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Abstract—Clock synchronization in distributed IoT systems
is a necessary feature to allow a coherent data collection and
event detection. This task is challenging, as today’s IoT systems
often consist of heterogeneous wireless devices using incompatible
technologies. Because of this, existing solutions often make use
of multi-radio gateways, which allow an indirect synchronization
across heterogeneous devices, but increase end-to-end delays and
suffer from an increased overhead. In this work, we present
X-Sync, a novel approach allowing a direct and bidirectional clock
synchronization among off-the-shelf wireless IoT devices with
incompatible physical layer. X-Sync leverages cross-technology
communication to convey timing information among heteroge-
neous devices and presents novel techniques to compensate for the
inaccuracies in reliably detecting the start of a cross-technology
frame. We seamlessly integrate X-Sync into the Contiki-NG
operating system and evaluate its performance experimentally on
off-the-shelf Bluetooth Low Energy and IEEE 802.15.4 devices,
showing that X-Sync achieves a µs-level synchronization accuracy.

Index Terms—Cross-Technology Communication; Clock Syn-
chronization; Contiki-NG; BLE; IEEE 802.15.4; X-Sync.

I. INTRODUCTION

With the rise of more complex Internet of Things (IoT)
solutions, heterogeneous networks are often needed to meet
requirements regarding throughput, low-power, and range.
Especially in industrial measurement and data acquisition sys-
tems, it is often necessary to use heterogeneous technologies
to measure the performance of a system or to observe the oc-
currence of events. Without a proper synchronization between
the devices, the timestamps referring to the same event would
be inconsistent, thus making the collected data unusable.
For this reason, an accurate clock synchronization is crucial
to ensure a coherent data collection and event detection.

In conventional synchronization schemes, i.e., with devices
employing the same physical layer (PHY), a global notion
of time is established by periodically exchanging timing in-
formation, i.e., by broadcasting a global event or timestamps
throughout the network [1]–[3]. Whenever a device receives
such a message, it calibrates its local clock accordingly,
achieving an accurate synchronization in the order of a few
µs [4]. In heterogeneous networks, however, synchronization
becomes more challenging, as devices employ incompatible
PHYs, and are hence using diverse modulation schemes and
channel bandwidths which makes an exchange of timing
information via the usual communication channels infeasible.

Because of this, state-of-the-art solutions to synchronize
heterogeneous devices rely on multi-radio gateways to for-
ward data packets among devices with different PHYs [5],

thus enabling an indirect exchange of timing information.
The use of multi-radio gateways, however, introduces ex-
tra costs, increases traffic, and leads to variable end-to-end
delays lowering the synchronization accuracy. Furthermore,
multi-radio gateways constitute a bottleneck as well as a single
point of failure, and their management is often complex and
time-consuming, which limits their use on a large scale [6].

Cross-technology communication (CTC) has emerged as a
suitable alternative to enable a direct data exchange among
devices with incompatible PHY without the need of gateways.
On a high level, there are two different approaches to carry
out CTC: packet-level modulation, where a mutually-available
side channel is established, and PHY emulation, which al-
lows to exchange data at a high throughput. In packet-level
modulation, data can be encoded into different frame lengths
[7]–[9], gap durations [10], beacon intervals [11], or power
levels [12], [13]; and decoded using energy detection, i.e., by
letting the radio perform a high-frequency sampling of the
received signal strength (RSS). In PHY emulation, instead, the
payload of a data packet is adjusted such that a portion of it
can be recognized by a device using another technology as a
legitimate packet, thereby achieving high data rates [14]–[18].

Lack of CTCS solutions. However, existing work on CTC
has mostly focused on demonstrating its feasibility on various
IoT platforms and on achieving high data rates, leaving aside
its use for time synchronization among heterogeneous devices,
i.e., for cross-technology clock synchronization (CTCS). Tan
et al. [19] have proposed a time synchronization approach that
leverages PHY emulation to encapsulate an IEEE 802.15.4
packet containing a timestamp within the payload of a Wi-Fi
packet. Based on the authors’ experimental evaluation, this
allows to achieve a synchronization accuracy of around 30 µs.
Another approach, named Crocs [20], splits the synchroniza-
tion process into a mutually-detectable event and the trans-
mission of a timestamp via packet-level CTC, which achieves
a synchronization accuracy of around 1ms. However, both
approaches only allow an unidirectional synchronization from
Wi-Fi to IEEE 802.15.4 devices, and do not target other pop-
ular IoT technologies such as Bluetooth Low Energy (BLE).

