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Abstract—The growing proliferation of Wi-Fi 6E devices, which
operate at a high transmission power in the same frequency
band used by ultra-wideband (UWB) technology, poses significant
challenges to the reliability of UWB-based systems. Prior work
has explored the impact of Wi-Fi 6E traffic on UWB performance
experimentally using real-world testbeds, but lacks a theoretical
Jramework capturing how Wi-Fi6E’s physical-layer (PHY) set-
tings, signal strength, and traffic profile affect UWB performance.
We address this gap by introducing a probabilistic error model
that accurately estimates the packet error rate (PER) of UWB
systems operating alongside Wi-Fi6E traffic. Using a conducted
test setup, we analyze coexisting transmissions to characterize
real-world Wi-Fi6E traffic (e.g., airtime, inter-arrival times,
and channel occupancy) and quantify the sensitivity of UWB
transmissions to Wi-Fi 6E interference for different PHY settings,
traffic profiles, and signal strengths. We leverage this charac-
terization to parametrize the model using different approaches,
ranging from a trace-based estimation of the collision probability
to an analytical derivation of Wi-Fi 6E’s channel occupancy. This
allows us to explore different trade-offs w.r.t. the model’s accu-
racy and generality. Our experimental evaluation demonstrates
that our model accurately captures the UWB PER, with average
deviations as low as 3.6 % on conducted measurements and below
9.7% on real-world experiments in a university building.

Index Terms—Coexistence, Interference, PER, SIR, UWB.

I. INTRODUCTION

Ultra-wideband (UWB) has emerged as one of the most pop-
ular low-power wireless technologies for designing location-
aware [oT applications. UWB radios offer indeed a unique
combination of fine time resolution, multipath resilience, and
low power consumption, which enables the development of
cm-accurate positioning systems across application domains
as diverse as robot localization [1], occupancy sensing in ve-
hicles [2], and tracking of visitors in caves [3] or museums [4].
Whilst the use of a high bandwidth enables the transmission
of very short signal pulses (=2 ns long) — which allows UWB
radios to precisely measure the time-of-arrival (ToA) of a
frame and, consequently, to accurately estimate the distance
between devices — it also introduces several challenges.

In fact, to minimize interference with co-located narrowband
systems, regulatory bodies impose limits on the maximum
transmission power of UWB signals, which is ~ 14-50dB
lower than that of common narrowband technologies such as
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Bluetooth and Wi-Fi. As a consequence, UWB transmissions
are highly vulnerable to those of nearby wireless devices
operating at higher power on the same frequencies. UWB’s
low signal energy (and carrier-less nature) further complicates
energy detection: as a result, UWB radios lack clear channel
assessment capabilities and cannot implement carrier sense
multiple access (CSMA) to avoid collisions [5]. Moreover,
standard interference mitigation techniques such as channel
blacklisting or frequency diversity are not viable due to the
limited number of available UWB channels [6].

Coexistence between UWB and Wi-Fi. UWB’s limited
ability to coexist with other wireless technologies has become
critical with the release of the IEEE 802.11ax (Wi-Fi6E)
and IEEE 802.11be (Wi-Fi7) standards, which expand the
operational frequencies of Wi-Fi into the 6 GHz band. In
fact, UWB channel 5 also falls within this band, and is
among the few UWB channels recommended to ensure global
compatibility and interoperability across platforms.

Recent studies [7], [8], [9], [10], [11] have shown experi-
mentally that Wi-Fi6E traffic may completely disrupt UWB
communications on channel 5. This results in significant
degradation of ranging and localization performance, with
UWB-based systems achieving success rates as low as 4%
in completing two-way ranging amid Wi-Fi 6E traffic [7].
While these studies laid the groundwork for understanding
(and mitigating) the impact of Wi-Fi6E traffic on co-located
UWRB systems, their primary goal was to empirically show and
quantify the extent of the coexistence problem through real-
world experiments, rather than to develop a general model
capable of predicting UWB’s communication performance in
the presence of Wi-Fi6E interference. Such a model would
support the design of reliable UWB-based systems, allow
their deployment in crowded wireless environments, reduce
the need for extensive empirical testing, and enable integration
into network simulators such as OMNET++ or ns3.

Lack of suitable models. To the best of our knowledge, there
is no such model in the literature. Existing works investigating
on a theoretical basis the UWB performance under additive
white gaussian noise (AWGN) or narrowband interference



mainly date back to more than a decade ago [12], [13], [14],
[15] — to a time when no off-the-shelf UWB radios compliant
to the IEEE 802.15.4 standard were yet available — or focus on
ranging and ToA estimation rather than communication [16],
[17], [18]. Although providing useful insights, these models
hence do not capture the communication performance of
(nor were validated on) real-world UWB devices. Besides
that, these works do not consider Wi-Fi’s PHY settings and
timing characteristics, both of which are crucial for accurate
error prediction. Models considering the temporal alignment
of Wi-Fi packets and other coexisting wireless transmissions
exist in the literature. One example is the probabilistic model
of Bluetooth’s packet error rate (PER) in the presence of
Wi-Fi interference devised by Shellhammer [19]. Although
this model captures the alignment of Wi-Fi and Bluetooth
frames on the air, as well as the sensitivity of Bluetooth’s
modulation scheme to predict packet errors [20], it is specif-
ically tailored to Bluetooth (which uses a single modulation
scheme) and to IEEE 802.11n (i.e., Wi-Fi 4 — which operates
in the 2.4 and 5 GHz bands with a bandwidth up to 40 MHz).
In contrast, Wi-Fi 6E shares the 6 GHz band with UWB de-
vices (which employ different modulation schemes to transmit
a frame’s preamble and payload), and can use bandwidths up
to 160 MHz. Other models available in the literature also suffer
similar limitations: as a result, to date, there is no usable model
allowing us to predict the UWB PER in the presence of traffic
generated by devices compliant to the latest Wi-Fi standards.
Contributions. We fill this gap by introducing a probabilistic
model inspired by [19] that can accurately estimate the PER
of UWB-based systems operating alongside Wi-Fi 6E traffic.
To this end, using a conducted measurement setup, we first
analyze coexisting UWB and Wi-Fi 6E traffic. This allows us
to characterize real-world Wi-Fi6E traffic (deriving channel
occupancy as well as airtime and inter-arrival time of pack-
ets), and to capture the sensitivity of UWB transmissions to
Wi-Fi 6E traffic for different PHY settings (e.g., bandwidth and
channel center frequency), data rates, and signal strengths.
We use the outcome of this characterization to parametrize
the aforementioned model, i.e., we derive scaling and shaping
parameters from the conducted measurements for accurate
packet error rate modeling. We adopt multiple parametrization
approaches, ranging from extracting the probability of frame
collision directly from real-world traces of coexisting Wi-Fi 6E
and UWB traffic to analytically deriving the Wi-Fi6E’s chan-
nel occupancy based on a description of its PHY settings and
traffic profile. This allows us to explore different trade-offs
w.r.t. the model’s accuracy and generality.

