataset. From this
list, the lowest value for each of the four performance metrics
(MAE and 90th in LoS and NLoS) is used as a reference to
compute a positive cost (Eq. 2). Specifically:

cost(model, list) =
∑
m

∑
c

∆Mc,m

ωc,m
(1)

∆Mc,m = |Mc,m(model)−M best
c,m (list)| (2)

ωc,m = |Mc,m(required)−Mc,m(exp. best)| (3)

• Mc,m(model) is the value of the performance metric m
achieved by model under the ranging condition c, with
m being MAE or 90th, and c being LoS or NLoS.

• M best
c,m (list) is the best value for the metric m under the

ranging condition c achieved by the models in the list.
• ωc,m is a constant scaling factor that represents the

relative weightings between cost terms.

Suitable values of ωc,m are derived using Eq. 3. An example
of their calculation for the STOCKER CPS dataset is shown
in Table I. For LoS conditions, the expected best value is
extracted from the performance metrics computed over the
uncorrected samples. For NLoS conditions, the expected best
value is extracted from the performance metrics computed with
models using TraLa. The required value is set to be 25%



(a) LoS (b) NLoS
Fig. 6: CDF of the ranging error as a function of α.

(a) TN and FN

(b) TP and FP

(c) LoS

(d) NLoS
Fig. 7: Classification and error correction performance as
a function of α. The regression model is trained on the
classifier’s prediction (TrPr).

and 10% higher than the expected best for LoS and NLoS
conditions, respectively: we choose these values empirically,
as they allow us to balance the importance of having a good
performance in LoS (a low error compared to the uncorrected
value) and in NLoS (a low error compared to TraLa).

B. Parametrization of α
We perform a sweep over different values of α (between 0
and 50 cm), and train the XGBoost classifier accordingly. To
account only for the role of α, we train the regression model
based on the classifier’s prediction (TrPr), and not based on β.
That is, we train the classifier using LoRE/HiRE labels, and
the regression model using the samples classified as HiRE.
Fig. 6 shows the cumulative distribution function (CDF) of
the ranging error in LoS and NLoS conditions as a function
of α. In LoS, the higher the value of α, the closer is the
ranging error to the original value before applying correction
(uncorrected). In NLoS, the differences in the ranging error
for different α values are negligible. Fig. 7c and 7d show the
MAE and 90th as a function of α, and directly compare them
with those obtained using TraLa (i.e., using XGBoost trained
on classical LoS/NLoS labels) and with those obtained before

(a) True Negatives (TN) (b) False Negatives (FN)

(c) False Positives (FP) (d) True Positives (TP)

Fig. 8: Distribution of the ranging error before applying
correction when using RELa (with different α) and TraLa.

applying correction (uncorrected). For α ≥ 20, the 90th of the
ranging error in LoS conditions is less than 4.2 cm higher than
before applying correction; in contrast, when using TraLa, it
grows by up to 22.6 cm. The ranging error in NLoS conditions
is relatively stable (and comparable to that obtained using
TraLa) independently of the chosen α, although lower values
of α exhibit a slightly better performance.
Fig. 8 shows the distribution of the ranging error before apply-
ing error correction for each of the possible outcomes of the
classification (TN, FN, FP, TP) when using RELa with α = 20,
RELa with α = 35, and TraLa. As α increases, the number
of FP and TP samples decreases (see Fig. 8c and 8d), while
the number of TN and FN samples increases (Fig. 8a and 8b).
This is also visible in Fig. 7b and 7a, respectively. For models
based on RELa, the majority of the FN cases are in the
range [-20, +50] cm, with only a few samples in the range
[+50, +100] cm, and a negligible amount above 100 cm (see
Fig. 8b). As discussed in §III, this is desirable, as samples
with a low ranging error should rather be left uncorrected.
According to the cost function defined in Eq. 1, among the
studied models, those with 25 ≤ α ≤ 35 achieve the best
performance. First, they do not worsen ranging estimates in
LoS significantly (as they minimize the number of FP to
0.5–1.5% only). Second, they exhibit only a relative drop in
NLoS correction performance (≈5 %) compared to the use of
TraLa. This competitive correction performance is achieved
at an apparently low TP rate of 28–35%, i.e., ≈50% of the
NLoS samples (in contrast, when using TraLa, the TP rate is
52.3 %). This indicates that, to maximize the ranging correc-
tion performance, it is more important to minimize the number
of FP (i.e., avoiding the misclassification of LoS samples) than
maximizing the number of TN+TP (i.e., ensuring that all NLoS
samples are sent for correction).