CTC-specific challenges. To improve the synchronization
accuracy when using packet-level CTC to convey timing infor-
mation, several challenges need to be tackled. In conventional
synchronization schemes, the time between the transmission
and the detection of a message is only defined by the physical



propagation time of the message through the media, which can
easily be compensated or even neglected as it is usually below
1 µs, deterministic, and constant (assuming a one hop scenario)
[3]. However, due to the limited RSS sampling frequency of
commercial wireless devices and the RSS averaging defined
in the IEEE 802.15.4 standard, the start of a CTC frame
cannot be accurately detected on the receiving device. This
significantly increases the time between the transmission and
the detection of a message by a non-deterministic, highly
variable factor depending on the hardware characteristic of
the device [21]. Because of this, new compensation methods
have to be developed to improve the accuracy of CTCS.
Furthermore, as a single CTC frame involves the transmission
of multiple legitimate data packets, packet-level modulation
results in very long transmission times (e.g., ≈ 63ms for a 20-
byte frame [22]), making it challenging to frequently exchange
timing information without congesting the wireless channel
or draining the battery of the device. While PHY emulation
CTC is not affected by the limited RSS sampling frequency
or long transmission times, it only allows a unidirectional data
exchange between two specific technologies. This makes the
use of round-trip algorithms more complicated, as different
CTCS schemes are needed for each direction, and it does not
allow a simultaneous synchronization of devices employing
diverse technologies, i.e., it does not allow an exchange of
timing information using broadcast transmissions.

Our contributions. In this paper, we address the lack of CTCS
schemes and present X-Sync, a novel approach that allows to
synchronize the clock of heterogeneous devices without the
use of multi-radio gateways. In particular, X-Sync enables a
bidirectional clock synchronization among off-the-shelf wire-
less devices achieving a µs-level accuracy. It leverages packet-
level CTC to convey timing information in a generic way,
which allows to synchronize several heterogeneous devices
simultaneously, regardless of the used technology, by transmit-
ting cross-technology broadcast frames. We have implemented
X-Sync on off-the-shelf BLE and IEEE 802.15.4 devices,
where the latter are especially challenging as they introduce
an additional source of error due to the averaging of the RSS
values. However, due to its generic design, X-Sync can be used
by any device capable of sampling the RSS, e.g., off-the-shelf
Wi-Fi devices such as Raspberry Pis [23], [24]. To account
for the non-deterministic delay in the communication process,
caused by the limited RSS sampling capability on off-the-
shelf wireless devices, X-Sync performs a repetitive sampling
of the RSS in combination with a binary search algorithm
to accurately determine the start of a CTC frame, which is
crucial to achieve an accurate synchronization. To keep the
number of synchronization messages low, X-Sync estimates
the clock skew between the devices and calibrates the local
clock accordingly, achieving a high accuracy even when using
long synchronization intervals. Due to its bi-directionality,
X-Sync can also be used as a building block to allow the use of
existing multi-hop synchronization schemes (such as RBS [1],
TPSN [2], or FTSP [3]) among heterogeneous devices.
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Fig. 1: Delays of exchanging a timestamp over a wireless link.

In summary, this paper makes the following contributions:
• We present X-Sync, a generic and novel cross-technology

clock synchronization scheme for heterogeneous wireless
devices, highlighting its key design principles (Sect. II);

• We illustrate in detail the working principle of X-Sync,
describing how it enables a bidirectional and accurate
cross-technology clock synchronization, despite the use
of packet-level CTC to convey information (Sect. III);

• We describe X-Sync’s seamless integration into the
Contiki-NG operating system and its implementation on
off-the-shelf BLE and IEEE 802.15.4 devices (Sect. IV);

• We evaluate X-Sync experimentally on off-the-shelf
devices, showing that a synchronization error in the
µs-range can be achieved; we further evaluate the im-
pact of various parameters on X-Sync’s synchronization
accuracy and analyse its memory footprint (Sect. V).

After describing related work in Sect. VI, we conclude our
paper in Sect. VII along with an outlook on future work.

II. X-SYNC: DESIGN RATIONALE

In this section, we describe the rationale behind the design
of X-Sync and the challenges in devising an accurate clock
synchronization scheme for heterogeneous wireless devices.
Removing higher-layer delays. The accuracy of a synchro-
nization scheme is primarily limited by the delays added
during the communication process, i.e., by the delay of send-
ing and receiving timestamps, and should be eliminated or
compensated to allow a precise synchronization. Those delays
were already extensively studied and analysed in the literature
[2], [3], [25] and are illustrated in Fig. 1 in more detail.