We first evaluate our model using traces from the conducted
test setup, showing that the most accurate parametrization
approach deviates by only 3.6% on average from the actual
PER of UWB transmissions. We finally validate our model
through real-world experiments in which UWB and Wi-Fi 6E
devices are co-located in a university building. Our results
demonstrate that our model accurately captures the PER of
UWB transmissions in the presence of different types of
Wi-Fi 6E traffic, with an average error below 9.7%.

Paper outline. After introducing UWB, Wi-Fi 6E, and related
work (§ II), this paper proceeds as follows:

« We present a probabilistic model that captures the UWB
PER in the presence of Wi-Fi6E traffic (§ II);

o We parametrize the model, exploring different trade-offs
w.r.t. the model’s accuracy and generality (§ IV);

o We evaluate our model’s accuracy experimentally (§ V);

o We finally conclude the paper (§ VII) after discussing
open challenges and future work (§ VI).

II. BACKGROUND AND RELATED WORK

This section outlines first key aspects of UWB technology
(§II-A) and Wi-Fi6E (§II-B). It then reviews existing works
that focus on their coexistence and that model their operation
or performance in the presence of co-located traffic (§ II-C).

A. Overview of the IEEE 802.15.4 UWB PHY

UWB support for low-rate WPANs was first published in the
IEEE 802.15.4a amendment in 2007 and finally merged into
the IEEE 802.15.4 standard in 2011 [21]. The standardization
process triggered the creation of low-cost UWB transceivers,
with the Decawave DW 1000 — launched in 2013 — being one of
the first chipsets to be widely used for academic research and
industrial prototyping. Over the past decade, a growing number
of UWB transceivers from various vendors have entered the
market, becoming increasingly pervasive in smartphones and
modern vehicles. At the same time, support for the UWB
PHY has evolved into the IEEE 802.15.4z/ab standard, which
offers enhanced security, robustness, and data rates to enable a
broader range of precise and secure ranging applications [22].
UWB frame structure. An IEEE 802.15.4-compliant UWB
frame consists of a synchronization header (SHR), which
enables frame detection and fine-grained ToA estimation, as
well as a data portion [21]. These two frame portions are
sent using different modulation schemes: the SHR uses single-
pulse modulation, whereas the data portion is sent using a
combination of burst position modulation and binary phase-
shift keying (BPM/BPSK). The SHR consists of multiple
preamble symbols, i.e., a sequence of ~ 2 ns-long pulses drawn
from a ternary alphabet {-1,0, 1} called preamble code, and a
start of frame delimiter — consisting also of preamble symbols
— that identifies the beginning of the data portion. The number
of preamble symbol repetitions (PSR), typically 32 or 64,
increases the signal-to-noise ratio (SNR) by averaging repeated
symbols, thereby enhancing detection reliability even in the
presence of noise or interference. This makes the SHR the
most resilient segment of an UWB frame and the last to
be affected by low SNR [8], [23]. The data portion consists
of a physical header (PHR) and a payload (a.k.a. PSDU)
carrying up to 127 bytes of data. Integrity of the data portion
is ensured through a cyclic redundancy check and a forward
error correction scheme. The payload can be sent at a data
rate of 110kbit/s, 850kbit/s, 6.8 Mbit/s. The PHR is sent at
850 kbit/s by default or at 110kbit/s when also the payload is
transmitted at this rate.



To enable a secure ToA estimation, the IEEE 802.15.4z
standard introduces the scrambled timestamp sequence (STS),
a pseudo-random sequence of pulses derived from a shared
secret between sender and receiver. The STS can be placed
at different positions within an UWB frame; in this paper, we
implicitly refer to the SPO configuration where the STS is
omitted, as it ensures interoperability with IEEE 802.15.4a.
UWB transmission power and emission limits. To prevent
interference with other co-located systems, the wideband na-
ture of UWB is subject to strict emission limits on the average
power spectral density (PSD) (-41 dBm/MHz) and effective
isotropic radiated power (EIRP) (-14 dBm) over a 1 ms period.
In practice, this means that shorter UWB transmissions can
use a higher transmission power while still complying with
the average power limits. As a result of these low power
constraints, UWB receivers must achieve a high sensitivity
to reliably process incoming packets: in BPRF mode at
6.81 Mbps, sensitivities as low as -94 to -97 dBm are typically
required, which is =~ 10dB below the thermal noise floor of
a 500MHz wide channel. In practical environments, UWB
receivers may be subject to narrowband interference, which
raises the noise floor non-uniformly across the band.