C. Parametrization of β
We fix α to the best value obtained in §V-B (i.e., α = 35),
and perform a sweep over different values of β. We denote the
use of RELa with specific values for α and β as RELa[α, β].
Fig. 9 shows the ranging correction performance as a function
of β and also compares it with that obtained when training the



(a) LoS

(b) NLoS
Fig. 9: Ranging correction performance metrics for
RELa[α=35,β] models, RELa regression β-sweep.

(a) False Positives (FP) (b) True Positives (TP)
Fig. 10: Distribution of the ranging error before (uncor.) and
after (cor.) applying error correction when using RELa (with
different combinations of α and β) and TraLa.

correction model based on the classifier’s prediction (TrPr).
As β increases, the MAE and 90th vary only slightly, with
a minor increase of the ranging error in LoS and a minor
decrease in NLoS. Essentially, given a fixed α (35 in this
case), the choice of β allows to fine-tune the trade-off between
effectively correcting NLoS samples and negatively affecting
LoS samples. According to the cost function defined in Eq. 1,
among the studied models, the best performance is achieved
when using β = 25, i.e., by RELa[35, 25].

Fig. 10 shows the distribution of the ranging error before and
after applying correction when using RELa with different com-
binations of α and β as well as TraLa. For correctly-classified
NLoS samples (i.e., the TP), the distribution is similar when
using RELa and TraLa, with a peak around +25 cm. However,
less samples are sent for correction when using RELa (i.e.,
the number of TP is lower), especially for higher values of α
(Fig. 10b). A striking difference can be seen when observing
the FP (Fig. 10a): when using TraLa, there is a long tail of LoS
samples with large negative errors after applying correction.
When using RELa[20,-10] and RELa[35,25] (whose curves
overlap), this tail is smaller and the number of FP is also
smaller. Moreover, the peak of the distribution is shifted by
only -24 cm when using RELa[20,-10], compared to -33 cm
when using TraLa. When using RELa[20,+10] (i.e., when
increasing β), the distribution of the ranging error for the FP
would have a peak with similar height to that of RELa[20,-10],
but shifted by -41 cm (not shown in Fig. 10a to avoid cluttering
the picture). This confirms that a higher β has a negative
impact on the correction of LoS samples.

(a) LoS

(b) NLoS
Fig. 11: Ablation study comparing the use of RELa and TraLa.

Note that when using a higher α (which results in less FP),
one can have a more aggressive regression (i.e., use a higher
β to train for strong NLoS cases). Conversely, when selecting
a lower α, the regression model should be trained also with
smaller errors (i.e., with a lower β). Fig. 10 exemplifies these
two cases using RELa[35, 25] and RELa[20, −10].

D. Ablation study
Fig. 11 shows the performance of different approaches (using
various combinations of RELa and TraLa to train the clas-
sification and regression models) sorted by the cost function
defined in Eq. 1. Approaches based on TraLa (which uses
classical LoS/NLoS labels to inform the correction and NLoS
labels to train the regression) perform poorly. Performance is
worst when applying a blind correction without classification
(NoCl) first, which is denoted as TraLa[NoCl].
Comparing TraLa[NoCl] and TraLa with RELa[NoCl][-25]
and RELa[TraLa][-15] shows the importance of adding sam-
ples with a low ranging error to the training set for the
regression model, as it reduces the negative impact on LoS
samples by up to 59% and 53%, respectively, while keeping
an on-par NLoS correction performance.
The most important reduction on the negative impact of
error correction on LoS samples is achieved by training the
classifier with a new label based on α, which is clearly
superior to TraLa. Note that, when training the classifier
using α = 35, there is little impact of the set used to train
the regression model (i.e., RELa[35][25], RELa[35][TraLa],
and RELa[35][TrPr] perform relatively on-par). Nevertheless,
RELa[35][25] (i.e., fine-tuning β) allows to find a good
balance between effectively correcting NLoS-induced errors
and avoiding to negatively affect samples collected in LoS.