As can be seen in Fig. 1, the end-to-end latency when
exchanging a timestamp traditionally equals l1, i.e., it lasts
from the instant in which the application issues the message
to the instant in which it is decoded by the receiver. To get
rid of non-deterministic delays introduced by the operating
system and network stack (send and receive time in Fig. 1), as
well as by the medium access control scheme (access time),
X-Sync uses MAC timestamping [2], where timestamps are
generated by reading the local clocks immediately when a
message is sent or received. This significantly reduces the end-
to-end latency when exchanging a timestamp (l2 in Fig. 1)
to the physical propagation time of the message through the
media (propagation time) and to the time it takes to transmit
(transmission time) or receive (reception time) the timestamp.
Building a generic CTCS scheme. However, to allow the
synchronization of multiple heterogeneous devices, indepen-
dently of the employed technology, a generic way of exchang-
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Fig. 2: Due to the limited resolution of RSS sampling capa-
bilities in common IoT platforms, one needs to account for
specific delays that may increase the inaccuracy in detecting
the start of a cross-technology frame.

ing the timestamps is needed. Furthermore, in conventional
synchronization schemes it is often necessary to exchange
data bidirectionally to improve the synchronization accuracy,
e.g., by measuring the round-trip time [2]. Because of this,
we base X-Sync on packet-level modulation instead of PHY
emulation, allowing X-Sync to be used as a building block
for other synchronization schemes among different wireless
technologies. To this end, we have extended X-Burst [21] – a
generic and portable CTC framework allowing constrained IoT
platforms with incompatible physical layer to seamlessly inter-
act using packet-level modulation – to enable the transmission
and reception of timestamps. Thus, X-Sync uses precisely-
timed packets to synchronize devices with different PHY.
Overcoming packet-level CTC limitations. To detect and de-
code the information within such packets, a receiver performs
a high frequency sampling of the RSS. However, due to the
limited RSS sampling rate and processing speed of wireless
devices, which strongly vary among platforms [21], the instant
in which a packet’s presence is detected may be delayed. As a
result, the start of a CTC frame cannot be accurately detected,
as the RSS can only be sampled at specific points in time. Fig.
2a illustrates this problem: the start of a packet was shortly
missed, and an additional delay, which we call the sampling
delay, is added to the communication process. This sampling
delay has a negative impact on the synchronization accuracy.
However, this becomes even worse on IEEE 802.15.4 devices,
as those additionally experience a constant, device-dependent
delay, caused by the averaging of the RSS, as can be seen in
Fig. 2b [21]. This second delay, which we call the averaging
delay, strongly depends on the setup and the threshold used
to distinguish between data packets and the RSS noise floor.

To compensate for the sampling delay (and hence to
minimize the variability of the end-to-end latency), X-Sync
performs a repetitive sampling of the RSS, i.e., instead of con-
tinuously sampling the RSS, X-Sync only samples at specific
points in time. This allows to accurately detect a well-known
sequence of energy bursts (i.e., the synchronization preamble,
consisting of NB bursts), which is contained within each CTC
frame, and thus, to refine the detected start time of the CTC
frame. For the remaining synchronization error (caused by the
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Fig. 3: Communication process (delays) over a wireless link
when packet-level CTC is used to convey the timestamp.

propagation time and by the averaging delay on IEEE 802.15.4
devices), the detected start time of the frame can be further
corrected by a constant, measurable offset. More information
about how X-Sync refines the start time of a CTC frame can be
found in Sect. III-B. Fig. 3 shows the communication process
when packet-level CTC is used to convey the timestamp,
including the sampling delay and the averaging delay.
Minimizing the number of synchronization messages. An-
other important aspect when using packet-level CTC to convey
timing information is its very long transmission times (e.g.,
≈ 63ms for a 20-byte frame [22]). However, as the time offset
between two devices changes in a linear fashion (assuming
a good short-term stability of both clocks and a constant
environmental temperature), X-Sync estimates the clock drift
between two devices using linear regression [1]. This way,
after sufficient data points are collected, the synchronization
interval IS can be increased, and thus, the number of synchro-
nization messages and the energy consumption be reduced.

III. X-SYNC: WORKING PRINCIPLE

To synchronize the clocks of heterogeneous devices, X-Sync
uses precisely-timed energy bursts that are generated by send-
ing legitimate data packets of variable length. An overview of
X-Sync is shown in Fig. 4 and discussed in more detail below.