B. A Primer on Wi-Fi6E

Wi-Fi is one of the most ubiquitous wireless communication
technologies, providing high-speed connectivity for billions of
devices across homes, enterprises, and public spaces. Since
its introduction in the late 1990’s, the standard has under-
gone multiple revisions to meet growing demands for faster
and more reliable wireless connectivity — most notably with
Wi-Fi 6E (IEEE 802.11ax [24]) and the more recent Wi-Fi7
(IEEE 802.11be [25]). Especially Wi-Fi6E represents a key
milestone in the history of Wi-Fi, as it introduces support for
the 6 GHz frequency band. This additional spectrum capacity
enables additional channels with larger bandwidths, improving
overall network performance [26], [27].

Similar to UWB, the PSD of Wi-Fi6E transmissions is reg-
ulated [24] to optimize spectral efficiency while minimizing
interference with other technologies operating in the 6 GHz
band. Regulatory bodies define different classes of Access
Points (APs), each with specific power and spectrum usage
constraints. Standard-Power (SP) APs are permitted to transmit
with an EIRP of up to 36dBm or a maximum PSD of
23dBm/MHz. These APs are intended for both indoor and
outdoor deployments, but are restricted from operating across
the full 6 GHz band. In contrast, Low Power Indoor (LPI)
APs are allowed to access the entire 6 GHz spectrum, but
are limited to a maximum EIRP of 30dBm or a PSD of
5dBm/MHz, which restricts their range to mitigate cross-
device interference. Very Low Power (VLP) APs are further
constrained, with a maximum EIRP of 14 dBm or a PSD of
-8dBm/MHz, and are designed for short-range applications
in both indoor and outdoor settings. Client devices associated
with either SP or LPI access points are required to transmit at
power levels 6dB lower than the respective APs, promoting
fair and efficient spectrum utilization across the network [28].

C. Related Work

We review next prior work on UWB coexistence with Wi-Fi 6E
as well as other narrowband technologies, and on modeling the
effects of interference caused by Wi-Fi traffic.

Performance of UWB under interference. The first works
studying the performance and robustness of UWB systems
under interference date back to the early to mid-2000s, in
conjunction with the prospect of an UWB PHY being stan-
dardized as part of IEEE 802.15.3 or IEEE 802.15.4. Works
such as [13], [14], [15] have evaluated the performance of var-
ious pulse-modulations and error correction schemes through
simulations under additive white Gaussian noise and single-
tone narrowband interferers. Ahmadian et al. [12] later focused
on the modulation and error correction schemes foreseen in
the IEEE 802.15.4a standard, and derived a semi-analytical
evaluation framework for studying the bit- and frame-error
rate. However, because these studies preceded both the formal-
ization of the standard and the commercialization of the first
UWRB radios, they have not been validated on actual devices,
which limits their practical value. More recent works have
studied the performance across co-located UWB systems [29]
and the coexistence between UWB and 5G [30], [31].

Coexistence of UWB and Wi-Fi6E. The opening of the
6 GHz unlicensed band for Wi-Fi use has prompted a growing
number of empirical studies investigating the coexistence
between Wi-Fi6E and UWB systems. These studies consis-
tently show how the presence of Wi-Fi6E traffic can cause
substantial degradation in UWB performance, affecting both
the reliability of communications and the accuracy/precision
of ranging measurements. Brunner et al. [7] were the first
to experimentally quantify the extent of UWB performance
degradation using a testbed facility consisting of 36 Qorvo
DW1000 devices and five Qualcomm QCN9074 Wi-Fi6E
modules. Their results were confirmed by testbed experiments
performed with newer-generation UWB radios [8], [9]. Other
studies have also touched upon the impact of Wi-Fi6E or
International Mobile Telecommunication (IMT) transmitters
on UWB sensitivity [10], ranging success rate [11], and
ToA estimation [16], [17], [18]. While all these studies help
understanding the practical impact that coexisting traffic has
on UWB systems, they do not provide a way to model or
estimate the PER of UWB-based systems operating alongside
Wi-Fi 6E traffic, which is the goal of this work.

Modeling the impact of Wi-Fi interference. Numerous
researchers have modeled the coexistence of Wi-Fi and other
narrowband wireless technologies, especially Bluetooth and
IEEE 802.15.4 (or its derivatives, such as TSCH [32] and
ZigBee [33]). For example, Yuan et al. [34] model the coex-
istence between IEEE 802.15.4 and IEEE 802.11b/g networks
as a function of signal power levels and typical packet timings
under various CSMA/CA scenarios. Shellhammer et al. [19],
[20] propose instead a probabilistic framework to model the
PER of Bluetooth as a function of the signal-to-interference
ratio (SIR) and packet timings of Wi-Fi traffic. Unfortunately,
these and many other works examine older versions of Wi-Fi
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Fig. 1: Simulated PER curves as a function of SIR. Parameters k
and ¢, discussed in § III-B, shift the curves left/right and influence
the curve shapes / maximum values, respectively.

and primarily investigate its impact on other narrowband
technologies operating in the 2.4 GHz band [35] or in LTE’s
unlicensed spectrum [36], [37], without addressing UWB.
In contrast, in this paper, we specifically focus on the impact
that Wi-Fi 6E (which operates on the 6 GHz band and employs
bandwidths up to 160 MHz) has on UWB communications.