VI. EVALUATION

We study next the performance of RELa and compare it
with that of TraLa using several datasets (§VI-A). Among
others, we show that we can derive a generic configuration
(i.e., RELa[20,-10]) that consistently outperforms TraLa and
that offers good performance across all scenarios, regardless
of the employed UWB platform (§VI-B). We also show the
superiority of RELa compared to TraLa using a different
model than XGBoost, and further show that the superiority
holds true regardless of the employed feature set (§VI-C).



A. Experimental Setup & Methodology
Datasets. We use four datasets in this evaluation: the publicly-
available STOCKER CPS (as in the previous sections), which
contains measurements collected using Qorvo EVK1000 de-
vices (which embed the DW1000 radio), and three datasets
that we acquired at our premises. These are collected using
UWB platforms embedding either Qorvo or NXP chipsets.
Specifically, the P2F DW3000 dataset is collected using an
nRF52 device connected to a Qorvo DW3000 with a single
chip antenna. The P2F CHIP and P2F PATCH datasets use
the NXP Trimension™ SR150 (which embeds the QN9090
radio) with either two chip or two patch antennas, respectively.
Across these three datasets, before applying correction, P2F
PATCH exhibits the best performance in both LoS and NLoS
conditions. P2F DW3000 and P2F CHIP, instead, exhibit the
lowest ranging accuracy in LoS and NLoS, respectively.
All devices operate on channel 9, and are configured to use a
pulse repetition frequency of 64 MHz, a preamble length and
STS length of 64 symbols, and a data rate of 6.8 MBit/s. Data
was acquired in a 60x40 m office by mounting the devices on
two tripods at 1.5 m height, and by performing 100 ranging
measurements (for which we logged the full CIR) between
devices of the same type in 125 different positions.
Models. In §VI-B, we reuse the same XGBoost classifica-
tion and regression models proposed by Gallacher et al. [8]
described in §V-A. To show the applicability of RELa also
to other models, we use in §VI-C Linear Support Vector
Machines (LinSVM) with different feature sets. Specifically,
we consider the following feature sets used in the literature:

• 30FS, which includes the 29 features from [18] plus the
average signal power;

• ST, which includes the 9 features defined in [7];
• EM+, which includes the 3 features defined in [18], plus

the estimated distance.
Unless differently specified, we reuse the same data prepara-
tion strategy and performance metrics described in §V-A.

B. RELa Performance for Different Datasets
For each dataset, we investigate the following models: (i) the
best performing RELa[α,β] model of each dataset and the
corresponding version in which the regression model is trained
using TraLa (i.e., RELa[α][TraLa]); (ii) RELa[20,-10], which
we show to offer good performance across all datasets, to-
gether with a version in which the regression model is trained
using TraLa (i.e., RELa[20][TraLa]); (iii) RELa[35,25], which
was the best performing model in STOCKER CPS based on our
analysis in §V; as well as (iv) RELa[10,0] and RELa[15,-10]
to show how additional combinations of α and β perform.
Fig. 12 shows the error correction performance of RELa for
each dataset, sorted according to the cost function defined in
Eq. 1. On the right, the ranging error when applying TraLa
and before applying correction are shown as baselines.
Across all datasets, as expected, TraLa worsens the ranging
errors of LoS samples (with increases in 90th from 6 to
22.6 cm). RELa, instead, effectively corrects ranging estimates
in NLoS conditions with a performance that is on par with

(a) P2F PATCH – LoS

(b) P2F PATCH – NLoS

(c) P2F CHIP – LoS

(d) P2F CHIP – NLoS

(e) P2F DW3000 – LoS

(f) P2F DW3000 – NLoS

(g) STOCKER CPS – LoS

(h) STOCKER CPS – NLoS
Fig. 12: Performance of RELa for different datasets.