A. Accurate Timestamp Transmission

As can be seen in Fig. 4, a short preamble (CTC preamble)
is sent at the beginning of each CTC frame. This allows other
devices to distinguish between noise and actual CTC frames on
the wireless channel. Moreover, by using a different preamble
for synchronization messages, a receiver can further distin-
guish between usual CTC messages and synchronization ones.
Thus, a device immediately knows if the following energy
bursts will contain timing information and, if this is the case,
starts compensating for the sampling delay. Therefore, another
preamble (synchronization preamble) is transmitted right after
the first one, which allows the receiver to accurately determine
the start of the CTC frame. We discuss the synchronization
preamble and how it can be used to compensate the sampling
delay in Sect. III-B in more detail. After both preambles are
sent, the actual timestamp T1, which is measured right before
the transmission of the CTC message, is transmitted, followed
by a checksum to detected possible transmission errors.

B. Accurate Timestamp Reception

When the CTC preamble was detected by a receiver, it
immediately starts performing a repetitive sampling on the
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Fig. 4: Overview of the working principle of X-Sync. The
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information, estimates the clock skew, and translates its clock.

following NB energy bursts, i.e., on the synchronization
preamble. In particular, as the RSS sampling frequency is
defined by the underlying hardware, it cannot be changed
without hardware modifications, but the specific point in
time when the RSS is sampled can be chosen freely. Thus,
instead of continuously sampling the RSS, the instant of the
next sampling point can be delayed to a certain point in
time. X-Sync uses this possibility, which is called repetitive
sampling, in combination with a binary search algorithm to ac-
curately determine the start of the last energy burst within the
synchronization preamble. As the nominal durations of (and
the gaps in-between) both preambles are known, the receiver
can accurately refine the start time of the CTC frame, i.e., de-
termine timestamp T2. This procedure is illustrated in Fig. 5.

As can be seen in Fig. 5, an uncertainty region ε is specified,
defined by the RSS sampling frequency (fRSS), in the middle
of which the start of the energy burst is expected. Therefore,
the start of the first energy burst t1b will be within:

t1e −
ε1

2
≤ t1b ≤ t1e +

ε1

2
, (1)

where t1e is the estimated start of the first energy burst and ε1

is the first uncertainty region, defined by 1/fRSS .
After each energy burst, ε gets halved (εi+1 = εi/2) and

depending on the sampled value, i.e., if a burst was detected
(RSS≥ threshold) or not (RSS< threshold), the estimated start
of the next energy burst ti+1

e (i.e., the instant of time in which
the next RSS is sampled) is adjusted accordingly. If no packet
was detected, the sampling point was chosen too early and the
next sampling point will be slightly postponed and vice-versa:

ti+1
e =

{
ti+1
e + εi+1

2 , if RSS < threshold

ti+1
e − εi+1

2 , if RSS ≥ threshold
(2)

However, when using IEEE 802.15.4 devices, also the av-
eraging delay has to be compensated to achieve a high syn-
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Fig. 5: X-Sync uses repetitive sampling and a binary search
algorithm to determine the start of the last burst within
the synchronization preamble, compensating for the sampling
delay. Note that X-Sync only samples at the black arrows, the
gray ones only illustrate the error in detecting the bursts.

chronization accuracy. As the averaging delay also depends on
the environment, we distinguish between static and dynamic
setups. In the former case, where all nodes are placed at
fixed positions and transmit with constant power, the averaging
delay is fully deterministic. Thus, it can be measured (includ-
ing the propagation delay to further increase the accuracy)
by analysing the synchronization error among the first few
synchronization messages, and be considered in the future
when refining the detected start time of the CTC frame, i.e.,
when determining timestamp T2. For dynamic setups, the
delay becomes non-deterministic, as it strongly depends on the
distance between sender and receiver, on the used transmission
power, and on changes in the environment. To also compensate
for the averaging delay in dynamic environments, the delay has
to be determined for each synchronization message separately.
This can either be done by comparing the measured durations
of the preamble with its nominal ones, or by the use of round
trip algorithms such as TPSN [2]. However, the compensation
of the averaging delay in dynamic environments is beyond the
scope of this paper and will be addressed in future work.