ITII. PROPOSED MODEL

We model the UWB packet error rate (PER) in the presence
of Wi-Fi6E traffic by applying the law of total probability,
building on the methodology proposed in [19]:

PER(y, M Z P(PE|y,m)f(m) (1)
Here, M denotes the number of symbols in a UWB frame,
where each symbol corresponds to a fixed 1 pus segment of
the frame!. P(PE|y, m) is the probability of a packet error
(PE) given that m symbols are interfered at a certain signal-to-
interference ratio (SIR) y in dB. f(m) is the probability that
exactly m symbols are interfered. Fig. 1 illustrates sample PER
curves for varying P(PE|y,m) values as a function of the
SIR, showing different PER growth under low-SIR conditions.
We discuss next how to calculate f(m) (§ II-A) and how to
parameterize P(PE|vy, m) (§ II-B). We derive both f(m) and
the parameters of P(PE|y,m) from conducted measurements
on real-world UWB and Wi-Fi6E devices. We then also
investigate approaches to estimate f(m) that do not require
detailed real-world traces, but only high-level information
about the frame length and inter-arrival time, as well as
the Wi-Fi6E channel occupancy. This allows us to explore
different trade-offs w.r.t. the model’s accuracy and generality.

A. The Symbol Collision Distribution (SCD)

The first component in our interference modeling framework is
the Symbol Collision Distribution (SCD), denoted as f(m) in
Eq. 1. This probability mass function represents the likelihood
that exactly m symbols overlap with (or “are hit by”’) Wi-Fi 6E
transmissions, i.e., it captures the temporal interplay between
Wi-Fi6E and UWB traffic. We estimate the corresponding
SCD using four different approaches, which are detailed next.
Exhaustive Sweep (ES). This approach directly extracts the
SCD from real-world traces by overlaying UWB frames on

IThe use of fixed 1 s segments as symbols allows us to decouple the
modeling from the underlying modulation scheme, and enables a consistent
analysis of interference across the whole UWB frame. Please note that this
choice is compelling, as the duration of an UWB preamble symbol and a byte
of UWB data when using a data rate of 6.8 Mbps is indeed roughly 1 us.
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Fig. 2: SCD derived from a sample real-world trace of Wi-Fi6E
traffic using four different approaches (b). This specific example
refers to a trace capturing Wi-Fi6E traffic sent using iperf at a
rate of 200 Mbps with a 160 MHz channel bandwidth (a).

top of recorded Wi-Fi6E traffic at different time offsets.
Fig. 2(a) shows a portion of a sample trace recorded using our
conducted measurement setup (detailed in § IV-A) containing
Wi-Fi6E traffic (blue), and an overlaid 117 us-long UWB
frame transporting a 20-byte data payload (orange). We derive
the number of interfered UWB symbols m as the overlap in
us between the Wi-Fi 6E and UWB frames, and estimate the
corresponding SCD after sweeping the UWB frame across the
entire trace with 1 us-steps.

The blue curve in Fig. 2(b) shows the SCD estimated using this
approach. The dominant peak at m =0 reflects interference-
free receptions, in which the UWB frame does not overlap
with any Wi-Fi6E activity. The second significant peak at
m=117 corresponds to complete overlap between UWB and
Wi-Fi frames. Between these extremes lies a broad region
representing partial overlaps, including smaller peaks caused
by short gaps in between Wi-Fi6E frames where the UWB
frame partially fits. As a probability mass function, f(m) must
satisfy Z%:o f(m)=1and f(m) > 0 for all m: the entries
in f(m) are scaled accordingly.

Packet Statistics (PS). This approach provides an analytical
approximation of the SCD based on the timings of individ-
ual Wi-Fi6E transmissions extracted from real-world traces.
Specifically, we consider three timings (the average on-air
frame duration T;g;, inter-arrival time between Wi-Fi frames
Tiar, and UWB frame duration Tywg), from which we derive:

ATyg = |Tows — Twiri|,  To = |Trar — (Twiri + Tuws) |,
idXmin = max(Twir + Tuws — Tra7, 0),
idXmax = min(Tyws, Twiri)-

To+1 3 .
T m = 1dXmin
2 . . .
F(m) = Trar 1dXmin < M < 1dXpax
ATar+l ) — idx :
TIAT max
0 otherwise.

In essence, f(m) is computed by capturing four scenarios:
maximum achievable overlap (m = idxnmax), partial overlap



(1dXmin < M < idXpax), minimal overlap (m = idXyi,), and no
overlap (otherwise). In contrast to the ES approach — which
requires detailed traces capturing the received signal strength
(RSS) of Wi-Fi frames over time — only information about the
timing of frames is needed.

Measured Occupancy (MO). This approach derives the
Wi-Fi 6E channel occupancy 0,45 from recorded traces. As-
suming that the collision probability is uniformly distributed,
we can approximate f(m) as:

1-— fi =0
f(m) = o orm . , with 0= 0mpess (2)
o/mM  otherwise

Predicted Occupancy (PO). In contrast to MO, this approach

approximates the SCD analytically using Wi-Fi’s PHY set-

tings, making it appealing for scenarios where empirical traffic

data is unavailable. We define the occupancy o), as the ratio

of the anticipated and maximum possible Wi-Fi 6E data rate:
DR

Dlar’ ¥

The maximum achievable data rate D R,,,,,. can be determined
by accounting for the Wi-Fi modulation and coding scheme
(MCS) as well as the number of spatial streams (NSS). Please
note that both occupancy-based approaches trade accuracy
for generality (no need for recorded traces), as they neither
account for the UWB frame length and the temporal distri-
bution of the Wi-Fi6E transmissions, nor for any protocol-
specific overhead (e.g., medium access control contention
times). However, in practice, these methods can be used to
provide a lower-bound estimation of the PER.