TraLa (±5 cm), but with a negligible impact on LoS samples
(where RELa reduces the introduced error by up to 99%3).
Note that the RELa[α][TraLa] models also offer a competitive
performance, being always the second best for each dataset
according to our cost function. This confirms our observation
in §V: with an optimized RELa classifier, the regression model
alone has a minor impact on performance. The results in

3For example, in Fig. 12a, the ranging error (90th) obtained with TraLa mi-
nus the uncorrected error is 15.00 - 8.18 = 6.82 cm, the ranging error obtained
with RELa[20,-10] minus the uncorrected error is 8.19 - 8.18 = 0.01 cm. This
corresponds to a reduction in the introduced error in LoS of 99.85%.



(a) LoS

(b) NLoS
Fig. 13: Performance of RELa and TraLa when using LinSVM
models with different feature sets (STOCKER CPS dataset).

Fig. 12 also allow us to observe that lower α values are optimal
for devices that are more accurate in terms of their uncorrected
LoS ranging, i.e., α of 10–15 cm for P2F PATCH and P2F
CHIP, and 35–40 cm for P2F DW3000 and STOCKER CPS.
We can hence conclude that RELa outperforms TraLa in
all four datasets, showing that its advantages are not spe-
cific to certain environments. Moreover, we can consider
RELa[20,-10] a general setting offering a balanced perfor-
mance across all datasets. In fact, it worsens samples taken in
LoS by only ≤ 1.5 cm, and samples taken in NLoS by ≤ 5 cm
(90th) compared to the best RELa setting for a given dataset.

C. RELa Performance of Different Models
Fig. 13 compares the performance of RELa[20,-10] with TraLa
when using LinSVM with the different features sets described
in §VI-A. In line with our previous results, RELa[20,-10]
outperforms TraLa in avoiding to worsen the LoS samples (the
90th is worsened by up to 8 cm when using RELa[20,-10]
compared to the uncorrected case, whereas it grows up to
80 cm or more when using the EM+ and ST feature sets).
The error correction performance for NLoS samples is mostly
on par between TraLa and RELa, except for EM+, where the
90th is worsened by 26.2 cm when using RELa (but note that,
conversely, the 90th for LoS samples is improved by 74 cm).
In general, we can conclude that RELa outperforms TraLa
regardless of the employed feature set. The feature sets 30FS
and CIR perform best: among the two, the latter is preferred,
as it requires a lower computation effort for feature extrac-
tion [18]. Finally, it is remarkable that the use of LinSVM
with the CIR feature set performs similar (a difference of only
±2.2 cm in all metrics) to the XGBoost model (see Fig. 12):
this is an interesting observation, as the LinSVM has less
memory requirements than XGBoost (3 kB vs. 18 kB) and is
hence more suitable for very constrained UWB devices.

VII. CONCLUSION & FUTURE WORK

Error correction approaches for UWB ranging estimates using
traditional LoS/NLoS labeling (TraLa) commonly reduce the
error by roughly 50% in NLoS conditions. However, they
apply correction on a large number of LoS samples, which
worsens the ranging estimates by tens of centimeters. In this
work, we have proposed Ranging Error Labeling (RELa),
which redefines the training labels and sets of classification
and error correction models used in the literature. We have

shown experimentally that RELa can reduce the error intro-
duced on ranging estimates taken in LoS by up to 99%, while
maintaining the ability to effectively correct ranging estimates
taken in NLoS with a performance that is on-par with TraLa.
RELa currently uses binary labels for classification
(LoRE/HiRE). In the future, we will explore if defining
multiple ranging error classes can further boost performance.
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