C. Validation & Clock Translation

Due to the nature of packet-level CTC (encoding informa-
tion into properties of legitimate data packets), transmissions
are more vulnerable to external RF interference than traditional
ones. Thus, X-Sync includes a checksum to verify the integrity
of each received timestamp. Once the integrity is verified,
X-Sync builds a synchronization pair consisting of timestamp
T1 (the received timestamp), and timestamp T2 (the corrected
timestamp referring to the start of the frame) allowing the
device to translate its local clock to the global clock as follows:

tglobal = tlocal + toffset, with toffset = T1 − T2 (3)

However, as clocks are running at slightly different frequen-
cies due to differences in their oscillators, the synchronized
clocks immediately start to drift apart again. This drift factor
between two clocks is called clock skew and correcting it
becomes especially important for long-term synchronization.
Assuming a good short-term stability of the clocks and con-
stant environmental temperature conditions, the clock skew
can be assumed to be linear [3]. Thus, X-Sync performs a
least-squares linear regression to find the best fit line through
the clock offsets observed over time, allowing to simply



convert the local clock of a device to the global clock from
the slope (skew) and the intercept (offset) of the line:

tglobal = tlocal ∗ skew + offset (4)

As the amount of memory is usually constrained on IoT
devices, not all synchronization pairs can be stored for the
linear regression. Therefore, X-Sync uses a moving window
buffer where the last NP pairs are stored in a first-in-first-out
manner. As also the synchronization preamble is vulnerable
to external RF interference, leading to a wrong correction
of timestamp T2, X-Sync performs a validity check of each
synchronization pair before it is added to the buffer. In
particular, random sample consensus (RANSAC) [26] is used
to differentiate between inliers and outliers. As devices often
only have limited resources, a simple linear model is used:

m =
y2 − y1
x2 − x1

, b =
y1 · x2 − y2 · x1

x2 − x1
, (5)

where (x1, y1) and (x2, y2) are two different synchroniza-
tion pairs. In particular, until the moving window buffer is
not fully filled, X-Sync stores all received synchronization
pairs; once the buffer is full, two hypothetical inliers are
randomly selected and the model from Eq. 5 is derived. All
other synchronization pairs of the buffer are then tested against
this model using a specific loss function and the number of
valid samples is stored for comparison. This procedure is
repeated with new hypothetical inliers and after a pre-defined
number of repetitions is reached, the model with the most valid
samples is used to validate new synchronization pairs.

IV. IMPLEMENTATION

We have seamlessly implemented X-Sync into the Contiki-
NG operating system, making sure that no changes to its core
functions and network stack are necessary. To this end, we
have extended X-Burst [21] – a generic and portable CTC
framework allowing constrained IoT platforms with incompat-
ible PHY to seamlessly interact using packet-level modulation
– to enable the transmission and reception of timestamps
and ported it to Contiki-NG. To maximize code-reuse and
portability to other platforms, X-Sync was implemented as
a modular extension of X-Burst, as can be seen in Fig. 6. We
describe next the main differences to X-Burst in more detail.
Frame management. We have extended the frame manage-
ment module to assemble and disassemble synchronization
messages, which consist of a CTC preamble (5 bursts), a
synchronization preamble (NB bursts), the timestamp T1 (64
bit), and a checksum (1 byte). When a synchronization mes-
sage is received, the contained timestamp T1 is passed to the
estimation & filtering module for further processing.
Hardware abstraction layer. As the provided timers of
Contiki-NG are rather limited in their resolution (i.e., 32 kHz),
we have extended the hardware abstraction layer (HAL) of X-
Burst by providing a 64-bit high-resolution timer, running at
the system clock of the used platform, allowing to precisely
schedule the operations of X-Sync on a sub-µs level. How-
ever, as the accurate transmission of energy bursts is crucial
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to enable a high synchronization accuracy, i.e., an accurate
transmission of the preambles is needed to compensate for the
sampling delay, we further extended the HAL to allow the use
of radio queues. This way, the radio has full control over the
transmission timings and can use a constant gap between two
consecutive bursts, regardless of the operations carried out on
the CPU. In case radio queues are not supported, the bursts
are sent one by one, with a precise delay in-between, and
the interrupt priorities are updated to avoid delays caused by
unexpected interrupts (if interrupt priorities are not supported,
interrupts are disabled during transmissions). We further ex-
tended the HAL to enable MAC timestamping, i.e., to generate
and add timestamp T1 immediately before the message is sent.