0 = Oexp =

B. The Error Probability

Next, we discuss the conditional packet error probability
(P(PE|y,m)), which describes the likelihood of packet fail-
ure given a SIR v and m interfered symbols in Eq. 1. Similar
to [19], we adopt a standard Q-function based approximation,
commonly used for characterizing bit error rates in wireless
systems [38]. The error probability is modeled as:

P(PE|y,m) =1—(1 = Ps(7))™, with Ps(y) = cQ(v/10+/107),
)
where P;(+y) denotes the error probability of a single symbol.
The parameter c scales the overall probability impacting the
end-position of the curve and the curve shape, while % scales
the SIR and affects the start position of the curve, as illustrated
in Fig. 1. Parameters ¢ and k can be determined empirically
by fitting the modeled PER curve to the PER curves obtained
through recorded traces, in contrast to [19], where they are de-
rived analytically. We use scipy.optimize.curve_fit
to estimate parameters by minimizing residuals between ob-
served and modeled PERs, with the TRF method constraining
candkto0 < ¢ < 0.5and 0 < k < 25 to avoid unrealistic
values [39].
Effective interference compensation. The susceptibility of
UWB systems to Wi-Fi6E interference may not be uniform
across their 500 MHz band due to filtering and other RF-
specific components. To compensate for this and to derive

a common value for the SIR scaling k., we calculate the
frequency- and bandwidth-dependent loss value I.¢p,, by nu-
merical integration of the experimentally determined transfer-

function H:
fetB/2
Loy = Wlogl; [ HG2ENI)  5)
fe—B/2

k= kc - lcfbw (6)

with f. and B the channel’s center frequency and bandwidth.

C. Evaluation Metrics

To evaluate the impact of Wi-Fi 6E on UWB performance and
the accuracy of our model, we define several metrics.

Hit Probability (HIP) is the probability that UWB frames
overlap with Wi-Fi transmissions. Unlike traditional channel
occupancy, which measures the ratio of busy to idle time, this
metric directly captures the likelihood of interference at the
frame level. It is computed as HIP = 1 — f(0), where f(0) is
the probability of zero symbol collisions.

Maximum PER (MPE) is the maximum packet error rate
under low-SIR conditions. While the HIP quantifies the prob-
ability of packet-symbol collisions, MPE reflects the actual
resulting PER. The two may differ, for example, if symbol
collisions do not consistently lead to packet errors (e.g., due
to error correction mechanisms or symbol redundancy).
Packet Error Threshold (PET,) defines the SIR at which
the PER reaches threshold z. In our evaluation, we primarily
use PETo, which corresponds to the sensitivity specification
of our UWB hardware and marks the 10% PER point.
Mean Absolute Curve Error (MAC) measures the average
absolute deviation between the predicted and measured PER
curves across the entire SIR range. Unlike HIP, MPE, and PET
(which focus on specific operating points or regions), MAC
provides a full view of the model’s accuracy.

IV. MODEL PARAMETRIZATION

This section focuses on the parametrization of the model pre-
sented in § III. We first describe our conducted measurement
setup (§IV-A). We then analyze the temporal behavior of
Wi-Fi6E traffic (§IV-B) and its impact on the UWB PER
(§ IV-C), highlighting insights relevant to our modeling effort.
Building upon these measurements, we will then assess the
suitability of the proposed parametrization approaches for
estimating the collision probability distribution and PER (§ V).

A. Conducted Measurement Setup

Fig.3 provides a high-level sketch of the conducted mea-
surement setup, which consists of two Wi-Fi6E devices and
two UWB nodes interconnected through a series of power
splitters/combiners and a programmable attenuator. We detail
next the Wi-Fi, UWB, and measurement paths separately.

The Wi-Fi path consists of two MediaTek MT7916AN
Wi-Fi 6E capable cards: one configured as access point (AP),
and one as station (STA). Throughout all experiments, we set
the NSS to 1 and the MCS index to 11. We then let the STA



Fig. 3: The conducted measurement setup consists of two pairs of
communicating Wi-Fi 6E and UWB devices. The generated Wi-Fi 6E
traffic is tapped and fed to the UWB communication path through a
programmable attenuator. The combined signal is tapped before it is
fed to the UWB device and filtered, amplified, as well as mixed to an
IF frequency of 1.5 GHz for trace generation and SIR measurements.

transmit UDP traffic on various channels utilizing the iper£3
Linux utility?. In the conducted setup, the three antenna ports
of each device are combined into a single communication
path using 4:1 power splitters/combiners. The combined signal
from the transmitting Wi-Fi 6E device is then split again using
an additional 2:1 splitter/combiner. One path continues to the
Wi-Fi receiver, after passing through a 6dB attenuator that
protects devices from signal overload. The second path is used
to extract the Wi-Fi6E signal for interference injection, and
it is then routed into the UWB communication path via a
programmable attenuator. Conversely, UWB signals may also
be detected by Wi-Fi6E devices, potentially triggering back-
off events. Our setup prevents this: the use of attenuators and
splitters ensures that the maximum effective received energy
within a 160 MHz Wi-Fi 6E channel is limited to —96.35 dBm,
which is well below the —62 dBm threshold required to trigger
a back-off [24].

The UWB path consists of two UWB radios compliant to
the IEEE 802.15.4z standard that are widely available on the
market’. Both UWB nodes employ patch antennas and feature
micro coaxial connectors to facilitate wired testing. Devices
are enclosed in shielded metal housings to eliminate external
wireless interference. To avoid overwhelming the Wi-Fi signal,
the transmitted UWB signal is attenuated by 53 dB using an
attenuator. This signal is then merged with the Wi-Fi signal
using a power splitter/combiner and again split before being
fed into the receiving UWB node to our measurement path.

The measurement path path consists of a band-pass filter
in the range 5.6-7GHz, a low-noise amplifier with 22 dB
amplification, and a mixer to move Wi-Fi and UWB signals
from ~ 6.5 GHz to ~ 1.5 GHz. This allows us to observe the
UWB and Wi-Fi signals at intermediate frequency with a
PlutoSDR as well as a Keysight MSO-S 254A mixed-signal
oscilloscope. The former is used in zero-span mode to acquire
Wi-Fi traces at a sampling rate of 1 MHz: these traces are
subsequently smoothed and quantized to the interval [0,1]
for further processing. The oscilloscope is primarily used to

2We use iperf to maximize repeatability, as in related studies [7], [9].
3We omit hardware details, as the observed behavior reflects standard IEEE
802.15.4z protocol characteristics rather than device-specific implementations.
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Fig. 4: Average channel occupancy (a) as well as average frame
duration and inter-arrival time of Wi-Fi 6E frames (b).

analyze both Wi-Fi and UWB frames in the frequency domain
to estimate their transmission power and the relative signal
strength perceived at the RX UWB device.