CTC delay compensation. To compensate for the delays
introduced by the use of packet-level CTC, we extended the
decoding module of X-Burst accordingly. In particular, when
the CTC preamble was detected, the repetitive sampling of the
RSS is started to refine the detected start time of the frame,
i.e., to determine timestamp T2, as explained in Sect. III-B.
As IEEE 802.15.4 devices are averaging the RSS over the
last 8 measurements, we reset the RSS buffer to improve the
accuracy in detecting the start of the next energy burst within
the synchronization preamble (if resetting the buffer is not
possible, turning the radio on and off will also reset the buffer).

Estimation & filtering, and clock translation. The estimation
and filtering module validates a synchronization pair (T1, T2),
i.e., it detects and removes outliers using RANSAC, and
estimates the clock skew using linear regression, as described
in Section III-C. To speed-up the calculations and to save
memory, the number of stored synchronization pairs (NP ) can
be adjusted. The skew and the clock offset is then passed to the
clock translation module, which allows to convert timestamps
between devices, instead of correcting the devices’ clock.

Hardware platforms. We implement X-Sync on three off-
the-shelf IoT devices supported by Contiki-NG, namely the TI
CC2650 LaunchPad (supporting BLE and IEEE 802.15.4), the
Zolertia Firefly (employing an IEEE 802.15.4-compatible TI
CC2538 transceiver), as well as the TelosB mote (employing
an IEEE 802.15.4-compatible TI CC2420 radio).



V. EVALUATION

We evaluate X-Sync experimentally. We first showcase the
synchronization accuracy among several off-the-shelf BLE and
IEEE 802.15.4 devices and analyse the impact of different
parameters to the achievable accuracy (Sect. V-A). We then
show a long-term evaluation of X-Sync (Sect. V-B) and finish
our evaluation by analysing its memory footprint (Sect. V-C).

Experimental setup. We make use of two TI CC2650
LaunchPads (one configured in BLE mode and one configured
in IEEE 802.15.4 mode), one TelosB mote, as well as one
Zolertia Firefly. Unless specified differently, we carry out all
experiments in a vacant room with devices placed at 1 meter
distance and using a transmission power of 0 dBm. To evaluate
the synchronization accuracy, we make use of a function
generator that generates a signal clocked at 1Hz (fG), which
is connected using short BNC cables to the GPIO pins of each
device. Whenever a rising edge is detected on a GPIO pin, the
device samples the current time and transmits it via a UART
connection to a database. The setup is illustrated in Fig. 7.

A. Synchronization Accuracy

Depending on device capabilities, such as the computational
power or available memory, X-Sync can be configured to
always achieve the best possible performance. In particular,
there are three different parameters with a direct impact on
the achievable synchronization accuracy: the used synchro-
nization interval IS , the number of synchronization preamble
bursts NB , and the number of stored synchronization pairs
NP . To evaluate the impact of each of these parameters on
the synchronization accuracy, the remaining two parameters
are set to their optimal values to not affect the evaluation.
Each experiment is repeated 3 times and 200 synchronization
messages are exchanged within each test run. Due to space
constraints, we only show the evaluation of the parameters for
the BLE → IEEE 802.15.4 direction, but the results apply also
for the other direction. In every experiment, the TI CC2650
LaunchPad in BLE mode transmits a synchronization message
to all other IEEE 802.15.4 devices simultaneously and acts as
the reference clock. To compensate for the static propagation
delay, and for the averaging delay on IEEE 802.15.4 devices,
we measure the synchronization error (i.e., the remaining delay
in detecting bursts) of the first 10 synchronization pairs and
use the average error for future corrections of timestamp T2.

Synchronization interval (IS). The synchronization interval
has the highest impact on the synchronization accuracy, as
it defines the time between two synchronization messages
sent consecutively. While a large interval leads to a lower
energy consumption, the accuracy decreases due to the limited
compensation of the clock skew (non-linear in the long term).
Fig. 8a shows the impact of IS on the achievable accuracy.

As can be seen in Fig. 8a, the clock of the TI CC2650
LaunchPad in IEEE 802.15.4 mode and the Zolertia Firefly
could maintain a very high synchronization accuracy through-
out the evaluation, reaching up to a sub-µs level accuracy when
IS = 1. Due to the very constrained hardware of the TelosB
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Fig. 7: Experimental setup used in the evaluation. Each device
is connected to a synchronized signal (1 Hz) generated by a
function generator. This signal accurately triggers the measure-
ment of the current time, which is then stored into a database.

mote, i.e., due to its slow crystal oscillator (32 kHz) and clock
speed (3.9MHz), as well as the lack of preemptive interrupts,
the reached accuracy is much lower compared to the other
two platforms. However, even with its limited capabilities, the
TelosB mote could still decrease the synchronization error
down to below ±100 µs, outperforming packet-level CTCS
state-of-the-art by a factor of 10 (Crocs [20] reached an
accuracy of 1ms on the TelosB mote using an interval of 7 s).
Synchronization preamble bursts (NB). Another important
parameter affecting the synchronization accuracy is the num-
ber of synchronization preamble bursts NB that are used to
compensate for the sampling delay. The more energy bursts
are used, the more iterations are available for the binary search
algorithm, and thus, the detected start time of the message can
be refined more precisely. However, while using more energy
bursts will increase the accuracy, it also increases the energy
consumption and the length of a synchronization message. Fig.
8b shows the impact of NB on the achievable accuracy.

As can be seen in Fig. 8b, setting NB = 1 completely
cancels the binary search, resulting in a delayed detection of
the burst and thus, in a negative synchronization error. The
exact opposite happens when NB = 4, where the start of
the fourth burst is expected too early, resulting in a positive
synchronization error. By increasing NB further, the binary
search algorithm starts working as expected, reaching a good
and stable performance when 10 or more bursts are used.
Stored synchronization pairs (NP ). The last parameter that
influences the accuracy of X-Sync is the number of stored
synchronization pairs NP . The more pairs are stored, the
better the clock skew estimation will be, but at the cost of a
higher memory usage. Fig. 8c shows the impact of NP on the
achievable accuracy. The number of used synchronization pairs
NP does not have a major impact on the achievable accuracy,
showing that the filtering and the clock skew estimation work
even on a very small set of synchronization pairs.

B. Long Term Evaluation

Based on our findings from Sect. V-A, we evaluate the per-
formance of X-Sync over a duration of 35 hours. In particular,
we set the synchronization interval IS = 60 s, as we consider
this as a reasonable interval and good trade-off between ac-
curacy and the number of required synchronization messages.
We further set the number of synchronization preamble bursts
NB = 12, as using more would not significantly increase the
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Fig. 8: Synchronization accuracy depending on different parameters. The TI CC2650 LaunchPad in BLE mode broadcasts a
synchronization message (with NB bursts) every IS seconds and acts as reference clock. NP synchronization pairs are stored.
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Fig. 9: Long term evaluation of the synchronization error. The
TI CC2650 in BLE mode acts as (a) transmitter broadcasting to
all other devices simultaneously and (b) as receiver. A message
was sent once a minute (IS = 60s,NB = 12, NP = 20).

accuracy. Last, we set the number of stored synchronization
pairs NP = 20 to keep the memory usage low, but still allow a
good estimation of the clock skew and an increased robustness
to outliers. Fig. 9a shows the long term evaluation of X-Sync
when the TI CC2650 LaunchPad in BLE mode broadcasts
the synchronization messages to all other platforms simultane-
ously. To also show the bidirectionality of X-Sync, we repeat
the long term evaluation three times, where in every round
another IEEE 802.15.4 device transmits the synchronization
messages to the TI CC2650 LaunchPad in BLE mode and
acts as the reference clock. The results are shown in Fig. 9b.
As each evaluation is carried out on its own, disturbances that
can be seen in Fig. 9b are not related to each other.

As can be seen in Fig. 9a, a high synchronization accuracy
could be maintained throughout the evaluation. For 95% of the
time, the TI CC2650 LaunchPad in IEEE 802.15.4 mode and
the Zolertia Firefly could maintain a very low synchronization
error below ±2.52 µs and ±6.16 µs, respectively; whereas the
TelosB mote could only maintain an error below ±812 µs.
No precaution was taken against external RF interference,
examples for their impact can be seen at t = 1 h and t = 17 h
on both the TI CC2650 LaunchPad in IEEE 802.15.4 mode
and the Zolertia Firefly (minor disturbances can also be seen at
t = 6 h, t = 22 h and t = 28 h). On the TelosB mote, however,
those disturbances are not significant enough to be visible, due
to its worse performance compared to the other platforms.