B. Characterizing Wi-Fi6E Traffic

We begin our analysis by examining the temporal characteris-
tics of recorded Wi-Fi traffic for various data rate and channel
bandwidth configurations. From these traces, we extract three
key statistics: the channel occupancy, the average Wi-Fi frame
duration Tw;r, and the mean inter-arrival time Tiat, which
we use to derive the SCD (see §III-A). Fig.4(a) shows
the measured channel occupancy as a function of data rate
and bandwidth, whereas Fig.4(b) presents the correspond-
ing values for Twir and Tiar. As expected, increasing the
data rate for a given bandwidth leads to a higher channel
occupancy. This relationship closely follows the approxima-
tion 0 = DR/DR,,,, from Eq.3. Moreover, doubling the
bandwidth effectively halves the occupancy for the same data
rate, due to the increased throughput. When analyzing the
timing of individual Wi-Fi6E transmissions, we observe that
higher data rates lead to an increased Twir;, Whereas Tiar
does not exhibit a strictly monotonic behavior. At lower data
rates, Tiar significantly exceeds Twipi, reflecting long idle
periods between transmissions. However, once the data rate
approaches approximately half of the maximum supported rate
for a given bandwidth, this gap narrows. Beyond that point,
the difference between Tiar and Tw;f; stabilizes to a consistent
margin of roughly 100-200 ps, indicating saturation with very
small idle gaps between Wi-Fi frames.

C. Impact of Wi-Fi6E on UWB

To quantify the impact of Wi-Fi6E interference on UWB
communication, we perform a series of controlled experiments
with different traffic profiles and PHY settings. Specifically,
we configure the Wi-Fi 6E devices to transmit at different data
rates across various channel bandwidths and center frequen-
cies. The UWB devices use a PSR of 64, and send SPO frames
with a PSDU length from 20 to 120 bytes. To simulate varying
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interference conditions, we gradually adjust a programmable
attenuator between the two UWB nodes in 1 dB steps. For each
step, we transmit 1000 UWB frames and record the number
of reception errors to determine the PER as a function of
the SIR. For every configuration, we compute the observed
PER and determine the PET, value. These results are then
compared against the output of our model, which uses the
Exhaustive Sweep approach (most accurate) with parameters
c¢=0.22 and k., = 17.5 as determined later in this section.
Impact of channel bandwidth and frequency. To understand
the frequency sensitivity of UWB reception under Wi-Fi 6E
interference, we analyze how both the bandwidth and center
frequency of the Wi-Fi signal affect the PET at 10% (PET¢).
This evaluation is motivated by the fact that the frequency
response of the UWB transceiver’s RF front end is non-
uniform, altering the effective interference energy depending
on the employed Wi-Fi channel. In this experiment, the Wi-Fi
devices operate at their maximum data rate, while the UWB
PSDU length is fixed at 20 bytes. We then sweep the Wi-Fi 6E
channel center frequency from 6.2 GHz to 6.7 GHz, using step
sizes of 20, 40, 80, and 160 MHz to match the corresponding
channel bandwidths. Fig.5 shows the resulting PET;( values
across channel center frequencies and bandwidths. We can
observe a clear frequency dependency with up to 11dB dif-
ference in required SIR to maintain a 10% PER. In particular,
the required PET;( tends to be lower near the edges of the
500 MHz UWB band, rises near the center frequency, and then
drops again exactly at the center. This behavior can be effec-
tively modeled by approximating the UWB front-end response
as a composite filter, namely a bandpass filter spanning the
6.39-6.59 GHz range, combined with a narrow notch filter
centered at 6.495 GHz with a quality factor Qotcn, = 300.
The black dashed curve in Fig.5 shows the predicted PET;
for a 20 MHz Wi-Fi 6E channel based on this filter model,
which closely matches the measured values.

Impact of Wi-Fi 6E data rate. We configure the Wi-Fi 6E de-
vices to operate across multiple bandwidths: 20 MHz (centered
at 6.495 GHz), 40 MHz (centered at 6.485 GHz), 80 MHz (cen-
tered at 6.465 GHz), and 160 MHz (centered at 6.505 GHz).
Fig. 6(a) shows the measured (solid) and predicted (dashed)
PER as a function of SIR for various data rates using a
160 MHz Wi-Fi channel. The results clearly show that the PER
is highly affected by the data rate, particularly under low SIR
conditions. This trend can be attributed to the effective channel
occupancy: with increasing data rates, the occupancy rises,
thereby increasing the probability of collision and packet loss.
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Fig. 6: Impact of Wi-Fi6E data rates, SIR, and channel bandwidth
on PER (a) and PET}o (b). The top plot is derived using a channel
bandwidth of 160 MHz and an UWB PSDU length of 120 bytes.
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Fig. 7: Impact of UWB PSDU length on PER (a) and PET values
(b). Solid lines: measured data; dashed lines: model predictions.

Depending on the chosen data rate, we observe differences in
PER of up to = 55%. In contrast, the impact of data rate on
PET, is less severe. As shown in Fig. 6(b), both the measured
(solid) and predicted (dashed) PET;( exhibit a similar spread
across Wi-Fi6 data rates, ranging from 1.3dB to 3.39dBm
for the measured, and between 2.02dB and 4.76 dB for the
predicted PET.

Impact of UWB PSDU length. We configure the Wi-Fi6E
devices to transmit on a 20 MHz-wide channel centered at
6.455 GHz with maximum available data rate, and the UWB
devices to send packets with different PSDU lengths. We then
record the PER while varying the SIR using a programmable
attenuator. Fig.7(a) shows that, unsurprisingly, longer data
payloads are more vulnerable to Wi-Fi 6E interference, result-
ing in PER degradation already at lower SIR levels. Fig. 7(b)
shows the corresponding PET;y for PSDU lengths ranging
from 10 to 120 bytes. The measured data suggests up to
~2.88 dB difference in PET;q as a function of packet length.
This is only partially captured by the model, which predicts
a higher PET;( value for lower PSDU lengths. This observa-
tion suggests that additional PHY effects or implementation-
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specific factors may be influencing error sensitivity beyond
what our model (based on symbol collisions) accounts for.

Suitable ¢ and k£ for modeling the PER. To parametrize
the error probability P(PE|vy,m) with suitable ¢ and k
values, we record PER curves for different Wi-Fi channel
bandwidths (20 MHz, centered at 6.495GHz; 40 MHz, cen-
tered at 6.485GHz; 80MHz, centered at 6.465GHz; and
160MHz, centered at 6.505 GHz) and data rates (between
25 and 800 Mbps), as well as UWB PSDU lengths (20 or
120 bytes). Fig. 8(a) shows the estimated parameter ¢ across
different bandwidths and PSDU lengths (averaged over all
investigated data rates). For short PSDU lengths, we observe
similar ¢ values across all bandwidths and we observe a
tendency for higher ¢ values for longer PSDU lengths. This
trend aligns with our expectations: the average resilience of an
UWB packet improves when the relatively robust preamble
and PHR outweigh the sensitivity of the data portion. As
the PSDU length increases, the average packet sensitivity
rises, which is reflected in a higher c¢ value. On average, we
found that ¢ = 0.22 sufficiently represents all cases. The
k value, shown in Fig.8(b), determines the onset point of
the curves and depends on the Wi-Fi6E channel bandwidth
and center frequency, as highlighted in Fig.5. By applying
Eq. 6, we derive the channel- and bandwidth-independent SIR
scaling parameter k.. Fig.8(c) shows that an average value
k. = 17.5 sufficiently represents all measurements. During
model prediction, we will use Eq.6 to compute the channel-
and bandwidth-dependent parameter k from the common k..

V. EVALUATION
We now evaluate the accuracy of our modeling approach.
First, we use the conducted measurements (§ IV-A) to assess
how different parametrization approaches affect model perfor-
mance. Second, we perform wireless experiments to demon-
strate the applicability of the model in real-world scenarios.

A. Evaluation Using Conducted Measurements

Relationship between HIP and MPE. Under low-SIR con-
ditions, UWB frames are highly sensitive to Wi-Fi6E inter-
ference: even a single symbol collision can lead to a frame
error. As a result, successful UWB reception typically occurs
only when a frame experiences no collisions at all. Therefore,
the Hit Probability (HIP), i.e., the probability of any collision,
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directly determines the maximum PER (MPE). Fig. 9 presents
the measured MPE alongside the HIP values computed using
the four different SCD approximation methods introduced in
§ II-A. For PSDU lengths of 20 and 120 bytes, the difference
between measured PER and the MPE computed using the
Measured Occupancy remains within approximately -9.4% to
-21.7% on average. The Predicted Occupancy method shows
a =~ 10% larger offset, likely due to additional packet overhead
and control frames present in Wi-Fi 6E traffic that we currently
do not account for. Since this offset is stable across config-
urations (see Fig.9), incorporating these overheads into the
occupancy model could further improve accuracy. Using the
Packet Statistics method leads to a MPE that overestimates the
PER, but that achieves a lower absolute error of 12.7% and
19.3% for PSDU lengths of 20 and 120 bytes, respectively.
Among all approaches, the Exhaustive Sweep is the most
accurate, with differences of only 6.6% and 3.1% to the true
PER for PSDU lengths of 20 and 120 bytes, respectively.

Impact of f(m) on the PER shape. Next, we analyze
the impact of different f(m) estimation methods by compar-
ing them against the Exhaustive Sweep approach. Fig. 10(a)
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presents the PER curves obtained using Exhaustive Sweep
(solid lines) and the Predicted Occupancy (dashed lines) to
generate f(m). We can observe two key aspects: first, when
using the Predicted Occupancy approach, the end position
is slightly underestimated in low SIR conditions with high
Wi-Fi 6E data rates. Second, the PER curves are noticeably
shallower compared to the Exhaustive Sweep approach. Both
effects can be attributed to the shape of f(m), which is uni-
form across all collision cases. In contrast, the f(m) generated
by the Packet Statistics method exhibits a distribution that is
not uniform for all m > 0 and aligns much more closely with
the reference curve produced via Exhaustive Sweep.

Model performance. We evaluate the final PER prediction
performance of the proposed model using different SCD esti-
mation methods. To this end, we calculate the average offset
MPE, MAC, and PET; between the measured and predicted
PER curves. The results are shown in Tab.I: as anticipated,
the Exhaustive Sweep method yields the lowest error across
all three performance metrics, regardless of the UWB PSDU
length. Differently, the Packet Statistics overestimate the PER
by a small offset (=4.7%) in terms of MPE for short PSDUs
and a high offset (= 14.3%) for long PSDUs. Conversely, the
occupancy-based methods underestimate the MPE value by
~17.1% to ~36.7%: this is also reflected by a high MAC
and a negative PET;( value of up to —1.49dB.