As can be seen in Fig. 9b, also for the other communication
direction (IEEE 802.15.4→ BLE) the TI CC2650 LaunchPad

Hardware
platform

RAM / ROM (kB)
X-Burst w/ X-Sync X-Sync only

TI CC2650 1.17 / 7.86 9.97 / 15.44 8.80 / 7.58
Zolertia Firefly 1.26 / 6.97 1.76 / 12.81 0.50 / 5.84

TelosB mote 0.75 / 6.78 1.18 / 14.20 0.43 / 7.42

TABLE I: Memory footprint for different hardware platforms.

in BLE mode could maintain a high synchronization accu-
racy throughout the evaluation. When using the TI CC2650
LaunchPad in IEEE 802.15.4 mode and the Zolertia Firefly as
transmitter, for 95% of the time the synchronization error was
below ±4.84 µs and ±10.80 µs, respectively. The variations
compared to the results shown in Fig. 9a are due to differences
in the implementation as well as due to variations in the
environmental conditions during the evaluations. However,
when using the TelosB mote as transmitter, the error is, again,
slightly higher compared to the other platforms. In this case,
the error stays below ±30 µs for 95% of the time: this is due
to the limited time resolution of the TelosB mote, which uses
a timer clocked at 32 kHz (1 tick corresponds to 30.52 µs).

C. Memory Footprint
We conclude our evaluation by quantifying the memory

footprint of X-Sync using the gcc-size command. Table
I shows the memory footprint of X-Sync, when NP = 20, in
terms of RAM and ROM usage for all used platforms. The
table also reports the memory footprint of X-Burst, on top of
which X-Sync is built. While the memory footprint is roughly
the same for all platforms (< 1 kB of RAM and < 8 kB of
ROM; the tiny differences are due to slightly different imple-
mentations), the RAM usage of the TI CC2650 LaunchPad
(≈ 9 kB) differs significantly, due to its implementation of ra-
dio queues. Therefore, with its low memory footprint, X-Sync
is well-suited for resource-constrained wireless IoT devices.

VI. RELATED WORK
We analyse next related work on clock synchronization in

wireless sensor networks, on CTC, as well as on CTCS.
Clock synchronization in wireless sensor networks. Clock
synchronization has been extensively studied in sensor net-
works [1]–[3], [27]–[29]. While RBS [1] uses reference broad-
casts to synchronize multiple receivers (removing the non-
deterministic send and access time), TPSN [2] builds a span-
ning tree of the network and performs pair-wise synchroniza-
tion with MAC-timestamping to remove the remaining delays



in the process. FTSP [3] and Glossy [29] enhance the accuracy
by using network flooding. However, all of those works are
infeasible for heterogeneous devices as timing information
cannot be exchanged due to their incompatible PHYs.
Cross-technology communication. Because of this, a large
body of work has explored how to enable a direct commu-
nication among heterogeneous devices, focusing on Wi-Fi,
BLE, and IEEE 802.15.4. While early works have focused
on establishing a mutually available side channel by using
packet-level information such as the duration [7]–[9], interval
[10], [11] and transmission power [12], [13] to encode data,
later works have exploited the concept of PHY emulation to
significantly increase the data rate of CTC [14]–[18].
Cross-technology clock synchronization. However, only two
works have demonstrated CTCS. Tan et al. [19] proposed
a time synchronization approach that leverages PHY emu-
lation to encapsulate an IEEE 802.15.4 packet containing a
timestamp within the payload of a Wi-Fi packet, enabling a
synchronization accuracy of around 30 µs. Crocs [20], instead,
splits the synchronization process into two parts: a mutually-
detectable event, realized using a Barker-code based sequence
of Wi-Fi packets, and the transmission of a timestamp via
packet-level CTC, enabling a synchronization accuracy of
around 1ms. However, both works only enable an unidirec-
tional synchronization, leaving aside the development of a
more generic, bidirectional CTCS approach that can be used
as a building block for existing synchronization schemes.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented X-Sync, a novel approach
allowing a direct, bidirectional clock synchronization among
off-the-shelf wireless IoT devices with incompatible PHY. We
identified hidden delays in the synchronization process, when
CTC is used to convey timing information, and presented novel
techniques to compensate for those delays. Because of this,
X-Sync is able to synchronize heterogeneous devices with
a (sub-) µs-level accuracy, outperforming state-of-the-art. We
seamlessly integrated X-Sync into Contiki-NG and showcased
its performance on three different off-the-shelf IEEE 802.15.4
and BLE devices. Due to its generic design, X-Sync offers the
use of cross-technology broadcasts, which allow to synchro-
nize several heterogeneous devices simultaneously, and due
to its bidirectional data exchange, it can also be used as a
building block for existing synchronization schemes.

Future work includes the development of novel techniques
to also compensate for the averaging delay in dynamic envi-
ronments, as well as the integration of round-trip algorithms.
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