B. Wireless Evaluation

We finally evaluate the model in a wireless setup deployed in
a vacant ~ 6 x 6 m university office and a ~ 50 x 4 m hallway.
In both environments, we place the interfering Wi-Fi 6E device
1 m away from the UWB receiver, whereas the UWB transmit-
ter is placed at various distances (as an example, the blue dots
in Fig. 11(a) show the positions of the UWB transmitter in the
office). To establish a baseline SIR, we measure the received
signal strength (RSS) of both the UWB and Wi-Fi 6E devices
at 1 m distance using an oscilloscope in each environment.
Using these measurements, we apply the log-distance path loss
model to estimate the SIR at any distance d as:

SIR(d) = SIR(do) — 10nlog,o(d/do) 7
SIR(dp) is the measured SIR at 1 m distance, and 7 is the path

loss exponent. Following Molisch et al. [40], we use n=1.75,
which corresponds to typical residential environments. We

TABLE I: Model performance using conducted measurements.

SCD method | PSDU [bytes] | MAC[%] | MPE [%] | PET 1 [dB]
ES 20 3.6 0.4 0.93
PS 20 5.4 4.7 0.97
MO 20 10.0 -17.1 -0.75
PO 20 16.3 -27.7 -0.98
ES 120 3.0 -0.5 -0.13
PS 120 10.1 14.3 -0.07
MO 120 17.7 -25.6 -1.41
PO 120 249 36.7 -1.49

TABLE II: Model performance using wireless measurements.

SCD | PSDU MAC MPE PET;o
method | [bytes] | Office Hallway | Office Hallway | Office Hallway
[%] [%] [%] [%] [dB]  [dB]
ES 20 6.1 9.7 4.7 4.7 2.3 2.9
PS 20 8.0 114 8.4 8.1 2.3 2.9
MO 20 7.8 9.3 -11.8  -11.3 2.1 2.7
PO 20 14.5 137 | -23.7 -23.1 2.1 2.8
ES 120 3.7 5.4 0.3 0.3 1.4 1.8
PS 120 | 109 13.5 14.3 14.0 1.4 1.8
MO 120 | 19.1 183 | -267 -26.6 0.2 0.4
PO 120 | 26.7 257 |-38.6 -383 0.5 0.9

then apply the parametrized PER model to compute the pre-
dicted PER curves using the calculated SIR values, and com-
pare them against the measured PER. Fig. 11(b) presents the
resulting PER curves for different Wi-Fi 6E data rates. Overall,
the PER predicted by our model using the Exhaustive Sweep
method (dashed lines) shows strong similarity with the mea-
sured PER (solid lines), despite a visible offset in the curves’
onset point. Tab. II reports a detailed breakdown of our model’s
performance in both office and hallway for different SCD
estimation methods and UWB PSDU lengths. Our model
parametrized with ES exhibits an average deviation of only
0.3% in office and hallway, respectively, for large PSDUs;
and of 4.7 % for short PSDUs.

VI. DISCUSSION & FUTURE WORK

Our modeling approach represents a first step towards un-
derstanding UWB performance under Wi-Fi6E interference.
Several opportunities remain to refine and extend our model.
Dedicated parameters for different frame sections. The
current model assumes uniform sensitivity across all sections
of the UWB frame, and the estimated c and k parameters are
tuned to represent the frame as a whole. To further improve
the model’s accuracy, future work could focus on estimating
separate ¢ and k parameters for each frame section.

Number of Wi-Fi stations. Our study focuses on Wi-Fi6E
traffic generated by a single station. Extending the model with
the ability to capture the impact of traffic sent by multiple
Wi-Fi stations on UWB performance is an important direction
for future work. This entails: (i) modeling the change in traffic
arising from Wi-Fi’s channel access protocol, and (ii) cap-
turing the effects of concurrent packet transmissions from
multiple stations enabled by Wi-Fi 6E’s OFDM capabilities.
UWB PHY settings and traffic profiles. This work studies
how key Wi-Fi6E PHY parameters affect UWB PER under
interference, using periodic UWB traffic and varying only the
UWRB frame length. Extending this analysis to cover a broader
range of UWB PHY settings and traffic patterns is a promising
direction for future work that could further enhance the model.



Impact of Wi-Fi7 traffic on UWB. The IEEE 802.11be
standard (Wi-Fi 7), approved in late 2024, is currently the latest
revision of Wi-Fi. Building on Wi-Fi 6E and operating in the
same frequency bands, Wi-Fi7 introduces key enhancements
such as support for bandwidths up to 320 MHz and Multi-
Link Operation (MLO), which enables simultaneous trans-
mission and reception across multiple frequency bands and
channels [25]. These features substantially increase maximum
link rates beyond those of Wi-Fi6E. As certification and
commercialization of Wi-Fi7 routers are still in the early
stages, this paper focuses exclusively on results obtained with
Wi-Fi 6E devices. However, our modeling approach is generic
and readily extends to Wi-Fi7, and we have confirmed this
through preliminary tests with early Wi-Fi 7 hardware.

VII. CONCLUSION

We presented a methodological framework and model for
predicting the PER of UWB communication under Wi-Fi 6E
interference. In a first step, we recorded the UWB PER
with different Wi-Fi 6E traffic profiles and PHY settings. Our
analysis revealed that the Wi-Fi 6E channels’ center frequency
and bandwidth can account for an 11dB difference in the
UWRB sensitivity; in contrast to the Wi-Fi6E data rates and
UWB payload length, whose impact is only up to 4.76 dB and
2.5dB. Conversely, different Wi-Fi6E data rates and UWB
payload lengths significantly impact the maximum PER up
to approximately 55%. We recorded traces of Wi-Fi6E traffic
and used them in combination with the previously-acquired
PER to parametrize the proposed model. Our experimental
evaluation demonstrated that our model can accurately predict
the expected PER for a given Wi-Fi6E traffic profile, with
average deviations as low as 3.6% and 9.7% for conducted
and wireless measurements, respectively.
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